Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Small ; 19(22): e2300469, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36855777

RESUMEN

Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.

2.
Small ; 19(40): e2303166, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37264716

RESUMEN

With the development of bionics as well as materials science, intelligent soft actuators have shown promising applications in many fields such as soft robotics, sensing, and remote manipulation. Microfabrication technologies have enabled the reduction of the size of responsive soft actuators to the micron level. However, it is still challenging to construct microscale actuators capable of responding to different external stimuli in complex and diverse conditions. Here, this work demonstrates a dual-stimuli cooperative responsive hydrogel microactuator by asymmetric fabrication via femtosecond laser direct writing. The dual response of the hydrogel microstructure is achieved by employing responsive hydrogel with functional monomer 2-(dimethylamino)ethyl methacrylate. Raman spectra of the hydrogel microstructures suggest that the pH and temperature response of the hydrogel is generated by the changes in tertiary amine groups and hydrogen bonds, respectively. The asymmetric hydrogel microstructures show opposite bending direction when being heated to high temperature or exposed to acid solution, and can independently accomplish the grasp of polystyrene microspheres. Moreover, this work depicts the cooperative response of the hydrogel microactuator to pH and temperature at the same time. The dual-stimuli cooperative responsive hydrogel microactuators will provide a strategy for designing and fabricating controllable microscale actuators with promising applications in microrobotics and microfluidics.

3.
Macromol Rapid Commun ; 44(6): e2200842, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36515359

RESUMEN

A crucial component in designing soft actuating structures with controllable shape changes is programming internal, mismatching stresses. In this work, a new paradigm for achieving anisotropic dynamics between isotropic end-states-yielding a non-reciprocal shrinking/swelling response over a full actuation cycle-in a microscale actuator made of a single material, purely through microscale design is demonstrated. Anisotropic dynamics is achieved by incorporating micro-sized pores into certain segments of the structures; by arranging porous and non-porous segments (specifically, struts) into a 2D hexagonally-shaped microscopic poly(N-isopropyl acrylamide) hydrogel particle, the rate of isotropic shrinking/swelling in the structure is locally modulated, generating global anisotropic, non-reciprocal, dynamics. A simple mathematical model is introduced that reveals the physics that underlies these dynamics. This design has the potential to be used as a foundational tool for inducing non-reciprocal actuation cycles with a single material structure, and enables new possibilities in producing customized soft actuators and modular anisotropic metamaterials for a range of real-world applications, such as artificial cilia.


Asunto(s)
Hidrogeles , Anisotropía , Porosidad
4.
Small ; 18(35): e2107552, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35869621

RESUMEN

A light-driven micromechanical oscillator is presented, which can be operated by a low optical power (in the mW, or even the µW range), can produce large mechanical displacements (>5-100 µm), and can be designed to operate at frequencies from sub-kHz up to more than 200 kHz. The actuation of the oscillator is achieved by an asymmetrically metal-coated optical microwire configured into a silica micromechanical oscillator. The metalized optical microwire confines and absorbs the light strongly over a short distance, which results in a controlled optical power conversion into heat, and, consequently, into mechanical actuation through the temperature rise and the difference in thermal expansions of the silica microwire and the asymmetrically applied metal layer. Mechanical displacements are amplified further by the resonance operation of the oscillator, which is driven by a low-power, harmonic optical excitation signal generated by a current-modulated laser diode. Proper selection of the micromechanical oscillator's geometrical configuration and materials allows for a high-frequency operation at large mechanical displacements of the oscillator, while relying on low excitation optical power. The presented concept of a fully optically driven micromechanical oscillator may, thus, present a basis for realization of new classes of actuated micro-opto-mechanical Systems and similar photonics microdevices.

5.
Nano Lett ; 20(7): 4816-4822, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32479730

RESUMEN

On-demand delivery of substances has been demonstrated for various applications in the fields of chemistry and biomedical engineering. Single-pulse release profile has been shown previously for micro/nanoparticles in different form factors. However, to obtain a sustained release, a pulsatile release profile is needed. Here, we demonstrate such a release profile from polymer magnetic nanocomposite microspheres loaded with chemicals. By exciting the microactuators with AC magnetic fields, we could achieve up to 61% cumulative release over a five-day period. One of the main advantages of using a magnetic stimulus is that the properties of the environment (e.g., transparency, density, and depth) in which the particles are located do not affect the performance. The operating magnitude of the magnetic field used in this work is safe and does not interact with any nonmetallic materials. The proposed approach can potentially be used in microchemistry, drug delivery, lab-on-chip, and microrobots for drug delivery.

6.
Small ; 16(1): e1905219, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31793728

RESUMEN

Externally induced color- and shape-changes in micrometer-sized objects are of great interest in novel application fields such as optofluidics and microrobotics. In this work, light and temperature responsive micrometer-sized structural color actuators based on cholesteric liquid-crystalline (CLC) polymer particles are presented. The particles are synthesized by suspension polymerization using a reactive CLC monomer mixture having a light responsive azobenzene dye. The particles exhibit anisotropic spot-like and arc-like reflective colored domains ranging from red to blue. Electron microscopy reveals a multidirectional asymmetric arrangement of the cholesteric layers in the particles and numerical simulations elucidate the anisotropic optical properties. Upon light exposure, the particles show reversible asymmetric shape deformations combined with structural color changes. When the temperature is increased above the liquid crystal-isotropic phase transition temperature of the particles, the deformation is followed by a reduction or disappearance of the reflection. Such dual light and temperature responsive structural color actuators are interesting for a variety of micrometer-sized devices.

7.
Small ; 15(40): e1902687, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31402578

RESUMEN

Direct laser writing methods based on two-photon polymerization (2PP) are powerful tools for the on-demand printing of precise and complex 3D architectures at the micro and nanometer scale. While much progress was made to increase the resolution and the feature size throughout the years, by carefully designing a material, one can confer specific functional properties to the printed structures thus making them appealing for peculiar and novel applications. This Review summarizes the state-of-the-art of functional resins and photoresists used in 2PP, discussing both the range of material functions available and the methods used to prepare them, highlighting advantages and disadvantages of different classes of materials in achieving certain properties.

8.
J Microelectromech Syst ; 28(3): 351-361, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32863693

RESUMEN

Electrostatic microactuators with large vertical scanning range (several hundred microns) at high frequency (hundreds to thousands of hertz) and chips sizes compatible with endoscopic microscopy have recently been demonstrated based on parametric resonance. This paper examines the use and modeling of mixed softening/hardening dynamics to help produce large ranges of motion in this class of mirrors. Origin of spring stiffening behavior in actuator design is described, followed by non-dimensional analysis of actuator motion trends. Experimental results are presented for a sample actuator design with up to 480 µm displacement at 1225 Hz and 60 V. Comparison to predicted trends and comments on benefits and limitations of modeling are provided.

9.
IEEE Sens J ; 19(4): 1373-1378, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31579395

RESUMEN

Indwelling catheters are used widely in medicine to treat various chronic medical conditions. However, chronic implantation of catheters often leads to a premature failure due to biofilm accumulation. Previously we reported on the development of a self-clearing catheter by integrating polymer-based microscale magnetic actuators. The microactuator provides an active anti-biofouling mechanism to disrupt and remove adsorbed biofilm on demand using an externally applied stimulus. During an in vivo evaluation of self-clearing catheter, we realized that it is important to periodically monitor the performance of implanted microactuators. Here we integrate gold-based piezoresistive strain-gauge on our magnetic microactuators to directly monitor the device deflection with good sensitivity (0.035%/Deg) and linear range (±30°). With the integrated strain-gauge, we demonstrate the multi-functional capabilities of our magnetic microactuators that enable device alignment, flow-rate measurement, and obstruction detection and removal towards the development of chronically implantable self-clearing smart catheter.

10.
Sens Actuators B Chem ; 273: 1694-1704, 2018 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34276138

RESUMEN

Here we report on the development of polyimide-based flexible magnetic actuators for actively combating biofouling that occurs in many chronically implanted devices. The thin-film flexible devices are microfabricated and integrated into a single-pore silicone catheter to demonstrate a proof-of-concept for a self-clearing smart catheter. The static and dynamic mechanical responses of the thin-film magnetic microdevices were quantitatively measured and compared to theoretical values. The mechanical fatigue properties of these polyimide-based microdevices were also characterized up to 300 million cycles. Finally, the biofouling removal capabilities of magnetically powered microdevices were demonstrated using bovine serum albumin and bioconjugated microbeads. Our results indicate that these thin-film microdevices are capable of significantly reducing the amount of biofouling. At the same time, we demonstrated that these microdevices are mechanically robust enough to withstand a large number of actuation cycles during its chronic implantation.

11.
Biomed Microdevices ; 19(1): 8, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28124762

RESUMEN

This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 µm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator's average maximum displacement is 110 µm and standard deviation of 12 µm. An experiment is conducted to demonstrate drug release with 5 µL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 µL/min.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Fenómenos Mecánicos , Microtecnología/instrumentación , Polímeros , Tecnología Inalámbrica , Colorantes , Diseño de Equipo , Concentración de Iones de Hidrógeno , Temperatura
12.
Sens Actuators B Chem ; 221: 914-922, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26251561

RESUMEN

Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling.

13.
Sensors (Basel) ; 15(9): 21567-80, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26343682

RESUMEN

We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

14.
J Microelectromech Syst ; 23(2): 256-258, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25506187

RESUMEN

A thin-film piezoelectric microactuator using a novel combination of active vertical translational scanning and passive resonant rotational scanning is presented. Thin-film lead-zirconate-titanate unimorph bending beams surrounding a central platform provide nearly 200-µm displacement at 18 V with bandwidth greater than 200 Hz. Inside the platform, a mirror mount, or mirror surface, supported by silicon dioxide spring beams can be excited to resonance by low-voltage; high-frequency excitation of the outer PZT beams. Over ±5.5° mechanical resonance is obtained at 3.8 kHz and ±2 V. The combination of large translational vertical displacements and high-speed rotational scanning is intended to support real-time cross-sectional imaging in a dual axes confocal endomicroscope.

15.
ACS Appl Mater Interfaces ; 16(17): 22696-22703, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646711

RESUMEN

4D microstructured actuators are micro-objects made of stimuli-responsive materials capable of induced shape deformations, with applications ranging from microrobotics to smart micropatterned haptic surfaces. The novel technology dual-wavelength volumetric microlithography (DWVML) realizes rapid printing of high-resolution 3D microstructures and so has the potential to pave the way to feasible manufacturing of 4D microdevices. In this work, DWVML is applied for the first time to printing stimuli-responsive materials, namely, liquid crystal networks (LCNs). An LCN photoresist is developed and characterized, and large arrays of up to 5625 LCN micropillars with programmable shape changes are produced by means of DWVML in the time span of seconds, over areas as large as ∼5.4 mm2. The production rate of 0.24 mm3 h-1 is achieved, exceeding speeds previously reported for additive manufacturing of LCNs by 2 orders of magnitude. Finally, a membrane with tunable, micrometer-sized pores is fabricated to illustrate the potential DWVML holds for real-world applications.

16.
Micromachines (Basel) ; 15(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399003

RESUMEN

The development of functional microsystems and microrobots that have characterized the last decade is the result of a synergistic and effective interaction between the progress of fabrication techniques and the increased availability of smart and responsive materials to be employed in the latter. Functional structures on the microscale have been relevant for a vast plethora of technologies that find application in different sectors including automotive, sensing devices, and consumer electronics, but are now also entering medical clinics. Working on or inside the human body requires increasing complexity and functionality on an ever-smaller scale, which is becoming possible as a result of emerging technology and smart materials over the past decades. In recent years, additive manufacturing has risen to the forefront of this evolution as the most prominent method to fabricate complex 3D structures. In this review, we discuss the rapid 3D manufacturing techniques that have emerged and how they have enabled a great leap in microrobotic applications. The arrival of smart materials with inherent functionalities has propelled microrobots to great complexity and complex applications. We focus on which materials are important for actuation and what the possibilities are for supplying the required energy. Furthermore, we provide an updated view of a new generation of microrobots in terms of both materials and fabrication technology. While two-photon lithography may be the state-of-the-art technology at the moment, in terms of resolution and design freedom, new methods such as two-step are on the horizon. In the more distant future, innovations like molecular motors could make microscale robots redundant and bring about nanofabrication.

17.
Adv Mater ; 35(5): e2208613, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36341507

RESUMEN

Liquid crystalline elastomers (LCEs) with intrinsic molecular anisotropy can be programmed to morph shapes under external stimuli. However, it is difficult to program the position and orientation of individual mesogenic units separately and locally, whether in-plane or out-of-plane, since each mesogen is linked to adjacent ones through the covalently bonded polymer chains. Here, dually responsive, spindle-shaped micro-actuators are synthesized from LCE composites, which can reorient under a magnetic field and change the shape upon heating. When the discrete micro-actuators are embedded in a conventional and nonresponsive elastomer with programmed height distribution and in-plane orientation in local regions, robust and complex shape morphing induced by the cooperative actuations of the locally distributed micro-actuators, which corroborates with finite element analysis, are shown. The spatial encoding of discrete micro-actuators in a nonresponsive matrix allows to decouple the actuators and the matrix, broadening the material palette to program local and global responses to stimuli for applications including soft robotics, smart wearables, and sensors.

18.
Adv Mater ; : e2300017, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961361

RESUMEN

Folding of mucosal tissues, such as the tissue within the epithelium of the upper respiratory airways, is critical for organ function. Studying the influence of folded tissue patterns on cellular function is challenging mainly due to the lack of suitable cell culture platforms that can recreate dynamic tissue folding in vitro. Here, a bilayer hydrogel folding system, composed of alginate/polyacrylamide double-network (DN) and hyaluronic acid (HA) hydrogels, to generate static folding patterns based on mechanical instabilities, is described. By encapsulating human fibroblasts into patterned HA hydrogels, human bronchial epithelial cells form a folded pseudostratified monolayer. Using magnetic microparticles, DN hydrogels reversibly fold into pre-defined patterns and enable programmable on-demand folding of cell-laden hydrogel systems upon applying a magnetic field. This hydrogel construction provides a dynamic culture system for mimicking tissue folding in vitro, which is extendable to other cell types and organ systems.

19.
Soft Robot ; 10(2): 246-257, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35704862

RESUMEN

The concept of creating all-mechanical soft microrobotic systems has great potential to address outstanding challenges in biomedical applications, and introduce more sustainable and multifunctional products. To this end, magnetic fields and light have been extensively studied as potential energy sources. On the other hand, coupling the response of materials to pressure waves has been overlooked despite the abundant use of acoustics in nature and engineering solutions. In this study, we show that programmed commands can be contained on 3D nanoprinted polymer systems with the introduction of selectively excited air bubbles and rationally designed compliant mechanisms. A repertoire of micromechanical systems is engineered using experimentally validated computational models that consider the effects of primary and secondary pressure fields on entrapped air bubbles and the surrounding fluid. Coupling the dynamics of bubble oscillators reveals rich acoustofluidic interactions that can be programmed in space and time. We prescribe kinematics by harnessing the forces generated through these interactions to deform structural elements, which can be remotely reconfigured on demand with the incorporation of mechanical switches. These basic actuation and analog control modules will serve as the building blocks for the development of a novel class of micromechanical systems powered and programmed by acoustic signals.

20.
Soft Robot ; 10(1): 197-204, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35704896

RESUMEN

Elastic pneumatic actuators are fueling new devices and applications in soft robotics. Actuator miniaturization is critical to enable soft microsystems for applications in microfluidics and micromanipulation. This work proposes a fabrication technique to make out-of-plane bending microactuators entirely by soft lithography. The only bonding step required is to seal the embedded fluidic channels, assuring the structural integrity of the microactuators. The process consists of fabricating two SU8 mold halves using different lithographic layers. Polydimethilsiloxane is poured on the bottom mold, which is subsequently aligned and assembled with the top mold. The process allows for out-of-plane actuators with a diameter of 300 µm and for fabricating arrays of up to 36 actuators that are row addressable. These active micropillars have an aspect ratio of 1:1.5 and, when pressurized at 1 bar, show a bending angle of ∼30°.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA