Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 106(3): 706-719, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33570751

RESUMEN

Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.


Asunto(s)
Homeostasis , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Citoplasma/enzimología , Citoplasma/metabolismo , Oryza/enzimología , Proteínas de Plantas/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Brotes de la Planta/enzimología , Brotes de la Planta/metabolismo , Enzimas Ubiquitina-Conjugadoras/fisiología
2.
Ecotoxicol Environ Saf ; 195: 110485, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32203776

RESUMEN

Soil co-contaminated with cadmium (Cd) and decabromodiphenyl ether (BDE-209) is a widespread environmental problem, especially in electronic waste contaminated surroundings. Accumulation of Cd and BDE-209 in crops has possibly harmful effects on local human health. In order to assess the potential of arbuscular mycorrhizal (AM) fungi and amaranth (Amaranthus hypochondriacus L.) in remediation of soil co-contaminated with Cd and BDE-209, pot trials were performed to investigate interactive effects of AM fungi, Cd and BDE-209 on growth of amaranth, uptake of Cd and BDE-209, distribution of chemical forms of Cd and activities of antioxidant enzymes in shoots and dissipation of BDE-209 in soil. The present results showed that shoot biomass of non-mycorrhizal plants was significantly inhibited by increasing of Cd addition (5-15 mg kg-1), but were only slightly declined with BDE-209 addition (5 mg kg-1). The interaction of Cd and BDE-209 reduced the proportions of ethanol- and d-H2O-extractable Cd in shoots, consequently alleviated Cd toxicity to plants and enhanced root uptake of Cd and BDE-209. Inoculation of AM fungi resulted in significantly greater shoot biomass as well as higher concentrations of Cd and BDE-209 compared with non-mycorrhizal treatment. Moreover, AM fungi played a beneficial role in relieving oxidative stress on amaranth by increasing the activities of dismutase (SOD) and catalase (CAT) in shoots and significantly improved the dissipation of BDE-209 in soil. The present study suggested that combination of AM fungi and amaranth may be a potential option for remediation of Cd and BDE-209 co-contaminated soils.


Asunto(s)
Amaranthus/metabolismo , Cadmio/farmacocinética , Éteres Difenilos Halogenados/farmacocinética , Micorrizas , Contaminantes del Suelo/farmacocinética , Amaranthus/efectos de los fármacos , Amaranthus/enzimología , Biodegradación Ambiental , Biomasa , Cadmio/toxicidad , Catalasa/metabolismo , Éteres Difenilos Halogenados/toxicidad , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/metabolismo , Suelo , Contaminantes del Suelo/toxicidad , Superóxido Dismutasa/metabolismo
3.
PLoS Biol ; 14(9): e1002550, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27618482

RESUMEN

Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , MAP Quinasa Quinasa 7/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Brotes de la Planta/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Ácidos Indolacéticos/metabolismo , MAP Quinasa Quinasa 7/química , Sistema de Señalización de MAP Quinasas , Proteínas de Transporte de Membrana/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/química , Fosforilación , Desarrollo de la Planta , Brotes de la Planta/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
4.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370221

RESUMEN

Peroxidases play prominent roles in antioxidant responses and stress tolerance in plants; however, their functions in soybean tolerance to salt stress remain unclear. Here, we investigated the role of a peroxidase gene from the wild soybean (Glycine soja), GsPRX9, in soybean tolerance to salt stress. GsPRX9 gene expression was induced by salt treatment in the roots of both salt-tolerant and -sensitive soybean varieties, and its relative expression level in the roots of salt-tolerant soybean varieties showed a significantly higher increase than in salt-sensitive varieties after NaCl treatment, suggesting its possible role in soybean response to salt stress. GsPRX9-overexpressing yeast (strains of INVSc1 and G19) grew better than the control under salt and H2O2 stress, and GsPRX9-overexpressing soybean composite plants showed higher shoot fresh weight and leaf relative water content than control plants after NaCl treatment. Moreover, the GsPRX9-overexpressing soybean hairy roots had higher root fresh weight, primary root length, activities of peroxidase and superoxide dismutase, and glutathione level, but lower H2O2 content than those in control roots under salt stress. These findings suggest that the overexpression of the GsPRX9 gene enhanced the salt tolerance and antioxidant response in soybean. This study would provide new insights into the role of peroxidase in plant tolerance to salt stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Peroxidasa/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Tolerancia a la Sal/genética , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Peroxidasa/metabolismo , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Salinidad , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Cloruro de Sodio/farmacología , Glycine max/efectos de los fármacos , Glycine max/enzimología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
5.
New Phytol ; 217(1): 219-232, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28960381

RESUMEN

DNA methylation plays a critical role in diverse biological processes of plants. Arabidopsis DNA METHYLTRANSFERASE1 (MET1) represses shoot regeneration by inhibiting WUSCHEL (WUS) expression, which is essential for shoot initiation. However, the upstream signals regulating MET1 expression during this process are unclear. We analyzed the signals regulating MET1 expression using a number of established strategies, such as genetic analysis, confocal microscopy, quantitative real-time PCR and chromatin immunoprecipitation. MET1 expression patterns underwent dynamic changes with the initiation of WUS during shoot regeneration. The cell cycle regulator E2FA was characterized as an upstream factor directly promoting MET1 expression. Moreover, cytokinin promoted MET1 expression partially by enhancing CYCD3 expression. Our findings reveal that MET1-mediated shoot regeneration is regulated by the cytokinin-induced cell cycle, and provide new insights into the regulation of DNA methylation in shoot regeneration.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Citocininas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Ciclo Celular , Ciclinas/genética , Ciclinas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Regeneración
6.
Int J Mol Sci ; 19(4)2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29614837

RESUMEN

Strigolactones (SLs) are a class of phytohormones that regulate plant architecture. Carotenoid cleavage dioxygenase (CCD) genes are involved in the biosynthesis of SLs and are identified and characterized in many plants. However, the function of CCD genes in tobacco remains poorly understood. In this study, two closely related genes NtCCD8A and NtCCD8B were cloned from tobacco (Nicotiana tabacum L.). The two NtCCD8 genes are orthologues of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase 8 (SlCCD8) gene. NtCCD8A and NtCCD8B were primarily expressed in tobacco roots, but low expression levels of these genes were detected in all plant tissues, and their transcript levels significantly increased in response to phosphate limitation. NtCCD8A and NtCCD8B mutations were introduced into tobacco using the CRISPR/Cas9 system and transgenic tobacco lines for both ntccd8 mutant alleles were identified. The ntccd8a and ntccd8b mutant alleles were inactivated by a deletion of three nucleotides and insertion of one nucleotide, respectively, both of which led to the production of premature stop codons. The ntccd8 mutants had increased shoot branching, reduced plant height, increased number of leaves and nodes, and reduced total plant biomass compared to wild-type plants; however, the root-to-shoot ratio was unchanged. In addition, mutant lines had shorter primary roots and more of lateral roots than wild type. These results suggest that NtCCD8 genes are important for changes in tobacco plant architecture.


Asunto(s)
Dioxigenasas/metabolismo , Nicotiana/enzimología , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Brotes de la Planta/enzimología , Brotes de la Planta/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Dioxigenasas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Raíces de Plantas/genética , Brotes de la Planta/genética , Nicotiana/genética
7.
Plant Cell Environ ; 40(10): 2236-2249, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28707409

RESUMEN

Annual dormancy-growth cycle is a developmental and physiological process essential for the survival of deciduous trees in temperate and boreal forests. Seasonal control of shoot growth in woody perennials requires specific genetic programmes responding to environmental signals. The environmental-controlled mechanisms that regulate the shift between winter dormancy and the growth-promoting genetic programmes are still unknown. Here, we show that dynamics in genomic DNA methylation levels are involved in the regulation of dormancy-growth cycle in poplar. The reactivation of growth in the apical shoot during bud break process in spring is preceded by a progressive reduction of genomic DNA methylation in apex tissue. The induction in apex tissue of a chilling-dependent poplar DEMETER-LIKE 10 (PtaDML10) DNA demethylase precedes shoot growth reactivation. Transgenic poplars showing downregulation of PtaDML8/10 caused delayed bud break. Genome-wide transcriptome and methylome analysis and data mining revealed that the gene targets of DEMETER-LIKE-dependent DNA demethylation are genetically associated with bud break. These data point to a chilling-dependent DEMETER-like DNA demethylase mechanisms being involved in the shift from winter dormancy to a condition that precedes shoot apical vegetative growth in poplar.


Asunto(s)
Frío , Proteínas de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Populus/enzimología , Populus/fisiología , Desmetilación del ADN , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/genética , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Populus/genética
8.
Plant Cell ; 26(7): 2803-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25070639

RESUMEN

It has been perplexing that DNA topoisomerases, enzymes that release DNA supercoils, play specific roles in development. In this study, using a floral stem cell model in Arabidopsis thaliana, we uncovered a role for TOPOISOMERASE1α (TOP1α) in Polycomb Group (PcG) protein-mediated histone 3 lysine 27 trimethylation (H3K27me3) at, and transcriptional repression of, the stem cell maintenance gene WUSCHEL (WUS). We demonstrated that H3K27me3 deposition at other PcG targets also requires TOP1α. Intriguingly, the repression of some, as well as the expression of many, PcG target genes requires TOP1α. The mechanism that unifies the opposing effects of TOP1α appears to lie in its role in decreasing nucleosome density, which probably allows the binding of factors that either recruit PcG, as we demonstrated for AGAMOUS at the WUS locus, or counteract PcG-mediated regulation. Although TOP1α reduces nucleosome density at all genes, the lack of a 5' nucleosome-free region is a feature that distinguishes PcG targets from nontargets and may condition the requirement for TOP1α for their expression. This study uncovers a connection between TOP1α and PcG, which explains the specific developmental functions of TOP1α.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ADN-Topoisomerasas de Tipo I/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Nucleosomas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Diferenciación Celular , ADN-Topoisomerasas de Tipo I/genética , Epigénesis Genética , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/enzimología , Meristema/genética , Meristema/crecimiento & desarrollo , Mutación , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Proteínas del Grupo Polycomb/genética , Transcripción Genética
9.
Int J Mol Sci ; 18(8)2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28820425

RESUMEN

Auxin is a main plant growth hormone crucial in a multitude of developmental processes in plants. Auxin biosynthesis via the tryptophan aminotransferase of arabidopsis (TAA)/YUCCA (YUC) route involving tryptophan aminotransferases and YUC flavin-dependent monooxygenases that produce the auxin indole-3-acetic acid (IAA) from tryptophan is currently the most researched auxin biosynthetic pathway. Previous data showed that, in maize and arabidopsis, TAA/YUC-dependent auxin biosynthesis can be detected in endoplasmic reticulum (ER) microsomal fractions, and a subset of auxin biosynthetic proteins are localized to the ER, mainly due to transmembrane domains (TMD). The phylogeny presented here for TAA/TAR (tryptophan aminotransferase related) and YUC proteins analyses phylogenetic groups as well as transmembrane domains for ER-membrane localisation. In addition, RNAseq datasets are analysed for transcript abundance of YUC and TAA/TAR proteins in Arabidopsis thaliana. We show that ER membrane localisation for TAA/YUC proteins involved in auxin biosynthesis is already present early on in the evolution of mosses and club mosses. ER membrane anchored YUC proteins can mainly be found in roots, while cytosolic proteins are more abundant in the shoot. The distribution between the different phylogenetic classes in root and shoot may well originate from gene duplications, and the phylogenetic groups detected also overlap with the biological function.


Asunto(s)
Proteínas de Arabidopsis/genética , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Oxigenasas/genética , Filogenia , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Microscopía Confocal , Oxigenasas/clasificación , Oxigenasas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Triptófano-Transaminasa/genética , Triptófano-Transaminasa/metabolismo
10.
Mol Plant Microbe Interact ; 29(10): 797-806, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27643387

RESUMEN

Although Trichoderma spp. have beneficial effects on numerous plants, there is not enough knowledge about the mechanism by which they improves plant growth. In this study, we evaluated the participation of plasma membrane (PM) H+-ATPase, a key enzyme involved in promoting cell growth, in the elongation induced by T. asperellum and compared it with the effect of 10 µM indol acetic acid (IAA) because IAA promotes elongation and PM H+-ATPase activation. Two seed treatments were tested: biopriming and noncontact. In neither were the tissues colonized by T. asperellum; however, the seedlings were longer than the control seedlings, which also accumulated IAA and increased root acidification. An auxin transport inhibitor (2,3,5 triiodobenzoic acid) reduced the plant elongation induced by Trichoderma spp. T. asperellum seed treatment increased the PM H+-ATPase activity in plant roots and shoots. Additionally, the T. asperellum extracellular extract (TE) activated the PM H+-ATPase activity of microsomal fractions of control plants, although it contained 0.3 µM IAA. Furthermore, the mechanism of activation of PM H+-ATPase was different for IAA and TE; in the latter, the activation depends on the phosphorylation state of the enzyme, suggesting that, in addition to IAA, T. asperellum excretes other molecules that stimulate PM H+-ATPase to induce plant growth.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Trichoderma/fisiología , Zea mays/enzimología , Membrana Celular/metabolismo , Activación Enzimática/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/crecimiento & desarrollo , ATPasas de Translocación de Protón/efectos de los fármacos , ATPasas de Translocación de Protón/genética , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/crecimiento & desarrollo , Ácidos Triyodobenzoicos , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
11.
Planta ; 244(4): 901-13, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27306451

RESUMEN

MAIN CONCLUSION: Arabidopsis ppc3 mutant has a growth-arrest phenotype and is affected in phosphate- and salt-stress responses, showing that this protein is crucial under control or stress conditions. Phosphoenolpyruvate carboxylase (PEPC) and its dedicated kinase (PEPC-k) are ubiquitous plant proteins implicated in many physiological processes. This work investigates specific roles for the three plant-type PEPC (PTPC) and the two PEPC-k isoenzymes in Arabidopsis thaliana. The lack of any of the PEPC isoenzymes reduced growth parameters under optimal growth conditions. PEPC activity was decreased in shoots and roots of ppc2 and ppc3 mutants, respectively. Phosphate starvation increased the expression of all PTPC and PPCK genes in shoots, but only PPC3 and PPCK2 in roots. The absence of any of these two proteins was not compensated by other isoforms in roots. The effect of salt stress on PTPC and PPCK expression was modest in shoots, but PPC3 was markedly increased in roots. Interestingly, both stresses decreased root growth in each of the mutants except for ppc3. This mutant had a stressed phenotype in control conditions (reduced root growth and high level of stress molecular markers), but was unaffected in their response to high salinity. Salt stress increased PEPC activity, its phosphorylation state, and L-malate content in roots, all these responses were abolished in the ppc3 mutant. Our results highlight the importance of the PPC3 isoenzyme for the normal development of plants and for root responses to stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mutación , Fosfoenolpiruvato Carboxilasa/genética , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Western Blotting , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatos/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salinidad , Estrés Fisiológico
12.
New Phytol ; 209(1): 241-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26301520

RESUMEN

Dimerization of rhamnogalacturonan-II (RG-II) via boron cross-links contributes to the assembly and biophysical properties of the cell wall. Pure RG-II is efficiently dimerized by boric acid (B(OH)3 ) in vitro only if nonbiological agents for example Pb(2+) are added. By contrast, newly synthesized RG-II domains dimerize very rapidly in vivo. We investigated biological agents that might enable this. We tested for three such agents: novel enzymes, borate-transferring ligands and cationic 'chaperones' that facilitate the close approach of two polyanionic RG-II molecules. Dimerization was monitored electrophoretically. Parsley shoot cell-wall enzymes did not affect RG-II dimerization in vitro. Borate-binding ligands (apiose, dehydroascorbic acid, alditols) and small organic cations (including polyamines) also lacked consistent effects. Polylysine bound permanently to RG-II, precluding electrophoretic analysis. However, another polycation, polyhistidine, strongly promoted RG-II dimerization by B(OH)3 without irreversible polyhistidine-RG-II complexation. Likewise, partially purified spinach extensins (histidine/lysine-rich cationic glycoproteins), strongly promoted RG-II dimerization by B(OH)3 in vitro. Thus certain polycations, including polyhistidine and wall glycoproteins, can chaperone RG-II, manoeuvring this polyanionic polysaccharide domain such that boron-bridging is favoured. These chaperones dissociate from RG-II after facilitating its dimerization, indicating that they act catalytically rather than stoichiometrically. We propose a natural role for extensin-RG-II interaction in steering cell-wall assembly.


Asunto(s)
Boro/metabolismo , Pared Celular/metabolismo , Glicoproteínas/metabolismo , Chaperonas Moleculares/metabolismo , Pectinas/metabolismo , Petroselinum/enzimología , Boratos/metabolismo , Ácidos Bóricos/metabolismo , Cationes/metabolismo , Dimerización , Histidina/metabolismo , Petroselinum/química , Proteínas de Plantas/metabolismo , Brotes de la Planta/química , Brotes de la Planta/enzimología , Polisacáridos/metabolismo
13.
Plant Physiol ; 169(3): 2244-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26338953

RESUMEN

Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lipooxigenasa/metabolismo , Lipooxigenasas/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Lipooxigenasa/genética , Lipooxigenasas/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Xilema/enzimología , Xilema/genética , Xilema/fisiología
14.
Plant Physiol ; 167(4): 1541-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681328

RESUMEN

Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Difosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Pirofosfatasa Inorgánica/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Expresión Génica , Genes Reporteros , Homeostasis , Pirofosfatasa Inorgánica/genética , Mutación , Especificidad de Órganos , Fenotipo , Floema/enzimología , Floema/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Sacarosa/metabolismo
15.
Plant Physiol ; 169(3): 1991-2005, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26371233

RESUMEN

Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root's ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Triticum/genética , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Productos Agrícolas , Fertilizantes , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Transportadores de Nitrato , Nitratos/farmacología , Nitrógeno/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/enzimología , Triticum/crecimiento & desarrollo
16.
J Exp Bot ; 67(21): 5975-5991, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27697786

RESUMEN

Axillary buds (AXBs) of hybrid aspen (Populus tremula×P. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated 1,3-ß-glucanases, but it is unknown if GA is also important in the development, activation, and outgrowth of para-dormant AXBs. The present data show that para-dormant AXBs up-regulate GA receptor genes during their maturation, but curtail GA biosynthesis by down-regulating the rate-limiting GIBBERELLIN 3-OXIDASE2 (GA3ox2), which is characteristically expressed in the growing apex. However, decapitation significantly up-regulated GA3ox2 and GA4-responsive 1,3-ß-glucanases (GH17-family; α-clade). In contrast, decapitation down-regulated γ-clade 1,3-ß-glucanases, which were strongly up-regulated in maturing AXBs concomitant with lipid body accumulation. Overexpression of selected GH17 members in hybrid aspen resulted in characteristic branching patterns. The α-clade member induced an acropetal branching pattern, whereas the γ-clade member activated AXBs in recurrent flushes during transient cessation of apex proliferation. The results support a model in which curtailing the final step in GA biosynthesis dwarfs the embryonic shoot, while high levels of GA precursors and GA receptors keep AXBs poised for growth. GA signaling, induced by decapitation, reinvigorates symplasmic supply routes through GA-inducible 1,3-ß-glucanases that hydrolyze callose at sieve plates and plasmodesmata.


Asunto(s)
Giberelinas/fisiología , Glucano 1,3-beta-Glucosidasa/metabolismo , Brotes de la Planta/metabolismo , Populus/metabolismo , Inducción Enzimática/fisiología , Giberelinas/metabolismo , Glucano 1,3-beta-Glucosidasa/biosíntesis , Glucano 1,3-beta-Glucosidasa/genética , Redes y Vías Metabólicas/fisiología , Latencia en las Plantas/fisiología , Brotes de la Planta/enzimología , Brotes de la Planta/crecimiento & desarrollo , Populus/enzimología , Populus/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Plant Cell ; 25(9): 3491-505, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24058159

RESUMEN

Histone deacetylation regulates gene expression during plant stress responses and is therefore an interesting target for epigenetic manipulation of stress sensitivity in plants. Unfortunately, overexpression of the core enzymes (histone deacetylases [HDACs]) has either been ineffective or has caused pleiotropic morphological abnormalities. In yeast and mammals, HDACs operate within multiprotein complexes. Searching for putative components of plant HDAC complexes, we identified a gene with partial homology to a functionally uncharacterized member of the yeast complex, which we called Histone Deacetylation Complex1 (HDC1). HDC1 is encoded by a single-copy gene in the genomes of model plants and crops and therefore presents an attractive target for biotechnology. Here, we present a functional characterization of HDC1 in Arabidopsis thaliana. We show that HDC1 is a ubiquitously expressed nuclear protein that interacts with at least two deacetylases (HDA6 and HDA19), promotes histone deacetylation, and attenuates derepression of genes under water stress. The fast-growing HDC1-overexpressing plants outperformed wild-type plants not only on well-watered soil but also when water supply was reduced. Our findings identify HDC1 as a rate-limiting component of the histone deacetylation machinery and as an attractive tool for increasing germination rate and biomass production of plants.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biomasa , Sequías , Flores/efectos de los fármacos , Flores/enzimología , Flores/genética , Flores/fisiología , Expresión Génica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico
18.
Int J Mol Sci ; 17(2): 261, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26907264

RESUMEN

Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3'-hydroxylase (F3'H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3'H, designated as CsF3'H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3'H was highly homologous with the characterized F3'Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3'H-specific conserved motifs were discovered in the protein sequence of CsF3'H. Enzymatic analysis of the heterologously expressed CsF3'H in yeast demonstrated that tea F3'H catalyzed the 3'-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 µM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min(-1), respectively. Transcription level of CsF3'H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3',4'-flavan-3-ols, 3',4',5'-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3'H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3'H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3'H in the biosynthesis of 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols in tea leaves.


Asunto(s)
Camellia sinensis/enzimología , Clonación Molecular/métodos , Biología Computacional/métodos , Sistema Enzimático del Citocromo P-450/genética , Camellia sinensis/genética , Camellia sinensis/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoides/biosíntesis , Germinación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Homología de Secuencia de Ácido Nucleico
19.
Ontogenez ; 47(4): 244-50, 2016.
Artículo en Ruso | MEDLINE | ID: mdl-30272404

RESUMEN

3-Hydroxy-3-methylglutaryl-CoA reductase (HMG1) catalyzes the formation of mevalonic acid, the key intermediate of the cytosolic isoprenoid synthesis pathway. The parameters of stem and leaf growth were studied in the transgenic tobacco plants that express the HMG1 gene in both sense and antisense orientations towards the constitutive promoter. The transgenic plant height did not significantly differ from that of the control plants, though the plants carrying the sense copy of the HMG1 gene were considerably taller than plants that carried the antisense gene copy. Plants carrying an extra copy of the HMG1 gene were also characterized by increased leaf area. The number of mesophyll cells calculated per square unit of transgenic plants leaves was smaller than in the control plant leaves, though their volume was not considerably changed in any of the variants, suggesting changes in the cell packing density in leaves.


Asunto(s)
Nicotiana/enzimología , Oxidorreductasas/biosíntesis , Proteínas de Plantas/biosíntesis , Brotes de la Planta/enzimología , Plantas Modificadas Genéticamente/enzimología , Regiones Promotoras Genéticas , Oxidorreductasas/genética , Proteínas de Plantas/genética , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/genética , Nicotiana/anatomía & histología , Nicotiana/genética
20.
Plant J ; 78(1): 121-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24479634

RESUMEN

Growth is a complex trait that adapts to the prevailing conditions by integrating many internal and external signals. Understanding the molecular origin of this variation remains a challenging issue. In this study, natural variation of shoot growth under mannitol-induced stress was analyzed by standard quantitative trait locus mapping methods in a recombinant inbred line population derived from a cross between the Col-0 and Cvi-0 Arabidopsis thaliana accessions. Cloning of a major QTL specific to mannitol-induced stress condition led to identification of EGM1 and EGM2, a pair of tandem-duplicated genes encoding receptor-like kinases that are potentially involved in signaling of mannitol-associated stress responses. Using various genetic approaches, we identified two non-synonymous mutations in the EGM2[Cvi] allele that are shared by at least ten accessions from various origins and are probably responsible for a specific tolerance to mannitol. We have shown that the enhanced shoot growth phenotype contributed by the Cvi allele is not linked to generic osmotic properties but instead to a specific chemical property of mannitol itself. This result raises the question of the function of such a gene in A. thaliana, a species that does not synthesize mannitol. Our findings suggest that the receptor-like kinases encoded by EGM genes may be activated by mannitol produced by pathogens such as fungi, and may contribute to plant defense responses whenever mannitol is present.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Manitol/farmacología , Estrés Fisiológico , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Variación Genética , Interacciones Huésped-Patógeno , Mutación , Fenotipo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA