Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493664

RESUMEN

Magnetic superconductors are specific materials exhibiting two antagonistic phenomena, superconductivity and magnetism, whose mutual interaction induces various emergent phenomena, such as the reentrant superconducting transition associated with the suppression of superconductivity around the magnetic transition temperature (T m), highlighting the impact of magnetism on superconductivity. In this study, we report the experimental observation of the ferromagnetic order induced by superconducting vortices in the high-critical-temperature (high-T c) magnetic superconductor EuRbFe4As4 Although the ground state of the Eu2+ moments in EuRbFe4As4 is helimagnetism below T m, neutron diffraction and magnetization experiments show a ferromagnetic hysteresis of the Eu2+ spin alignment. We demonstrate that the direction of the Eu2+ moments is dominated by the distribution of pinned vortices based on the critical state model. Moreover, we demonstrate the manipulation of spin texture by controlling the direction of superconducting vortices, which can help realize spin manipulation devices using magnetic superconductors.

2.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063119

RESUMEN

Thin films of the superconductor YBa2Cu3O7-δ (YBCO) were modified by low-energy light-ion irradiation employing collimated or focused He+ beams, and the long-term stability of irradiation-induced defects was investigated. For films irradiated with collimated beams, the resistance was measured in situ during and after irradiation and analyzed using a phenomenological model. The formation and stability of irradiation-induced defects are highly influenced by temperature. Thermal annealing experiments conducted in an Ar atmosphere at various temperatures demonstrated a decrease in resistivity and allowed us to determine diffusion coefficients and the activation energy ΔE=(0.31±0.03) eV for diffusive oxygen rearrangement within the YBCO unit cell basal plane. Additionally, thin YBCO films, nanostructured by focused He+-beam irradiation into vortex pinning arrays, displayed significant commensurability effects in magnetic fields. Despite the strong modulation of defect densities in these pinning arrays, oxygen diffusion during room-temperature annealing over almost six years did not compromise the signatures of vortex matching, which remained precisely at their magnetic fields predicted by the pattern geometry. Moreover, the critical current increased substantially within the entire magnetic field range after long-term storage in dry air. These findings underscore the potential of ion irradiation in tailoring the superconducting properties of thin YBCO films.


Asunto(s)
Cobre , Cobre/química , Temperatura , Superconductividad , Iterbio/química , Oxígeno/química , Conductividad Eléctrica
3.
Proc Natl Acad Sci U S A ; 116(21): 10291-10296, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30962373

RESUMEN

The ability of type II superconductors to carry large amounts of current at high magnetic fields is a key requirement for future design innovations in high-field magnets for accelerators and compact fusion reactors, and largely depends on the vortex pinning landscape comprised of material defects. The complex interaction of vortices with defects that can be grown chemically, e.g., self-assembled nanoparticles and nanorods, or introduced by postsynthesis particle irradiation precludes a priori prediction of the critical current and can result in highly nontrivial effects on the critical current. Here, we borrow concepts from biological evolution to create a vortex pinning genome based on a genetic algorithm, naturally evolving the pinning landscape to accommodate vortex pinning and determine the best possible configuration of inclusions for two different scenarios: a natural evolution process initiating from a pristine system and one starting with preexisting defects to demonstrate the potential for a postprocessing approach to enhance critical currents. Furthermore, the presented approach is even more general and can be adapted to address various other targeted material optimization problems.

4.
Nano Lett ; 17(5): 2934-2939, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28406304

RESUMEN

Control over the vortex potential at the nanoscale in a superconductor is a subject of great interest for both fundamental and technological reasons. Many methods for achieving artificial pinning centers have been demonstrated, for example, with magnetic nanostructures or engineered imperfections, yielding many intriguing effects. However, these pinning mechanisms do not offer dynamic control over the strength of the patterned vortex potential because they involve static nanostructures created in or near the superconductor. Dynamic control has been achieved with scanning probe methods on the single vortex level but these are difficult so scale up. Here, we show that by applying controllable nanopatterned current injection, the superconductor can be locally driven out of equilibrium, creating an artificial vortex potential that can be tuned by the magnitude of the injected current, yielding a unique vortex channeling effect.

5.
Nano Lett ; 15(11): 7526-31, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26441137

RESUMEN

The design of artificial vortex pinning landscapes is a major goal toward large scale applications of cuprate superconductors. Although disordered nanometric inclusions have shown to modify their vortex phase diagram and to produce enhancements of the critical current ( MacManus-Driscoll , J. L. ; Foltyn , S. R. ; Jia , Q. X. ; Wang , H. ; Serquis , A. ; Civale , L. ; Maiorov , B. ; Hawley , M. E. ; Maley , M. P. ; Peterson , D. E. Nat. Mater. 2004 , 3 , 439 - 443 and Yamada , Y. ; Takahashi , K. ; Kobayashi , H. ; Konishi , M. ; Watanabe , T. ; Ibi , A. ; Muroga , T. ; Miyata , S. ; Kato , T. ; Hirayama , T. ; Shiohara , Y. Appl. Phys. Lett. 2005 , 87 , 1 - 3 ), the effect of ordered oxide nanostructures remains essentially unexplored. This is due to the very small nanostructure size imposed by the short coherence length, and to the technological difficulties in the nanofabrication process. Yet, the novel phenomena occurring at oxide interfaces open a wide spectrum of technological opportunities to interplay with the superconductivity in cuprates. Here, we show that the unusual long-range suppression of the superconductivity occurring at the interface between manganites and cuprates affects vortex nucleation and provides a novel vortex pinning mechanism. In particular, we show evidence of commensurate pinning in YBCO films with ordered arrays of LCMO ferromagnetic nanodots. Vortex pinning results from the proximity induced reduction of the condensation energy at the vicinity of the magnetic nanodots, and yields an enhanced friction between the nanodot array and the moving vortex lattice in the liquid phase. This result shows that all-oxide ordered nanostructures constitute a powerful, new route for the artificial manipulation of vortex matter in cuprates.

6.
J Phys Condens Matter ; 36(13)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38100827

RESUMEN

The superconducting and structural properties of bilayer thin films based on YBa2Cu3O7-x / YBa2Cu3O7-x+6%BaZrO3heterstructures have been studied. In a broad range of magnetic field strengths and temperatures, the optimal bilayer film comprises 30% YBCO at the substrate interface and 70% YBCO+6%BZO on the top. The critical current density measured for the optimal bilayer structure is shown to outperform the corresponding single layer films up to almost 60%. The obtained results are comprehensively discussed in the light of our previously published theoretical framework (Rivastoet al2023J. Phys.: Condens. Matter35075701:1-10). We conclude that the bilayering provides an efficient and easily applicable way to further increase the performance and applicability of high-temperature superconductors in various applications. Consequently, the bilayer films should be seriously considered as candidates for the upcoming generation of coated conductors.

7.
Adv Mater ; 35(19): e2211409, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808146

RESUMEN

Superconducting quantum interferometer device (SQUID) plays a key role in understanding electromagnetic properties and emergent phenomena in quantum materials. The technological appeal of SQUID is that its detection accuracy for the electromagnetic signal can precisely reach the quantum level of a single magnetic flux. However, conventional SQUID techniques normally can only be applied to a bulky sample and do not have the capability to probe the magnetic properties of micro-scale samples with small magnetic signals. Herein, it is demonstrated that, based on a specially designed superconducting nano-hole array, the contactless detection of magnetic properties and quantized vortices in micro-sized superconducting nanoflakes is realized. An anomalous hysteresis loop and a suppression of Little-Parks oscillation are observed in the detected magnetoresistance signal, which originates from the disordered distribution of the pinned vortices in Bi2 Sr2 CaCu2 O8+δ . Therefore, the density of pinning centers of the quantized vortices on such micro-sized superconducting samples can be quantitatively evaluated, which is technically inaccessible for conventional SQUID detection. The superconducting micro-magnetometer provides a new approach to exploring mesoscopic electromagnetic phenomena of quantum materials.

8.
Nanomaterials (Basel) ; 12(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36432287

RESUMEN

Since the discovery of high-temperature superconductors (HTSs), significant progress in the fabrication of HTS films has been achieved. In this review, we intend to provide an overview of recent progress in how and why superconductivity can be enhanced by introducing nanoscale vortex pinning centers. The comprehensive control of morphology, dimension, orientation and concentration of artificial pinning centers (APCs) and the principle of vortex pinning are the focus of this review. According to the existing literature, HTSs with the best superconductivity can be obtained when one-dimensional (1D) and three-dimensional (3D) nanoscale APCs are combined for vortex pinning.

9.
J Phys Condens Matter ; 34(23)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35294932

RESUMEN

We introduce a molecular dynamics based simulation model that enables the efficient optimization of complex pinning structures in unpresented wide magnetic field and angular ranges for high-temperature superconductor applications. The fully three-dimensional simulation allows the modeling of the critical current and the associated anisotropy in the presence of any kinds of defects despite their size and orientation. Most prominently, these include artificial defects such as nanorods along with intrinsic weak-links orab-plane oriented stacking faults, for example. In this work, we present and analyze the most fundamental results of the simulation model and compare them indirectly with a wide range of previous experimental and computational observations. With the provided validation for the proposed simulation model, we consider it to be an extremely useful tool in particular for pushing the limits of ampacity in the coated conductor industry.

10.
Adv Sci (Weinh) ; 7(20): 1902849, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33101841

RESUMEN

Disorder-induced Griffiths singularity of quantum phase transition (QPT) is a crucial issue in 2D superconductors (2DSC). In a superconducting system, the strength of disorder is found to be associated with the vortex pinning energy, which is closely related to the quantum Griffiths singularity; however, a direct study to elucidate the role of vortex pinning energy on the quantum Griffiths singularity in 2DSC remains to be undertaken. Here, an artificial 2DSC system is designed by randomly depositing superconducting nanoislands on 2Delectron gas (2DEG). Quantum Griffiths singularity is present in a graphene/Pb-islands-array hybrid, where the superconducting behavior transits to weakly localized metallic behavior induced by the vertical magnetic field and exhibits critical behavior with a diverging dynamical critical exponent approaching zero temperature. Compared to the study of graphene/Sn-islands-array hybrid where the sharp QPT is observed, the vortex pinning energy acquired from the Arrhenius plot analysis is greater in graphene/Pb-islands-array hybrid, which may contribute to the presence of the quantum Griffiths singularity. This work may provide a comprehensive interpretation of the QPT in 2DSC.

11.
Sci Bull (Beijing) ; 64(2): 81-90, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659641

RESUMEN

We investigate the vortex dynamics in two typical hole doped iron based superconductors CaKFe4As4 (CaK1144) and Ba0.6K0.4Fe2As2 (BaK122) with similar superconducting transition temperatures. It is found that the magnetization hysteresis loop exhibits a clear second peak effect in BaK122 in wide temperature region while it is absent in CaK1144. However, a second peak effect of critical current density versus temperature is observed in CaK1144, which is however absent in BaK122. The different behaviors of second peak effect in BaK122 and CaK1144 may suggest distinct origins of vortex pinning in different systems. Magnetization and its relaxation have also been measured by using dynamical and conventional relaxation methods for both systems. Analysis and comparison of the two distinct systems show that the vortex pinning is stronger and the critical current density is higher in BaK122 system. It is found that the Maley's method can be used and thus the activation energy can be determined in BaK122 by using the time dependent magnetization in wide temperature region, but this is not applicable in CaK1144 system. Finally we present the different regimes with distinct vortex dynamics in the field-temperature diagram for the two systems.

12.
ACS Nano ; 11(2): 1780-1788, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28094494

RESUMEN

Intriguing properties of self-organized nanocomposites of perovskite oxides are usually derived from the complex interface of constituent material phases. A sophisticated control of such a system is required for a broad range of energy and device applications, which demand a comprehensive understanding of the interface at the atomic scale. Here, we visualized and theoretically modeled the highly elastically strained nanorod, the interface region with misfit dislocations and heterointerface distortion, and the matrix with strain-induced oxygen vacancies in the self-organized YBa2Cu3O7-δ nanocomposite films with Ba perovskite nanorods. Large misfit strain was elastically accommodated in the nanocomposites, but since the elastic strain was mainly accommodated by the nanorods, the concentration of strain-induced oxygen vacancies was small enough for the matrix to keep high critical temperature (>85 K). The interfacial bonding distorted the atomic structure of YBa2Cu3O7-δ, but the thickness of distortion was limited to a few unit cells (less than the coherence length) due to the electron screening. The effect of volume fraction on elastic strain and the electron screening are crucial for strong vortex pinning without significant degradation of both the elementary pinning force and critical temperature in the nanocomposites. Thus, we comprehensively clarified the self-organized nanocomposite structure for on-demand control of superconductivity and oxide functionality in the nanocomposite engineering of perovskite oxides.

13.
Sci Adv ; 1(4): e1500033, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26601180

RESUMEN

Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA