Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(32): e2310031, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38483041

RESUMEN

High efficient dispersant that meanwhile possesses additional functions is highly desirable for the fabrication of graphene-based composite. In this paper, a new reactive dispersant, multi-silanols grafted naphthalenediamine (MSiND), is synthesized, which shows superiority compared with conventional dispersants. It can not only stabilize graphene in water at a high concentration of up to 16 mg mL-1, but also simultaneously be applicable for ethanol medium, in which the graphene concentration can be as high as 12 mg mL-1 at the weight ratio of 1:1 (MSiND:graphene). The dispersion is compatible with multi-matrixes and affinity to various substrates. In addition, MSiND exhibits excellent reactivity due to the existence of high-density silanol groups. Tough graphene coatings are constructed on glass slides and non-woven fabric simply by direct painting and dip-coating. Moreover, with the assistance of MSiND, graphene-doped phase-change coatings on hydrophobic non-woven fabric (e.g., functional mask) are prepared via the spray method. The composite coatings show enhanced mechanical strength and excellent energy storage performance, exhibiting great potential in heat preservation and thermotherapy.

2.
Small ; 20(34): e2312134, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38618938

RESUMEN

Phase change materials (PCMs) present a dual thermal management functionality through intrinsic thermal energy storage (TES) capabilities while maintaining a constant temperature. However, the practical application of PCMs encounters challenges, primarily stemming from their low thermal conductivity and shape-stability issues. Despite significant progress in the development of solid-solid PCMs, which offer superior shape-stability compared to their solid-liquid counterparts, they compromise TES capacity. Herein, a universal phase engineering strategy is introduced to address these challenges. The approach involves compositing solid-liquid PCM with a particulate-based conductive matrix followed by surface reaction to form a solid-solid PCM shell, resulting in a core-shell composite with enhanced thermal conductivity, high thermal storage capacity, and optimal shape-stability. The core-shell structure designed in this manner not only encapsulates the energy-rich solid-liquid PCM core but also significantly enhances TES capacity by up to 52% compared to solid-solid PCM counterparts. The phase-engineered high-performance PCMs exhibit excellent thermal management capabilities by reducing battery cell temperature by 15 °C and demonstrating durable solar-thermal-electric power generation under cloudy or no sunshine conditions. This proposed strategy holds promise for extending to other functional PCMs, offering a compelling avenue for the development of high-performance PCMs for thermal energy applications.

3.
Molecules ; 29(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39339358

RESUMEN

Developing materials for efficient energy storage and effective electromagnetic interference (EMI) shielding is crucial in modern technology. This study explores the synthesis and characterization of carbonaceous shape-stabilized octadecane/MWCNT (multi-walled carbon nanotube) composites, utilizing activated carbon, expanded graphite or ceramic carbon foam, as shape stabilizers for phase change materials (PCMs) to enhance thermal energy storage and EMI shielding, for energy-efficient and advanced applications. The integration of octadecane, a phase change material (PCM) with carbonaceous stabilizers ensures the material's stability during phase transitions, while MWCNTs contribute to improved thermal storage properties and EMI shielding capabilities. The research aims to develop novel composites with dual functionality for thermal storage and EMI shielding, emphasizing the role of carbon matrices and their MWCNT composites. SEM and CT microtomography analyses reveal variations in MWCNT incorporation across the matrices, influenced by surface properties and porosity. Leaching tests, infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) confirm the composite's stability and high latent heat storage. The presence of nanotubes enhances the thermal properties of octadecane and ΔH values almost reached their theoretical values. EMI shielding effectiveness measurements indicate that the composites show improved electric properties in the presence of MWCNTs.

4.
Small ; 18(9): e2105647, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34936192

RESUMEN

Phase change materials (PCMs) are regarded as promising candidates for realizing zero-energy thermal management of electronic devices owing to their high thermal storage capacity and stable working temperature. However, PCM-based thermal management always suffers from the long-standing challenges of low thermal conductivity and liquid leakage of PCMs. Herein, a dual-encapsulation strategy to fabricate highly conductive and liquid-free phase change composites (PCCs) for thermal management by constructing a polyurethane/graphite nanoplatelets hybrid networks is reported. The PCM of polyethylene glycol (PEG) is first infiltrated into the cross-linked network of polyurethane (PU) to synthesize hybridized semi-interpenetrated composites (PEG@PU), and then incorporated with reticulated graphite nanoplatelets (RGNPs) via pressure-induced assembly to fabricate highly conductive PCCs (PEG@PU-RGNPs). The hybrid networks enable the PCCs to show excellent mechanical strength, liquid-free phase change, and stable thermal property. Notably, the dual-encapsulated PCCs exhibit high thermal and electrical conductivities up to 27.0 W m-1 K-1 and 51.0 S cm-1 , superior to the state-of-the-art PEG-based PCCs. Furthermore, the PCC-based energy device is demonstrated for efficient battery thermal management toward versatile demands of active preheating at a cold environment and passive cooling at a hot ambient. Overall, this work provides a promising route for fabricating highly conductive and liquid-free PCCs toward thermal management.

5.
Crit Rev Food Sci Nutr ; 62(25): 6872-6886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33905261

RESUMEN

Waste in the food supply chain is estimated to be about 30-40% of the total food production, which aggravates the world hunger and increases waste management burden and environmental impact. Despite the dire food scarcity, majority of this food waste takes place in developing countries because of the lack of appropriate and affordable preservation techniques. Traditional open sun drying is the most popular food-reservation technique to the local farmers due to near-zero capital cost and cheap labor cost. However, this method is highly energy intensive, unhygienic, and time demanding. The high energy consumption resulting from uncontrolled simultaneous heat, mass, and momentum transfer processes in traditional drying systems highlights the necessity of pursuing sustainability in drying process targeting reduced energy consumption, environmental and social impacts. This paper presents a comprehensive review on the sustainable food drying technologies based on renewable energy sources, with emphasis on the developing countries. It was observed that the integration of thermal energy storage with heat pump makes the integrated drying system more efficient, and dries food with better quality. Likewise, advanced integrated drying systems, such as, solar with microwave, and heat pump with microwave make the drying process more cost and quality competent. Finally, impact of resource distribution and governmental incentives for renewable energy use in sustainable drying is discussed.


Asunto(s)
Eliminación de Residuos , Desecación , Alimentos , Abastecimiento de Alimentos , Energía Renovable
6.
J Comput Chem ; 41(24): 2137-2150, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32652662

RESUMEN

Thermal storage and transfer fluids have important applications in industrial, transportation, and domestic settings. Current thermal fluids have relatively low specific heats, often significantly below that of water. However, by introducing a thermochemical reaction to a base fluid, it is possible to enhance the fluid's thermal properties. In this work, density functional theory (DFT) is used to screen Diels-Alder reactions for use in aqueous thermal fluids. From an initial set of 52 reactions, four are identified with moderate aqueous solubility and predicted turning temperature near the liquid region of water. These reactions are selectively modified through 60 total functional group substitutions to produce novel reactions with improved solubility and thermal properties. Among the reactions generated by functional group substitution, seven have promising predicted thermal properties, significantly improving specific heat (by as much as 30.5%) and energy storage density (by as much as 4.9%) compared to pure water.

7.
J Environ Manage ; 255: 109883, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31765947

RESUMEN

Improvement of the drying process of sludge issuing from the coagulation/flocculation of landfill leachate was investigated using thermal storage systems, which consisted of a rock bed with air preheated by a solar air heater passing through the system. Sludge runs were dried inside the solar dryer with and without thermal storage, as well as outside the dryer. The values for the solar energy accumulated per mass of sludge required to obtain a stable sludge mass were 107.5 kJ/kg (with thermal storage), 240 kJ/kg (without thermal storage) and 580.5 kJ/kg, outside the dryer. The values for the energetic efficiency of the drying process were 38.13% and 16.45% for the processes with and without thermal storage, respectively. The net heat input to the storage system during the charging stage was 420 W and 120 W for the discharging stage, resulting in a global energy efficiency in the storage system of 0.28. The thermal efficiency of the solar drying with and without thermal storage system was 37.8% and 22.2%, respectively.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Desecación , Floculación , Luz Solar
8.
Chemistry ; 25(60): 13811-13815, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31448833

RESUMEN

Photothermal materials (PTMs) have been intensively investigated in the fields of photothermal conversion. Superior to solid PTMs, liquid PTMs are leading the trends in satisfying the demands of high flexibility and easy recycling. Successful examples of liquid PTMs are mostly formulated by dispersing solid PTMs in solvents, but suffer from the problems of phase segregation and solvent pollution. In this work, a low-cost formulation is proposed, which involves an oxidative product of ethyl oleate by iodine. It is an intrinsic liquid PTM, preserving the fluidic nature as well as possessing considerable ability for photothermal conversion. In addition to understanding the mechanism of light absorption in the visible and even near infrared windows, two examples are presented to demonstrate the great potential of liquid PTMs in broad areas such as light sensing and energy storage.

9.
Molecules ; 24(7)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959813

RESUMEN

This study first reviewed previous studies on floor heating systems based on the installation of a phase change material (PCM) and the current status of technical developments and found that PCM-based research is still in its infancy. In particular, the improvement of floor heat storage performance in indoor environments by combining a PCM with existing floor structures has not been subject to previous research. Thus, a PCM-based radiant floor heating system that utilizes hot water as a heat source and can be used in conjunction with the widespread wet construction method can be considered novel. This study found the most suitable PCM melting temperature for the proposed PCM-based radiant floor heating system ranged from approximately 35 °C to 45 °C for a floor thickness of 70 mm and a PCM thickness of 10 mm. Mock-up test results, which aimed to assess the performance of the radiant floor heating system with and without the PCM, revealed that the PCM-based room was able to maintain a temperature that was 0.2 °C higher than that of the room without the PCM. This was due to the rise in temperature caused by the PCM's heat storage capacity and the emission of waste heat that was otherwise lost to the underside of the hot water pipe when the PCM was not present.


Asunto(s)
Calefacción/instrumentación , Calor , Agua , Pisos y Cubiertas de Piso , Humanos , Temperatura
10.
Environ Sci Pollut Res Int ; 31(12): 18143-18156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36656481

RESUMEN

Food product drying is a crucial stage in the preservation of crops and agricultural by-products that are used as raw materials for numerous end applications. The novelty of the study is the application of a phase change material in a solar dryer to improve the effectiveness of drying and reducing the overall drying period for drying while retaining/improving the quality parameters of the dried dhekia (Diplazium esculentum). The modified indirect thermal storage integrated solar dryer made up of a single-pass solar collector is attached with the drying chamber of 16.5 kg capacity. A thermal energy storage system prepared with paraffin wax embedded inside the drying cabinet was used. The proposed solar dryer has a thermal efficiency that is 11 ± 0.2% greater than the conventionally constructed solar dryer and reduces drying time by 40 ± 2.1%. Drying kinetic analysis of dhekia was performed, and two new drying kinetic models were proposed to predict moisture ratio. From statistical analysis, it was found that the chi square value and root mean square error value fits well for the proposed models. The anti-oxidant, total phenolic content, and total flavonoid content values of samples dried in solar dryer exhibit better results compared to fresh, tray dried, and open sun-dried samples. The developed dryer shows better results in saving drying time and quality of the product. Due to its affordability and long-term solution for drying fresh farm goods, this dryer can be very helpful to small-scale farmers.


Asunto(s)
Helechos , Tracheophyta , Cinética , Desecación/métodos , Luz Solar , Antioxidantes
11.
Nanomicro Lett ; 16(1): 196, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753068

RESUMEN

Phase change materials (PCMs) offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization. However, for organic solid-liquid PCMs, issues such as leakage, low thermal conductivity, lack of efficient solar-thermal media, and flammability have constrained their broad applications. Herein, we present an innovative class of versatile composite phase change materials (CPCMs) developed through a facile and environmentally friendly synthesis approach, leveraging the inherent anisotropy and unidirectional porosity of wood aerogel (nanowood) to support polyethylene glycol (PEG). The wood modification process involves the incorporation of phytic acid (PA) and MXene hybrid structure through an evaporation-induced assembly method, which could impart non-leaking PEG filling while concurrently facilitating thermal conduction, light absorption, and flame-retardant. Consequently, the as-prepared wood-based CPCMs showcase enhanced thermal conductivity (0.82 W m-1 K-1, about 4.6 times than PEG) as well as high latent heat of 135.5 kJ kg-1 (91.5% encapsulation) with thermal durability and stability throughout at least 200 heating and cooling cycles, featuring dramatic solar-thermal conversion efficiency up to 98.58%. In addition, with the synergistic effect of phytic acid and MXene, the flame-retardant performance of the CPCMs has been significantly enhanced, showing a self-extinguishing behavior. Moreover, the excellent electromagnetic shielding of 44.45 dB was endowed to the CPCMs, relieving contemporary health hazards associated with electromagnetic waves. Overall, we capitalize on the exquisite wood cell structure with unidirectional transport inherent in the development of multifunctional CPCMs, showcasing the operational principle through a proof-of-concept prototype system.

12.
Materials (Basel) ; 17(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930249

RESUMEN

Thermal storage cement-based materials, formed by integrating phase change materials into cementitious materials, exhibit significant potential as energy storage materials. However, poor thermal conductivity severely limits the development and application of these materials. In this study, an amorphous SiO2 shell is encapsulated on a graphite surface to create a novel thermally modified admixture (C@SiO2). This material exhibits excellent thermal conductivity, and the surface-encapsulated amorphous SiO2 enhances its bond with cement. Further, C@SiO2 was added to the thermal storage cement-based materials at different volume ratios. The effects of C@SiO2 were evaluated by measuring the fluidity, thermal conductivity, phase change properties, temperature change, and compressive strength of various thermal storage cement-based materials. The results indicate that the newly designed thermal storage cement-based material with 10 vol% C@SiO2 increases the thermal conductivity coefficient by 63.6% and the latent heat of phase transition by 11.2% compared to common thermal storage cement-based materials. Moreover, C@SiO2 does not significantly impact the fluidity and compressive strength of the thermal storage cement-based material. This study suggests that C@SiO2 is a promising additive for enhancing thermal conductivity in thermal storage cement-based materials. The newly designed thermal storage cement-based material with 10 vol% C@SiO2 is a promising candidate for energy storage applications.

13.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998682

RESUMEN

Inorganic hydrated salt phase change materials (PCMs) hold promise for improving the energy conversion efficiency of thermal systems and facilitating the exploration of renewable thermal energy. Hydrated salts, however, often suffer from low thermal conductivity, supercooling, phase separation, leakage and poor solar absorptance. In recent years, compounding hydrated salts with functional carbon materials has emerged as a promising way to overcome these shortcomings and meet the application demands. This work reviews the recent progress in preparing carbon-enhanced hydrated salt phase change composites for thermal management applications. The intrinsic properties of hydrated salts and their shortcomings are firstly introduced. Then, the advantages of various carbon materials and general approaches for preparing carbon-enhanced hydrated salt PCM composites are briefly described. By introducing representative PCM composites loaded with carbon nanotubes, carbon fibers, graphene oxide, graphene, expanded graphite, biochar, activated carbon and multifunctional carbon, the ways that one-dimensional, two-dimensional, three-dimensional and hybrid carbon materials enhance the comprehensive thermophysical properties of hydrated salts and affect their phase change behavior is systematically discussed. Through analyzing the enhancement effects of different carbon fillers, the rationale for achieving the optimal performance of the PCM composites, including both thermal conductivity and phase change stability, is summarized. Regarding the applications of carbon-enhanced hydrate salt composites, their use for the thermal management of electronic devices, buildings and the human body is highlighted. Finally, research challenges for further improving the overall thermophysical properties of carbon-enhanced hydrated salt PCMs and pushing towards practical applications and potential research directions are discussed. It is expected that this timely review could provide valuable guidelines for the further development of carbon-enhanced hydrated salt composites and stimulate concerted research efforts from diverse communities to promote the widespread applications of high-performance PCM composites.

14.
Materials (Basel) ; 17(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673201

RESUMEN

Gold-plated substrate is widely used in sintering with silver paste because of its high conductivity, stability, and corrosion resistance. However, due to massive interdiffusion between Ag and Au atoms, it is challenging for sintered Ag-Au joints to maintain high reliability. In order to study the effect of grain structure of gold plating layer on the environmental reliability of sintered Ag-Au joints, we prepared four substrates with different gold structures. In addition to the original gold structure (Au substrate), other gold structures were obtained by heat treatment at temperatures of 150 °C (Au-150 substrate), 250 °C (Au-250 substrate), and 350 °C (Au-350 substrate) for 1 h. Compared with the other three gold substrates, the sinter jointed on the Au-350 substrate obtained the highest shear strength. By analyzing the grain structure of the gold plating layer, it is found that the average grain size of the Au-350 substrate is the largest, and the proportion of low-angle grain boundaries is less. Few grain boundaries have a positive impact on inhibiting the excessive diffusion of Ag atoms and improving the bonding performance of the joint. Based on the above study, we further evaluated the environmental reliability of sintered joints. In 150 °C high-thermal storage, the interdiffusion of Ag and Au in the sintered joint on the Au-350 substrate was restricted, retaining stronger bonding until 200 h. In a hygrothermal environment of 85 °C/85% RH, the shear strength of the sintered Ag-Au joint with the Au-350 substrate maintained above 40.2 MPa during 100 h aging. The results indicated that the sintered Ag-Au joint on the Au-350 substrate with the largest grain size has superior high thermal reliability and hygrothermal reliability.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38679865

RESUMEN

Mg(OH)2/MgO has been attracting considerable interest as a viable candidate for thermochemical heat storage materials, particularly within the temperature range of 200-400 °C. Nonetheless, the typical dehydration temperature of Mg(OH)2, which occurs within the 300-400 °C range, needs to be reduced to enhance its effectiveness in various applications for thermal energy storage. While several studies have shown that heterospecies doping can lower the dehydration temperature, the fundamental mechanism underlying this effect still remains unclear. Here, we employed density functional theory calculations to elucidate the dehydration mechanism of Mg(OH)2, with a particular focus on the initial stage of the dehydration that determines the temperature beginning the reaction. Our findings indicate that the formation of water molecules on the (001) surface is critical in the early stages of the dehydration. This discovery provides a comprehensive explanation for the role of dopants (Na, Li, or LiCl) in reducing the dehydration temperature by decreasing the formation energy of paired H and OH defects and the migration barrier of H on the surface. The present study will significantly advance the development of novel dopants for Mg(OH)2, facilitating a lower dehydration temperature and, thereby, increasing its suitability for heat storage applications.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36689111

RESUMEN

Previous research on solar box cookers focusing on the bulk usage of energy storage materials is a costly technique for performance enhancement. Bulk energy storage materials take much time to charge and, thus, result in a low rate of cooking at the start. Therefore, a hot box solar cooker has been developed and experimentally studied for thermal performance enhancement in a hilly region of Uttarakhand, India. A bed of phase change material (paraffin wax) filled with small capsule-shaped containers was prepared (detachable) and placed over the cooking tray of the tested cooker. These containers were vertically positioned over the bed to enhance the heat transfer rate inside the cooker to attain a fast-cooking response. Notably, the combined effect of extended geometry with PCM is an excellent method to increase the efficiency of a solar cooker. As per the author's knowledge, likely techniques have not been studied for a box cooker to achieve a fast-cooking rate in any hilly region up to date. The results of cooking tests show that the cooking plate attained a maximum temperature of about 150 °C. It is because of the combined effect of extended fins (vertical capsules) and PCM filled inside them. The results of the experimental study show that the thermal efficiency of the cooker was found to be about 45.7%, the cooking power was calculated about 54.71 W, the heat transfer coefficient was estimated about 311 W/m2 °C, and the overall heat loss coefficient was computed about 5.71 W/m2 °C. This modified cooker costs about $48.19, and the payback period is about 03 years and 11 months. Cooking trials also showed that the present SBC could cook almost all the dishes commonly cooked in Uttarakhand.

17.
Materials (Basel) ; 16(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37959497

RESUMEN

In recent years, regenerative thermal oxidizer (RTO) has been widely used in the petroleum industry, chemical industry, etc. The massive storage required by solid waste has become a serious problem. Due to their chemical composition, bauxite tailings as raw materials for high-temperature thermal storage ceramics show enormous potential in the fields of research and application. In this study, we propose a method for preparing ferric-rich and high specific storage capacity by adding Fe2O3 powder to bauxite tailings. Based on a 7:3 mass ratio of bauxite tailings to lepidolite, Fe2O3 powder with different mass fractions (7 wt%, 15 wt%, 20 wt%, 30 wt%, and 40 wt%) was added to the ceramic material to improve the physical properties and thermal storage capacity of thermal storage ceramics. The results showed that ferric-rich thermal storage ceramics with optimal performance were obtained by holding them at a sintering temperature of 1000 °C for 2 h. When the Fe2O3 content was 15 wt%, the bulk density of the thermal storage ceramic reached 2.53 g/cm3, the compressive strength was 120.81 MPa, and the specific heat capacity was 1.06 J/(g·K). This study has practical guidance significance in the preparation of high thermal storage ceramics at low temperatures and low costs.

18.
Environ Sci Pollut Res Int ; 30(10): 27458-27468, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385340

RESUMEN

In this work, a latent heat storage system was designed, installed, and tested when it was integrated with a single basin solar still. The latent heat storage system is a shell and spiral finned tubes, where 20 kg of a paraffin-CuO nanocomposite with a weight fraction concentration of 1% was poured into the shell while hot water from the solar collector was being pumped through the spiral finned tubes. In order to identify the effect of implementing the storage system on the performance of the solar still, two experiments were conducted, with and without storage, under approximatelysimilar weather conditions. The proposed design of the storage system succeeded to overcome all challenges associated with using paraffin wax as storage material with the solar still. The obtained results revealed that an improvement in fresh water daily productivity of 4.54% was achieved when the storage system was integrated with the solar still. The economic analysis showed that the cost per 1 L of fresh water was 0.25 $/L when the storage unit was used. This high cost will be significantly reduced when a large-scale system is installed.


Asunto(s)
Calor , Nanopartículas , Cobre , Parafina , Agua
19.
Environ Sci Pollut Res Int ; 30(22): 62137-62150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940023

RESUMEN

The aim of this research was to develop a model for a solar refrigeration system (SRS) that utilizes an External Compound Parabolic Collector and a thermal energy storage system (TESS) for solar water heating in Chennai, India. The system parameters were optimized using TRNSYS software by varying factors such as collector area, mass flow rate of heat transfer fluid, and storage system volume and height. The resulting optimized system was found to meet 80% of hot water requirements for the application on an annual basis, with an annual collector energy efficiency of 58% and an annual TESS exergy efficiency of 64% for a discharge period of 6 h per day. In addition, the thermal performance of 3.5 kW SRS was studied by connecting it to an optimized solar water heating system (SWHS). The system was found to generate an average cooling energy of 12.26 MJ/h annually, with a coefficient of performance of 0.59. By demonstrating the ability to efficiently generate both hot water and cooling energy, the results of this study indicate the potential for utilizing a SWHS in combination with STST and SRS. The optimization of system parameters and the use of exergy analysis provide valuable insights into the thermal behavior and performance of the system, which can inform future designs and improve the overall efficiency of similar systems.


Asunto(s)
Líquidos Corporales , Energía Solar , Refrigeración , India , Frío , Agua
20.
Heliyon ; 9(2): e13606, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36852027

RESUMEN

This research aimed to examine the need of adding hot water blanching pre-treatment on the drying of ginger rhizomes using a hybrid solar-dryer with paraffin liquid as thermal storage infused into a copper tube to form a compact heat exchanger. Blanching duration quickened the drying rate of the ginger rhizomes and the average drying rate for blanching at 90 s, 60 s, 30 s and un-blanched ginger varied between 0.0147 kg/h to 0.0245 kg/h at a sensible heat ratio of 4.12 × 10-5 to 2.53 × 10-3. The optimal drying rate varied from 0.01161 kg/h to 0.0263 kg/h for all treatment at a collector temperature range of 39.5 °C-40.5 °C and collector efficiency range of 14.3%-30%. The logarithmic model better predicted the drying kinetics of un-blanched and blanching for 30 s with an R2 value of 0.9875 and 0.97247 respectively while the modified Henderson and Pabis model better predicted drying of blanched ginger rhizomes at 60 s and 90 s with R2 values of 0.96252 and 0.98188 respectively. Using the hybrid solar dryer instead of artificial dryers with fossil energy sources can save about $75.731 to $757.31 of the running cost as the usage increased from 10 to 100%. The payback period decreased from 2.88 years to 0.31 years as the rate of usage increased from 10 to 100%. Using the presented solar dryer instead of coal, diesel or grid base electricity can prevent 15.96 to 186, 7.62 tones of CO2 from entering the atmosphere. The earned carbon credit if the dryer is to be powered by coal, diesel or grid base electricity were $ $6245364, $27080.52, and $231.45 per year respectively which can be used to compensate other non-renewable energy sources deployed within an energy enterprise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA