Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39309372

RESUMEN

Future multichip packages require Die-to-Die (D2D) interconnects operating at frequencies above 10 GHz; however, the extension of copper interconnects and epoxy dielectrics presents a trade-off between performance and reliability. This paper explores insertion losses and adhesion as a function of interface roughness at frequencies up to 18 GHz. We probe epoxy surface chemistry as a function of curing time and use wet etching to modulate surface roughness. The morphology is quantified by atomic force microscopy (AFM) and two-dimensional fast Fourier transform (2D FFT). Peel test and vector network analysis are used to examine the impacts of both type and level of roughness. The trade-offs between power efficiency and reliability are presented and discussed.

2.
Ultramicroscopy ; 194: 64-77, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30092391

RESUMEN

Interface roughness is a critical parameter determining the performance of semiconductor devices. We show that a continuous wavelet transform is useful to describe not only the magnitude of the interface roughness, but also the spatial frequencies that describe the interface. We propose a simple presentation of the results that makes it convenient to compare between interfaces. In particular, an average and maximum value wavelet profile that is obtained from a series of one dimensional wavelet transforms provides a traceable and quick survey of the results. We demonstrate the wavelet transform method using both computer simulations and by applying it to experimental data obtained by electron tomography of a test sample and to a molecular layer interface. Wavelet descriptions of the interface roughness suffers less from the presence of shot noise in the experimental data than the traditional root mean square error description of interface roughness. An increase in lateral dimensions of an interface that has large features increases the content of low spatial frequencies in wavelet transforms. In comparison, the value of root mean square error increases in an untraceable manner with the same increase in lateral dimensions on the same interface. Morse wavelets with γ = 9 and ß = 3 appear to be a suitable choice for applications in interface roughness measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA