Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 5): 1224-1233, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39196771

RESUMEN

Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales. This work describes an optimized indirect X-ray imaging microscope designed to achieve high performance at micrometre pixel size and megahertz acquisition speed. The entire detector optical arrangement has an improved sensitivity within the near-ultraviolet (NUV) part of the emitted spectrum (i.e. 310-430 nm wavelength). When combined with a single-crystal fast-decay scintillator, such as LYSO:Ce (Lu2-xYxSiO5:Ce), it exploits the potential of the NUV light-emitting scintillators. The indirect arrangement of the detector makes it suitable for high-dose applications that require high-energy illumination. This allows for synchrotron single-bunch hard X-ray imaging to be performed with improved true spatial resolution, as herein exemplified through pulsed wire explosion and superheated near-nozzle gasoline injection experiments at a pixel size of 3.2 µm, acquisition rates up to 1.4 MHz and effective exposure time down to 60 ps.

2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047627

RESUMEN

In this research, we combined our ultralight micro-imaging device for calcium imaging with microdialysis to simultaneously visualize neural activity in the dorsal raphe nucleus (DRN) and measure serotonin release in the central nucleus of the amygdala (CeA) and the anterior cingulate cortex (ACC). Using this platform, we observed brain activity following nociception induced by formalin injection in the mouse's hind paw. Our device showed that DRN fluorescence intensity increased after formalin injection, and the increase was highly correlated with the elevation in serotonin release in both the CeA and ACC. The increase in calcium fluorescence intensity occurred during the acute and inflammatory phases, which suggests the biphasic response of nociceptive pain. Furthermore, we found that the increase in fluorescence intensity was positively correlated with mouse licking behavior. Lastly, we compared the laterality of pain stimulation and found that DRN fluorescence activity was higher for contralateral stimulation. Microdialysis showed that CeA serotonin concentration increased only after contralateral stimulation, while ACC serotonin release responded bilaterally. In conclusion, our study not only revealed the inter-regional serotonergic connection among the DRN, the CeA, and the ACC, but also demonstrated that our device is feasible for multi-site implantation in conjunction with a microdialysis system, allowing the simultaneous multi-modal observation of different regions in the brain.


Asunto(s)
Dolor Nociceptivo , Serotonina , Ratones , Animales , Serotonina/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Microdiálisis , Calcio , Señalización del Calcio
3.
Plant Cell Environ ; 45(7): 2109-2125, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985134

RESUMEN

To explore diversity in cold hardiness mechanisms, high resolution magnetic resonance imaging (MRI) was used to visualise freezing behaviours in wintering Daphne kamtschatica var. jezoensis flower buds, which have naked florets and no bud scales. MRI images showed that anthers remained stably supercooled to the range from -14 to -21°C or lower while most other tissues froze by -7°C. Freezing of some anthers detected in MRI images between -14 and -21°C corresponded with numerous low temperature exotherms and also with the 'all-or-nothing' type of anther injuries. In ovules/pistils, only embryo sacs remained supercooled at -7°C or lower, but slowly dehydrated during further cooling. Cryomicroscopic observation revealed ice formation in the cavities of calyx tubes and pistils but detected no ice in embryo sacs or in anthers. The distribution of ice nucleation activity in floral tissues corroborated the tissue freezing behaviours. Filaments likely work as the ice blocking barrier that prevents ice intrusion from extracellularly frozen calyx tubes to connecting unfrozen anthers. Unique freezing behaviours were demonstrated in Daphne flower buds: preferential freezing avoidance in male and female gametophytes and their surrounding tissues (by stable supercooling in anthers and by supercooling with slow dehydration in embryo sacs) while the remaining tissues tolerate extracellular freezing.


Asunto(s)
Daphne , Hielo , Flores , Congelación , Imagen por Resonancia Magnética
4.
BMC Biotechnol ; 19(Suppl 2): 89, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31847843

RESUMEN

BACKGROUND: Dirioxa pornia (Diptera, Tephritidae) (Island fly) is an Australian native species related to a number of pestiferous fruit flies but, unlike many of the pest species, has not been studied extensively due to its non-pest status. However, due to D. pornia's apparent reliance on the bacteria for survival it is an ideal species to undertake studies into interaction between Tephritid species and bacteria associated with the intestinal tract. The oesophageal diverticulum, which is a blind-ended protrusion of the oesophagus, has been studied, described and characterised in many other Tephritid species. Unlike many other species where the oesophageal diverticulum has been observed the organ was only observed in male D. pornia. It is speculated that this sexual dimorphism the organ may be the primary location to host beneficial bacteria in the involved in the production of the nuptial gift and the mating success of this Tephritid species. In case of D. pornia, however, no study on any area of the digestive system has been conducted. This study was conducted to locate and characterize the oesophageal diverticulum in D. pornia. A virtual dissection of the alimentary tract was made through micro-computer tomography studies. These studies were followed by dissection and scanning microscopy studies to elucidate the presence of bacteria. RESULTS: The oesophageal diverticulum of D. pornia is part of the foregut and distends from the oesophagus within the head of the fly. The shape of the oesophageal diverticulum corresponds with the Ceratitis type. Scanning microscopy studies of the oesophageal diverticulum show rod-shaped bacterial cells residing along with yeast cells in the lumen. The organ was only observed in male specimens. CONCLUSIONS: This study classifies the oesophageal diverticulum of D. pornia under the "Ceratitis type" of oesophageal diverticula in Tephritid species. The study also proves that micro-CT scanning is possible to locate soft tissues in Tephritid species and the Avizo® Fire software can be successfully used to visualize 3 dimensional (3D) images from x-rays. The methods used in this experiment can be used in future studies for visualising soft tissues of adult Tephritid species through micro tomography. There is sexual dimorphism with the organ only found in males. Finally this study shows that bacteria are present in the oesophageal diverticulum of D. pornia.


Asunto(s)
Bacterias/ultraestructura , Divertículo Esofágico/diagnóstico por imagen , Tephritidae/microbiología , Levaduras/ultraestructura , Animales , Bacterias/clasificación , Divertículo Esofágico/microbiología , Femenino , Imagenología Tridimensional , Masculino , Microscopía Electrónica de Rastreo , Caracteres Sexuales , Conducta Sexual Animal , Tephritidae/anatomía & histología , Tephritidae/fisiología , Microtomografía por Rayos X , Levaduras/clasificación
5.
MAGMA ; 32(4): 437-447, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30649708

RESUMEN

OBJECTIVE: The applicability of the balanced steady-state free precession (bSSFP) sequence to the field of MR microscopy was investigated, since the potentially high SNR makes bSSFP attractive. However, particularly at ultra-high magnetic fields, a number of constraints emerge: the frequency sensitivity of the bSSFP signal, the duty cycle of the imaging gradients, and the intrinsic diffusion attenuation of the steady state due to the imaging gradients. MATERIALS AND METHODS: Optimization of the bSSFP sequence was performed on three imaging systems (7 T and 9.4 T) suited for MR microscopy. Since biological samples are often imaged in the very proximity of materials from sample containers/holder or devices such as electrodes, several microscopy phantoms representing such circumstances were fabricated and examined with 3D bSSFP. RESULTS: Artifact-free microscopic bSSFP images could be obtained with voxel sizes down to 16 µm × 16 µm × 78 µm and with an SNR gain of 25% over standard gradient echo images. CONCLUSION: With appropriate choice of phantom materials, optimization of the flip angle to the diffusion-attenuated steady state and protocols considering duty-cycle limitations, bSSFP can be a valuable tool in MR microscopy.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Microscopía/métodos , Algoritmos , Artefactos , Simulación por Computador , Aumento de la Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Campos Magnéticos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido , Agua
6.
J Synchrotron Radiat ; 24(Pt 1): 232-239, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009562

RESUMEN

Experiments were conducted to study the effects of static magnetic fields (SMFs) on the venation network of soybean leaves using the synchrotron-based X-ray micro-imaging technique. The seeds of soybean (Glycine max, variety JS-335) were pretreated with different SMFs from 50 to 300 mT in steps of 50 mT for 1 h. The phase-contrast images obtained showed that, as the strength of the SMF increased, the area, width of the midrib, area of the midrib and minor vein of the middle leaflets of third trifoliate leaves also increased up to the SMF strength of 200 mT (1 h) and decreased thereafter. Quantification of the major conducting vein also showed the differences in the major and minor vein structures of the soybean leaves as compared with control leaves. Further, the phase-retrieval technique has been applied to make the segmentation process easy and to quantify the major and minor veins in the venation network. The width and area of midrib enhancement by pre-treatment with SMF implies an enhancement in the uptake of water, which in turn causes an increased rate of photosynthesis and stomatal conductance.


Asunto(s)
Hojas de la Planta/química , Sincrotrones , Fotosíntesis , Hojas de la Planta/fisiología , Semillas , Glycine max
7.
J Synchrotron Radiat ; 23(Pt 3): 795-801, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27140160

RESUMEN

The hydraulic efficiency of a leaf depends on its vascular structure as this is responsible for transport activities. To investigate the effect of exclusion of UVAB and UVB radiation from the solar spectrum on the micro-structure of leaves of soybean (Glycine max, variety JS-335), a field experiment was conducted using synchrotron-based phase contrast imaging (PCI). Plants were grown in specially designed UV exclusion chambers, and wrapped with filters that excluded UVB (280-315 nm) or UVAB (280-400 nm), or transmitted all the ambient solar UV (280-400 nm) radiation (filter control). Qualitative observation of high-resolution X-ray PCI images obtained at 10 keV has shown the differences in major and minor vein structures of the leaves. The mid-rib width of the middle leaflet of third trifoliate leaves, for all treatments, were obtained using quantitative image analysis. The width of the mid-rib of the middle leaflet of third trifoliate leaves of UVB excluded plants was found to be more compared to leaves of filter control plants, which are exposed to ambient UV. The mid-rib or the main conducting vein transports water and sugars to the whole plant; therefore, mid-rib enhancement by the exclusion of solar UV radiation possibly implies enhancement in the leaf area which in turn causes an increased rate of photosynthesis.


Asunto(s)
Glycine max , Hojas de la Planta , Luz Solar , Sincrotrones , Rayos Ultravioleta , Rayos X
8.
Plant Cell Environ ; 39(12): 2663-2675, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27497429

RESUMEN

How plant tissues control their water behaviours (phase and movement) under subfreezing temperatures through adaptative strategies (freezing behaviours) is important for their survival. However, the fine details of freezing behaviours in complex organs and their regulation mechanisms are poorly understood, and non-invasive visualization/analysis is required. The localization/density of unfrozen water in wintering Cornus florida flower buds at subfreezing temperatures was visualized with high-resolution magnetic resonance imaging (MRI). This allowed tissue-specific freezing behaviours to be determined. MRI images revealed that individual anthers and ovules remained stably supercooled to -14 to -21 °C or lower. The signal from other floral tissues decreased during cooling to -7 °C, which likely indicates their extracellular freezing. Microscopic observation and differential thermal analyses revealed that the abrupt breakdown of supercooled individual ovules and anthers resulted in their all-or-nothing type of injuries. The distribution of ice nucleation activity in flower buds determined using a test tube-based assay corroborated which tissues primarily froze. MRI is a powerful tool for non-invasively visualizing unfrozen tissues. Freezing events and/or dehydration events can be located by digital comparison of MRI images acquired at different temperatures. Only anthers and ovules preferentially remaining unfrozen are a novel freezing behaviour in flower buds. Physicochemical and biological mechanisms/implications are discussed.


Asunto(s)
Cornus/fisiología , Flores/fisiología , Cornus/anatomía & histología , Flores/anatomía & histología , Flores/ultraestructura , Congelación/efectos adversos , Imagen por Resonancia Magnética , Microscopía
9.
Ann Bot ; 118(5): 1033-1042, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27539601

RESUMEN

Background and Aims The refilling of embolized xylem vessels under tension is a major issue in water transport among vascular plants. However, xylem embolism and refilling remain poorly understood because of technical limitations. Direct observation of embolism repair in intact plants is essential to understand the biophysical aspects of water refilling in embolized xylem vessels. This paper reports on details of the water refilling process in leaves of the intact herbaceous monocot plant Zea mays and its refilling kinetics obtained by a direct visualization technique. Methods A synchrotron X-ray micro-imaging technique was used to monitor water refilling in embolized xylem vessels of intact maize leaves. Xylem embolism was artificially induced by using a glass capillary; real-time images of water refilling dynamics were consecutively captured at a frame rate of 50 f.p.s. Key Results Water supply in the radial direction initiates droplet formation on the wall of embolized xylem vessels. Each droplet grows into a water column; this phenomenon shows translation motion or continuous increase in water column volume. In some instances, water columns merge and form one large water column. Water refilling in the radial direction causes rapid recovery from embolism in several minutes. The average water refilling velocity is approx. 1 µm s-1. Conclusions Non-destructive visualization of embolized xylem vessels demonstrates rapid water refilling and gas bubble removal as key elements of embolism repair in a herbaceous monocot species. The refilling kinetics provides new insights into the dynamic mechanism of water refilling phenomena.

10.
Sensors (Basel) ; 16(10)2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27783040

RESUMEN

Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l1-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging.

11.
J Magn Reson Imaging ; 41(2): 496-504, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24382749

RESUMEN

PURPOSE: To demonstrate the feasibility of a highly sensitive superconducting surface coil for microscopic MRI of the human skin in vivo in a clinical 1.5 Tesla (T) scanner. MATERIALS AND METHODS: A 12.4-mm high-temperature superconducting coil was used at 1.5T for phantom and in vivo skin imaging. Images were inspected to identify fine anatomical skin structures. Signal-to-noise ratio (SNR) improvement by the high-temperature superconducting (HTS) coil, as compared to a commercial MR microscopy coil was quantified from phantom imaging; the gain over a geometrically identical coil made from copper (cooled or not) was theoretically deduced. Noise sources were identified to evaluate the potential of HTS coils for future studies. RESULTS: In vivo skin images with isotropic 80 µm resolution were demonstrated revealing fine anatomical structures. The HTS coil improved SNR by a factor 32 over the reference coil in a nonloading phantom. For calf imaging, SNR gains of 380% and 30% can be expected over an identical copper coil at room temperature and 77 K, respectively. CONCLUSION: The high sensitivity of HTS coils allows for microscopic imaging of the skin at 1.5T and could serve as a tool for dermatology in a clinical setting.


Asunto(s)
Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Piel/ultraestructura , Estudios de Factibilidad , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Relación Señal-Ruido
12.
Anal Biochem ; 458: 72-4, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24708939

RESUMEN

We report a microvascular-interstitium model on microfluidic devices to study leakage of drugs from blood vessels under in vivo-like flow conditions. We employed magnetic resonance imaging to demonstrate the compatibility of the model for experimental animals and humans. We observed transport of two types of different molecular-weight contrast agents into the model interstitium. The ratio of the transport rates of agents agreed with the ratio calculated from diffusion coefficients of the agents. We expect that the model will be useful for the estimation and evaluation of leakage of many kinds of agents in vivo.


Asunto(s)
Vasos Sanguíneos/metabolismo , Medios de Contraste/análisis , Imagen por Resonancia Magnética , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Animales , Medios de Contraste/metabolismo , Humanos
13.
Sci Rep ; 14(1): 22015, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317713

RESUMEN

In this work, echo-planar spectroscopic imaging (EPSI) with flyback readout gradient-echo train was implemented in a preclinical MR scanner. The aim of this study is to visualize and quantify the ghost spectral lines produced by two, three and four interleaved echo trains with different amplitudes of the readout gradients, and to investigate the feasibility of the flyback data acquisition in micro-imaging of small animals. Applied multi-slice EPSI sequence utilizes asymmetric gradient-echo train that combines the shortest possible rewind gradients with readout gradients. It simplifies data processing because all echoes are acquired with the same polarity of the readout gradient. The approach with four interleaved gradient-echo trains and with four echoes in each train provides broad spectral bandwidth in combination with narrow receiver bandwidth and a good water-fat signal separation. It improves signal-to-noise ratio without the undesired consequence of water-fat shift artifacts that are eliminated during data processing. Position, number, and intensity of the ghost spectral lines can be controlled by the suitable choice of spectral bandwidth, number of echo train interleaves, and the number of echoes in each interleave. This study demonstrates that high-spatial resolution EPSI with interleaved flyback readout gradient-echo trains is feasible on standard preclinical scanners.

14.
Mar Pollut Bull ; 193: 115200, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364340

RESUMEN

In this study, an automated identification workflow for Raman micro-imaging (RMI) was developed, and the performance was evaluated by artificial samples of microplastic (MP) microsphere with different sizes and types. Theoretical detection rate and estimated particle size were derived and compared with experimental data. Results show that the proposed workflow can identify plastic types and estimate the size of the MP microspheres under different conditions for most cases. However, size of laser spot and discrepancy between sample surface and focal plane can influence RMI results in two ways. Firstly, small particles are more likely to be detected. Secondly, estimated sizes of particles are more likely to be overestimated. The derived uncertainties can serve as a reference for future experimental design and further investigation of more complex situations. The workflow is accessible online, and interested researchers can adjust the parameter values as necessary to suit their specific circumstances.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Microplásticos , Flujo de Trabajo , Espectrometría Raman/métodos , Microesferas , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
15.
Micromachines (Basel) ; 14(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37763852

RESUMEN

The spectral and depth (SAD) imaging method plays an important role in the field of computer vision. However, accurate depth estimation and spectral image capture from a single image without increasing the volume of the imaging sensor is still an unresolved problem. Our research finds that a snapshot narrow band imaging (SNBI) method can discern wavelength-dependent spectral aberration and simultaneously capture spectral-aberration defocused images for quantitative depth estimation. First, a micro 4D imaging (M4DI) sensor is proposed by integrating a mono-chromatic imaging sensor with a miniaturized narrow-band microarrayed spectral filter mosaic. The appearance and volume of the M4DI sensor are the same as the integrated mono-chromatic imaging sensor. A simple remapping algorithm was developed to separate the raw image into four narrow spectral band images. Then, a depth estimation algorithm is developed to generate 3D data with a dense depth map at every exposure of the M4DI sensor. Compared with existing SAD imaging method, the M4DI sensor has the advantages of simple implementation, low computational burden, and low cost. A proof-of-principle M4DI sensor was applied to sense the depth of objects and to track a tiny targets trajectory. The relative error in the three-dimensional positioning is less than 7% for objects within 1.1 to 2.8 m.

16.
Talanta ; 255: 124248, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608423

RESUMEN

In this study, a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method for in-situ determination of yttrium and trace elements in yttrium-doped barium fluoride (BaF2: Y) crystals was proposed. A facile, micro-damage procedure for quantifying the segregation coefficient of doping elements was investigated, and it was found that the actual yttrium doping concentration increases from the seed end to the tail end in BaF2: Y crystals. In micro-area analysis, this method has higher mass sensitivity which was applied to quantify the impurity content and distribution during the growth of BaF2: Y crystals. Regression coefficient of calibration curve for each element ranged from 0.9918 to 0.9995. Detection limits (DLs) were 0.05, 0.03, 0.01 and 0.01 µg g-1 for Mg, Zn, Sr and Pb, respectively. The accuracy of the proposed method was verified by inductively coupled plasma mass spectrometry/atomic emission spectroscopy (ICP-MS/AES) with wet-chemical pretreatment. The objective of the presented work was to provide a less damaging and more novelty approach for crystal sample analysis.


Asunto(s)
Terapia por Láser , Oligoelementos , Oligoelementos/análisis , Itrio , Análisis Espectral , Espectrometría de Masas/métodos
17.
Front Vet Sci ; 9: 916861, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847648

RESUMEN

Sperm quality assessment is the main method to predict the reproductive ability of livestock. The detection of sperm quality of livestock is of great significance to the application of artificial insemination and in vitro fertilization. In order to comprehensively evaluate sperm quality and improve the real-time and portability of sperm quality detection, a portable microscopic imaging system based on microfluidic chip is developed in this paper. The system can realize the comprehensive evaluation of sperm quality by detecting sperm vitality and survival rate. On the hardware side, a microfluidic chip is designed, which can automatically mix samples. A set of optical system with a magnification of 400 times was developed for microscopic observation of sperm. In the aspect of software, aiming at the comprehensive evaluation of sperm quality based on OpenCV, a set of algorithms for identifying sperm motility and survival rate is proposed. The accuracy of the system in detecting sperm survival rate is 94.0%, and the error rate is 0.6%. The evaluation results of sperm motility are consistent with those of computer-aided sperm analysis (CASA). The system's identification time is 9 s. Therefore, the system is absolutely suitable for sperm quality detection.

18.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551069

RESUMEN

Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging techniques, and vibrational spectroscopies. Some emerging experimental approaches for the study of LDs are represented by correlative light-electron microscopy and by correlative Raman imaging-scanning electron microscopy (SEM). Based on these scientific approaches, we developed a novel methodology (CREL) by combining Raman micro-spectroscopy, confocal fluorescence microscopy, and SEM coupled with an energy-dispersive X-ray spectroscopy module. This procedure correlated cellular morphology, chemical properties, and spatial distribution from the same region of interest, and in this work, we presented the application of CREL for the analysis of LDs within patient-derived melanoma CSCs (MCSCs).


Asunto(s)
Gotas Lipídicas , Melanoma , Humanos , Electrones , Microscopía Electrónica de Rastreo , Espectrometría Raman/métodos , Células Madre Neoplásicas
19.
IEEE J Transl Eng Health Med ; 9: 2800109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33552751

RESUMEN

BACKGROUND: Vaginitis is a common and very private disease, and the current diagnosis is a frequent go to the hospital for testing. OBJECTIVE: In order to improve the convenience and speed of detection, in this paper, we have developed a hand-held zoom micro-imaging system based on a microfluidic chip for point-of-care testing (POCT) of vaginal inflammation. METHODS: This system consists of a microfluidic chip, an optical system and a hand-held zoom system assembled with a mobile phone. In terms of hardware, we designed a self-priming microfluidic chip, which can realize automatic sampling and full mixing of samples. We have also developed an optical system that can be adapted to smartphones, which has a lens group with a 37x magnification function and equipped with a zoom system with a focus range of 4mm to 6mm. In terms of software, we proposed an APP that can accurately identify cocci and can determine the inflammation level. RESULTS: Compared with the recognition rate of the observers in the hospital, the detection accuracy of the portable recognition system is 95%, and after testing the clinical samples, the results were completely consistent with the hospital diagnosis results. The detection limit was 500 CFU / ml, which the relative error was (0.9 ± 0.3) %, and recognition time is 7 seconds. CONCLUSION: This system is definitely suitable for women's point-of-care testing (POCT).


Asunto(s)
Microfluídica , Vaginitis , Humanos , Inflamación/diagnóstico , Pruebas en el Punto de Atención , Teléfono Inteligente
20.
Nutrients ; 13(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530525

RESUMEN

During processing of cereal-based food products, starch undergoes dramatic changes. The objective of this work was to evaluate the impact of food processing on the starch digestibility profile of cereal-based foods using advanced imaging techniques, and to determine the effect of preserving starch in its native, slowly digestible form on its in vivo metabolic fate. Four different food products using different processing technologies were evaluated: extruded products, rusks, soft-baked cakes, and rotary-molded biscuits. Imaging techniques (X-ray diffraction, micro-X-ray microtomography, and electronic microscopy) were used to investigate changes in slowly digestible starch (SDS) structure that occurred during these different food processing technologies. For in vivo evaluation, International Standards for glycemic index (GI) methodology were applied on 12 healthy subjects. Rotary molding preserved starch in its intact form and resulted in the highest SDS content (28 g/100 g) and a significantly lower glycemic and insulinemic response, while the three other technologies resulted in SDS contents below 3 g/100 g. These low SDS values were due to greater disruption of the starch structure, which translated to a shift from a crystalline structure to an amorphous one. Modulation of postprandial glycemia, through starch digestibility modulation, is a meaningful target for the prevention of metabolic diseases.


Asunto(s)
Glucemia/metabolismo , Manipulación de Alimentos/métodos , Almidón/química , Almidón/metabolismo , Adolescente , Adulto , Suplementos Dietéticos , Digestión , Grano Comestible , Femenino , Índice Glucémico , Humanos , Masculino , Persona de Mediana Edad , Periodo Posprandial , Difracción de Rayos X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA