RESUMEN
Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos Virales/inmunología , Candida albicans/química , Mananos/inmunología , Hidróxido de Aluminio/química , Animales , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Epítopos/inmunología , Inmunidad Innata , Inmunización , Inflamación/patología , Interferones/metabolismo , Lectinas Tipo C/metabolismo , Ligandos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Senos Paranasales/metabolismo , Subunidades de Proteína/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/inmunología , Factor de Transcripción ReIB/metabolismo , Células Vero , beta-Glucanos/metabolismoRESUMEN
Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.
Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Inmunogenicidad Vacunal/inmunología , Vacunas Virales/inmunología , Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Expresión Génica/inmunología , Vectores Genéticos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , Humanos , Inmunización/métodos , Primates/inmunología , Primates/virología , Vacunación/métodosRESUMEN
Adjuvants play pivotal roles in vaccine development, enhancing immunization efficacy through prolonged retention and sustained release of antigen, lymph node targeting, and regulation of dendritic cell activation. Adjuvant-induced activation of innate immunity is achieved via diverse mechanisms: for example, adjuvants can serve as direct ligands for pathogen recognition receptors or as inducers of cell stress and death, leading to the release of immunostimulatory-damage-associated molecular patterns. Adjuvant systems increasingly stimulate multiple innate pathways to induce greater potency. Increased understanding of the principles dictating adjuvant-induced innate immunity will subsequently lead to programming specific types of adaptive immune responses. This tailored optimization is fundamental to next-generation vaccines capable of inducing robust and sustained adaptive immune memory across different cohorts.
Asunto(s)
Adyuvantes de Vacunas , Vacunas , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Inmunidad Innata , VacunaciónRESUMEN
Motivated by the clinical observation that interruption of the mevalonate pathway stimulates immune responses, we hypothesized that this pathway may function as a druggable target for vaccine adjuvant discovery. We found that lipophilic statin drugs and rationally designed bisphosphonates that target three distinct enzymes in the mevalonate pathway have potent adjuvant activities in mice and cynomolgus monkeys. These inhibitors function independently of conventional "danger sensing." Instead, they inhibit the geranylgeranylation of small GTPases, including Rab5 in antigen-presenting cells, resulting in arrested endosomal maturation, prolonged antigen retention, enhanced antigen presentation, and T cell activation. Additionally, inhibiting the mevalonate pathway enhances antigen-specific anti-tumor immunity, inducing both Th1 and cytolytic T cell responses. As demonstrated in multiple mouse cancer models, the mevalonate pathway inhibitors are robust for cancer vaccinations and synergize with anti-PD-1 antibodies. Our research thus defines the mevalonate pathway as a druggable target for vaccine adjuvants and cancer immunotherapies.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Vacunas contra el Cáncer/inmunología , Difosfonatos/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico/metabolismo , Proteínas de Unión al GTP rab5/antagonistas & inhibidores , Animales , Presentación de Antígeno , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/inmunología , Línea Celular Tumoral , Endosomas/efectos de los fármacos , Femenino , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Prenilación de Proteína , Proteínas de Unión al GTP rab5/metabolismoRESUMEN
Oral delivery of proteins faces challenges due to the harsh conditions of the gastrointestinal (GI) tract, including gastric acid and intestinal enzyme degradation. Permeation enhancers are limited in their ability to deliver proteins with high molecular weight and can potentially cause toxicity by opening tight junctions. To overcome these challenges, we propose the use of montmorillonite (MMT) as an adjuvant that possesses both inflammation-oriented abilities and the ability to regulate gut microbiota. This adjuvant can be used as a universal protein oral delivery technology by fusing with advantageous binding amino acid sequences. We demonstrated that anti-TNF-α nanobody (VII) can be intercalated into the MMT interlayer space. The carboxylate groups (-COOH) of aspartic acid (D) and glutamic acid (E) interact with the MMT surface through electrostatic interactions with sodium ions (Na+). The amino groups (NH2) of asparagine (N) and glutamine (Q) are primarily attracted to the MMT layers through hydrogen bonding with oxygen atoms on the surface. This binding mechanism protects VII from degradation and ensures its release in the intestinal tract, as well as retaining biological activity, leading to significantly enhanced therapeutic effects on colitis. Furthermore, VII@MMT increases the abundance of short-chain fatty acids (SCFAs)-producing strains, including Clostridia, Prevotellaceae, Alloprevotella, Oscillospiraceae, Clostridia_vadinBB60_group, and Ruminococcaceae, therefore enhance the production of SCFAs and butyrate, inducing regulatory T cells (Tregs) production to modulate local and systemic immune homeostasis. Overall, the MMT adjuvant provides a promising universal strategy for protein oral delivery by rational designed protein.
Asunto(s)
Bentonita , Microbioma Gastrointestinal , Factor de Necrosis Tumoral alfa , Bentonita/química , Animales , Administración Oral , Factor de Necrosis Tumoral alfa/metabolismo , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Anticuerpos de Dominio Único/administración & dosificación , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Humanos , Inflamación/tratamiento farmacológico , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacologíaRESUMEN
QS-21 is a potent vaccine adjuvant currently sourced by extraction from the Chilean soapbark tree. It is a key component of human vaccines for shingles, malaria, coronavirus disease 2019 and others under development. The structure of QS-21 consists of a glycosylated triterpene scaffold coupled to a complex glycosylated 18-carbon acyl chain that is critical for immunostimulant activity. We previously identified the early pathway steps needed to make the triterpene glycoside scaffold; however, the biosynthetic route to the acyl chain, which is needed for stimulation of T cell proliferation, was unknown. Here, we report the biogenic origin of the acyl chain, characterize the series of enzymes required for its synthesis and addition and reconstitute the entire 20-step pathway in tobacco, thereby demonstrating the production of QS-21 in a heterologous expression system. This advance opens up unprecedented opportunities for bioengineering of vaccine adjuvants, investigating structure-activity relationships and understanding the mechanisms by which these compounds promote the human immune response.
Asunto(s)
Saponinas , Triterpenos , Humanos , Adyuvantes de Vacunas , Saponinas/farmacología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/químicaRESUMEN
Integrating antigen-encoding mRNA (Messenger RNA) and immunostimulatory adjuvant into a single formulation is a promising approach to potentiating the efficacy of mRNA vaccines. Here, we developed a scheme based on RNA engineering to integrate adjuvancy directly into antigen-encoding mRNA strands without hampering the ability to express antigen proteins. Short double-stranded RNA (dsRNA) was designed to target retinoic acid-inducible gene-I (RIG-I), an innate immune receptor, for effective cancer vaccination and then tethered onto the mRNA strand via hybridization. Tuning the dsRNA structure and microenvironment by changing its length and sequence enabled the determination of the structure of dsRNA-tethered mRNA efficiently stimulating RIG-I. Eventually, the formulation loaded with dsRNA-tethered mRNA of the optimal structure effectively activated mouse and human dendritic cells and drove them to secrete a broad spectrum of proinflammatory cytokines without increasing the secretion of anti-inflammatory cytokines. Notably, the immunostimulating intensity was tunable by modulating the number of dsRNA along the mRNA strand, which prevents excessive immunostimulation. Versatility in the applicable formulation is a practical advantage of the dsRNA-tethered mRNA. Its formulation with three existing systems, i.e., anionic lipoplex, ionizable lipid-based lipid nanoparticles, and polyplex micelles, induced appreciable cellular immunity in the mice model. Of particular interest, dsRNA-tethered mRNA encoding ovalbumin (OVA) formulated in anionic lipoplex used in clinical trials exerted a significant therapeutic effect in the mouse lymphoma (E.G7-OVA) model. In conclusion, the system developed here provides a simple and robust platform to supply the desired intensity of immunostimulation in various formulations of mRNA cancer vaccines.
Asunto(s)
Neoplasias , ARN Bicatenario , Humanos , Animales , Ratones , ARN Bicatenario/genética , Adyuvantes Inmunológicos/farmacología , Antígenos , Inmunidad Celular , Citocinas/genética , ARN Mensajero/genética , Ratones Endogámicos C57BL , Neoplasias/terapiaRESUMEN
Vaccination is considered one of the major milestones in modern medicine, facilitating the control and eradication of life-threatening infectious diseases. Vaccine adjuvants are a key component of many vaccines, serving to steer antigen-specific immune responses and increase their magnitude. Despite major advances in the field of adjuvant research over recent decades, our understanding of their mechanism of action remains incomplete. This hinders our capacity to further improve these adjuvant technologies, so addressing how adjuvants induce and control the induction of innate and adaptive immunity is a priority. Investigating how adjuvant physicochemical properties, such as size and charge, exert immunomodulatory effects can provide valuable insights and serve as the foundation for the rational design of vaccine adjuvants. Most clinically applied adjuvants are particulate in nature and polymeric particulate adjuvants present advantages due to stability, biocompatibility profiles, and flexibility in terms of formulation. These properties can impact on antigen release kinetics and biodistribution, cellular uptake and targeting, and drainage to the lymphatics, consequently dictating the induction of innate, cellular, and humoral adaptive immunity. A current focus is to apply rational design principles to the development of adjuvants capable of eliciting robust cellular immune responses including CD8+ cytotoxic T-cell and Th1-biased CD4+ T-cell responses, which are required for vaccines against intracellular pathogens and cancer. This review highlights recent advances in our understanding of how particulate adjuvants, especially polymer-based particulates, modulate immune responses and how this can be used as a guide for improved adjuvant design.
Asunto(s)
Adyuvantes de Vacunas , Vacunas , Distribución Tisular , Vacunación , Inmunidad Adaptativa , Adyuvantes Inmunológicos/farmacología , AntígenosRESUMEN
We previously demonstrated that Alcaligenes-derived lipid A (ALA), which is produced from an intestinal lymphoid tissue-resident commensal bacterium, is an effective adjuvant for inducing antigen-specific immune responses. To understand the immunologic characteristics of ALA as a vaccine adjuvant, we here compared the adjuvant activity of ALA with that of a licensed adjuvant (monophosphoryl lipid A, MPLA) in mice. Although the adjuvant activity of ALA was only slightly greater than that of MPLA for subcutaneous immunization, ALA induced significantly greater IgA antibody production than did MPLA during nasal immunization. Regarding the underlying mechanism, ALA increased and activated CD11b+ CD103- CD11c+ dendritic cells in the nasal tissue by stimulating chemokine responses. These findings revealed the superiority of ALA as a mucosal adjuvant due to the unique immunologic functions of ALA in nasal tissue.
Asunto(s)
Alcaligenes , Lípido A , Animales , Ratones , Lípido A/farmacología , Adyuvantes Inmunológicos/farmacología , Células DendríticasRESUMEN
Invasive meningococcal disease (IMD) is caused by Neisseria meningitidis, with the main serogroups responsible for the disease being A, B, C, W, X, and Y. To date, several vaccines targeting N. meningitidis have been developed albeit with a short-lived protection. Given that MenW and MenB are the most common causes of IMD in Europe, Turkey, and the Middle East, we aimed to develop an outer membrane vesicle (OMV) based bivalent vaccine as the heterologous antigen source. Herein, we compared the immunogenicity, and breadth of serum bactericidal activity (SBA) assay-based protective coverage of OMV vaccine to the X serotype with existing commercial meningococcal conjugate and polysaccharide (PS) vaccines in a murine model. BALB/c mice were immunized with preclinical batches of the Wâ +â B OMV vaccine, either adjuvanted with Alum, CpG ODN, or their combinations, and compared with a MenACYW conjugate vaccine (NimenrixTM, Pfizer), and a MenB OMV-based vaccine (Bexsero®, GSK), The immune responses were assessed through enzyme-linked immunosorbent assay (ELISA) and SBA assay. Antibody responses and SBA titers were significantly higher in the Wâ +â B OMV vaccine when adjuvanted with Alum or CpG ODN, as compared to the control groups. Moreover, the SBA titers were not only significantly higher than those achieved with available conjugated ACYW vaccines but also on par with the 4CMenB vaccines. In conclusion, the Wâ +â B OMV vaccine demonstrated the capacity to elicit robust antibody responses, surpassing or matching the levels induced by licensed meningococcal vaccines. Consequently, the Wâ +â B OMV vaccine could potentially serve as a viable alternative or supplement to existing meningococcal vaccines.
Asunto(s)
Compuestos de Alumbre , Infecciones Meningocócicas , Vacunas Meningococicas , Ratones Endogámicos BALB C , Neisseria meningitidis , Oligodesoxirribonucleótidos , Animales , Vacunas Meningococicas/inmunología , Vacunas Meningococicas/administración & dosificación , Ratones , Neisseria meningitidis/inmunología , Compuestos de Alumbre/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Oligodesoxirribonucleótidos/administración & dosificación , Femenino , Infecciones Meningocócicas/prevención & control , Infecciones Meningocócicas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Inmunogenicidad Vacunal , Membrana Externa Bacteriana/inmunologíaRESUMEN
We have determined in mice the minimum composition required for forming a vaccine adjuvant that stimulates a regulatory T (Treg) cell response to immunization, and we named the adjuvant "complete tolerogenic adjuvant." This new kind of adjuvant may let us use the well-proven "Ag with adjuvant" form of immunization for inducing Treg cell-mediated Ag-specific immunosuppression. The minimum composition consists of dexamethasone, rapamycin, and monophosphoryl lipid A at a mass ratio of 8:20:3. By dissecting the respective role of each of these components during immunization, we have further shown why immunosuppressive and immunogenic agents are both needed for forming true adjuvants for Treg cells. This finding may guide the design of additional, and potentially more potent, complete tolerogenic adjuvants with which we may form numerous novel vaccines for treating immune diseases.
Asunto(s)
Linfocitos T Reguladores , Vacunas , Ratones , Animales , Inmunización , Adyuvantes Inmunológicos/farmacología , InmunosupresoresRESUMEN
Spontaneous tumors that arise in genetically engineered mice recapitulate the natural tumor microenvironment and tumor-immune coevolution observed in human cancers, providing a more physiologically relevant preclinical model relative to implanted tumors. Similar to many cancer patients, oncogene-driven spontaneous tumors are often resistant to immunotherapy, and thus novel agents that can effectively promote antitumor immunity against these aggressive cancers show considerable promise for clinical translation, and their mechanistic assessment can broaden our understanding of tumor immunology. In this study, we performed extensive immune profiling experiments to investigate how tumor-targeted TLR9 stimulation remodels the microenvironment of spontaneously arising tumors during an effective antitumor immune response. To model the clinical scenario of multiple tumor sites, we used MMTV-PyMT transgenic mice, which spontaneously develop heterogeneous breast tumors throughout their 10 mammary glands. We found that i.v. administration of a tumor-targeting TLR9 agonist, referred to as PIP-CpG, induced a systemic T cell-mediated immune response that not only promoted regression of existing mammary tumors, but also elicited immune memory capable of delaying growth of independent newly arising tumors. Within the tumor microenvironment, PIP-CpG therapy initiated an inflammatory cascade that dramatically amplified chemokine and cytokine production, prompted robust infiltration and expansion of innate and adaptive immune cells, and led to diverse and unexpected changes in immune phenotypes. This study demonstrates that effective systemic treatment of an autochthonous multisite tumor model can be achieved using a tumor-targeted immunostimulant and provides immunological insights that will inform future therapeutic strategies.
Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Ratones , Animales , Humanos , Femenino , Receptor Toll-Like 9 , Ratones Transgénicos , Adyuvantes Inmunológicos/farmacología , Neoplasias Mamarias Animales/terapia , Neoplasias de la Mama/terapia , Microambiente Tumoral , Línea Celular TumoralRESUMEN
Purified vaccine antigens offer important safety and reactogenicity advantages compared with live attenuated or whole killed virus and bacterial vaccines. However, they require the addition of adjuvants to induce the magnitude, duration and quality of immune response required to achieve protective immunity. Aluminium salts have been used as adjuvants in vaccines for almost a century. In the literature, they are often referred to as aluminium-based adjuvants (ABAs), or aluminium salt-containing adjuvants or more simply "alum". All these terms are used to group aluminium suspensions that are very different in terms of atomic composition, size, and shape. They differ also in stability, antigen-adsorption, and antigen-release kinetics. Critically, these parameters also have a profound effect on the character and magnitude of the immune response elicited. Recent findings suggest that, by reducing the size of aluminium from micro to nanometers, a more effective adjuvant is obtained, together with the ability to sterile filter the vaccine product. However, the behaviour of aluminium nanoparticles in vaccine formulations is different from microparticles, requiring specific formulation strategies, as well as a more detailed understanding of how formulation influences the immune response generated. Here we review the current state of art of aluminium nanoparticles as adjuvants, with a focus on their immunobiology, preparation methods, formulation optimisation and stabilisation.
Asunto(s)
Nanopartículas , Vacunas , Adyuvantes Inmunológicos/farmacología , Aluminio , HumanosRESUMEN
The development of in situ tumor vaccines offers promising prospects for cancer treatment. Nonetheless, the generation of plenary autologous antigens in vivo and their codelivery to DC cells along with adjuvants remains a significant challenge. Herein, we developed an in situ tumor vaccine using a supramolecular nanoparticle/hydrogel composite (ANPMTO/ALCD) and a deformable nanoadjuvant (PPER848). The ANPMTO/ALCD composite consisted of ß-cyclodextrin-decorated alginate (Alg-g-CD) and MTO-encapsulated adamantane-decorated nanoparticles (ANPMTO) through supramolecular interaction, facilitating the long-term and sustained production of plenary autologous antigens, particularly under a 660 nm laser. Simultaneously, the produced autologous antigens were effectively captured by nanoadjuvant PPER848 and subsequently transported to lymph nodes and DC cells, benefiting from its optimized size and deformability. This in situ tumor vaccine can trigger a robust antitumor immune response and demonstrate significant therapeutic efficacy in inhibiting tumor growth, suppressing tumor metastasis, and preventing postoperative recurrence, offering a straightforward approach to programming in situ tumor vaccines.
Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra el Cáncer , Inmunoterapia , Nanopartículas , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Animales , Ratones , Inmunoterapia/métodos , Nanopartículas/química , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/uso terapéutico , Adyuvantes Inmunológicos/farmacología , Hidrogeles/química , Humanos , Línea Celular Tumoral , Células Dendríticas/inmunología , beta-Ciclodextrinas/química , Neoplasias/terapia , Neoplasias/inmunología , Alginatos/química , Adamantano/química , Adamantano/uso terapéuticoRESUMEN
Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.
Asunto(s)
Proteínas de la Membrana , Nucleotidiltransferasas , Humanos , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Animales , Adyuvantes de Vacunas/farmacología , Adyuvantes de Vacunas/química , Transducción de Señal/efectos de los fármacos , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , SARS-CoV-2/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Vacunas contra la COVID-19/inmunologíaRESUMEN
The purpose of this study is to investigate the previously unknown connection that succinate has with neutrophils in the setting of adjuvant-mediated immunological enhancement. It has been discovered that succinates stimulate the recruitment of neutrophils in immunization sites, which in turn induces the expression of what is known as neutrophil-derived B cell-activating factor (BAFF). Further amplification of vaccine-induced antibody responses is provided via the succinate receptor 1-interferon regulatory factor 5 (SUCNR1-IRF5)-BAFF signaling pathway, which provides insights into a unique mechanism for immunological enhancement.NEW & NOTEWORTHY This study explores the role of succinate as a vaccine adjuvant, revealing its capacity to enhance neutrophil recruitment at immunization sites, which boosts B cell activation through the succinate receptor 1-interferon regulatory factor 5-B cell-activating factor (SUCNR1-IRF5-BAFF) signaling pathway. Results demonstrate succinate's potential to amplify vaccine-induced antibody responses, highlighting its significance in immunological enhancement and offering new insights into the adjuvant mechanisms of action, particularly in neutrophil-mediated immune responses.
Asunto(s)
Adyuvantes Inmunológicos , Neutrófilos , Transducción de Señal , Ácido Succínico , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Ácido Succínico/metabolismo , Adyuvantes Inmunológicos/farmacología , Humanos , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos , Factor Activador de Células B/metabolismo , Factor Activador de Células B/inmunología , Factor Activador de Células B/genética , Ratones Endogámicos C57BL , FemeninoRESUMEN
Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.
Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL9 , Regulación de la Expresión Génica , Factor 1 Regulador del Interferón , Macrófagos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Interferón gamma/farmacología , Macrófagos/metabolismo , Transducción de Señal/genética , Células RAW 264.7 , Animales , Ratones , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Simulación por Computador , Análisis de la Célula Individual , Adyuvantes Inmunológicos/farmacologíaRESUMEN
Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.
Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Compuestos de Boro/farmacología , Compuestos de Boro/química , Adyuvantes Inmunológicos/farmacología , Glicoproteínas de Membrana , Receptores InmunológicosRESUMEN
Delta inulin, or Advax, is a polysaccharide vaccine adjuvant that significantly enhances vaccine-mediated immune responses against multiple pathogens and was recently licensed for use in the coronavirus disease 2019 (COVID-19) vaccine SpikoGen. Although Advax has proven effective as an immune adjuvant, its specific binding targets have not been characterized. In this report, we identify a cellular receptor for Advax recognition. In vitro uptake of Advax particles by macrophage cell lines was substantially greater than that of latex beads of comparable size, suggesting an active uptake mechanism by phagocytic cells. Using a lectin array, Advax particles were recognized by lectins specific for various carbohydrate structures including mannosyl, N-acetylgalactosamine and galactose moieties. Expression in nonphagocytic cells of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), a C-type lectin receptor, resulted in enhanced uptake of fluorescent Advax particles compared with mock-transfected cells. Advax uptake was reduced with the addition of ethylenediaminetetraacetic acid and mannan to cells, which are known inhibitors of DC-SIGN function. Finally, a specific blockade of DC-SIGN using a neutralizing antibody abrogated Advax uptake in DC-SIGN-expressing cells. Together, these results identify DC-SIGN as a putative receptor for Advax. Given the known immunomodulatory role of DC-SIGN, the findings described here have implications for the use of Advax adjuvants in humans and inform future mechanistic studies.
Asunto(s)
Adyuvantes Inmunológicos , Moléculas de Adhesión Celular , Inulina , Lectinas Tipo C , Receptores de Superficie Celular , Humanos , Adyuvantes Inmunológicos/farmacología , Adyuvantes de Vacunas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular , COVID-19/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inulina/metabolismo , Inulina/análogos & derivados , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Mananos/metabolismo , Receptores de Superficie Celular/metabolismoRESUMEN
Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.