Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 72(1): 99-111.e5, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220559

RESUMEN

Box C/D snoRNAs constitute a class of abundant noncoding RNAs that associate with common core proteins to form catalytic snoRNPs. Most of these operate in trans to assist the maturation of rRNAs by guiding and catalyzing the 2'-O-methylation of specific nucleotides. Here, we report that the human intron-hosted box C/D snoRNA snoRD86 acts in cis as a sensor and master switch controlling levels of the limiting snoRNP core protein NOP56, which is important for proper ribosome biogenesis. Our results support a model in which snoRD86 adopts different RNP conformations that dictate the usage of nearby alternative splice donors in the NOP56 pre-mRNA. Excess snoRNP core proteins prevent further production of NOP56 and instead trigger the generation of a cytoplasmic snoRD86-containing NOP56-derived lncRNA via the nonsense-mediated decay pathway. Our findings reveal a feedback mechanism based on RNA structure that controls the precise coordination between box C/D snoRNP core proteins and global snoRNA levels.


Asunto(s)
Empalme Alternativo/genética , Proteínas Nucleares/genética , Precursores del ARN/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Animales , Nucléolo Celular/genética , Células HEK293 , Homeostasis/genética , Humanos , Intrones/genética , Ratones , Unión Proteica , Conejos
2.
RNA Biol ; 20(1): 715-736, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796118

RESUMEN

Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.


Asunto(s)
MicroARNs , ARN Nucleolar Pequeño , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Ribosomas/metabolismo
3.
J Biol Chem ; 294(48): 18360-18371, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31537647

RESUMEN

Precise modification and processing of rRNAs are required for the production of ribosomes and accurate translation of proteins. Small nucleolar ribonucleoproteins (snoRNPs) guide the folding, modification, and processing of rRNAs and are thus critical for all eukaryotic cells. Bcd1, an essential zinc finger HIT protein functionally conserved in eukaryotes, has been implicated as an early regulator for biogenesis of box C/D snoRNPs and controls steady-state levels of box C/D snoRNAs through an unknown mechanism. Using a combination of genetic and biochemical approaches, here we found a conserved N-terminal motif in Bcd1 from Saccharomyces cerevisiae that is required for interactions with box C/D snoRNAs and the core snoRNP protein, Snu13. We show that both the Bcd1-snoRNA and Bcd1-Snu13 interactions are critical for snoRNP assembly and ribosome biogenesis. Our results provide mechanistic insight into Bcd1 interactions that likely control the early steps of snoRNP maturation and contribute to the essential role of this protein in maintaining the steady-state levels of snoRNAs in the cell.


Asunto(s)
Mutación , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Supervivencia Celular/genética , Secuencia Conservada/genética , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dedos de Zinc/genética
4.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798342

RESUMEN

The evolutionarily conserved AAA+ ATPases Rvb1 and Rvb2 proteins form a heteromeric complex (Rvb1/2) required for assembly or remodeling of macromolecular complexes in essential cellular processes ranging from chromatin remodeling to ribosome biogenesis. Rvb1 and Rvb2 have a high degree of sequence and structural similarity, and both contain the classical features of ATPases of their clade, including an N-terminal AAA+ subdomain with the Walker A motif, an insertion domain that typically interacts with various binding partners, and a C-terminal AAA+ subdomain containing a Walker B motif, the Sensor I and II motifs, and an arginine finger. In this study, we find that despite the high degree of structural similarity, Rvb1 and Rvb2 have distinct active sites that impact their activities and regulation within the Rvb1/2 complex. Using a combination of biochemical and genetic approaches, we show that replacing the homologous arginine fingers of Rvb1 and Rvb2 with different amino acids not only has distinct effects on the catalytic activity of the complex, but also impacts cell growth, and the Rvb1/2 interactions with binding partners. Using molecular dynamics simulations, we find that changes near the active site of Rvb1 and Rvb2 cause long-range effects on the protein dynamics in the insertion domain, suggesting a molecular basis for how enzymatic activity within the catalytic site of ATP hydrolysis can be relayed to other domains of the Rvb1/2 complex to modulate its function. Further, we show the impact that the arginine finger variants have on snoRNP biogenesis and validate the findings from molecular dynamics simulations using a targeted genetic screen. Together, our results reveal new aspects of the regulation of the Rvb1/2 complex by identifying a relay of long-range molecular communication from the ATPase active site of the complex to the binding site of cofactors. Most importantly, our findings suggest that despite high similarity and cooperation within the same protein complex, the two proteins have evolved with unique properties critical for the regulation and function of the Rvb1/2 complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA