Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.227
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34644530

RESUMEN

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Asunto(s)
Bacterias/inmunología , Bacterias/virología , Bacteriófagos/fisiología , CMP Cíclico/metabolismo , Nucleótidos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Burkholderia/enzimología , CMP Cíclico/química , Ciclización , Escherichia coli/enzimología , Modelos Moleculares , Mutación/genética , Nucleótidos Cíclicos/química , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
2.
Cell ; 161(2): 348-60, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25860613

RESUMEN

Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.


Asunto(s)
Actinas/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia/fisiología , Burkholderia/patogenicidad , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Burkholderia/clasificación , Burkholderia/enzimología , Células COS , Fusión Celular , Línea Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia
3.
Cell ; 161(2): 199-200, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25860603

RESUMEN

Benanti et al. report that Burkholderia pseudomallei and Burkholderia mallei bacteria express proteins that mimic Ena/Vasp family proteins to polymerize actin, thereby inducing actin-based motility. Thus, bacteria can use the various cellular actin polymerization mechanisms for intra- and inter-cellular dissemination.


Asunto(s)
Actinas/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia/fisiología , Burkholderia/patogenicidad , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Animales , Humanos
4.
Proc Natl Acad Sci U S A ; 121(11): e2315540121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437561

RESUMEN

Insects lack acquired immunity and were thought to have no immune memory, but recent studies reported a phenomenon called immune priming, wherein sublethal dose of pathogens or nonpathogenic microbes stimulates immunity and prevents subsequential pathogen infection. Although the evidence for insect immune priming is accumulating, the underlying mechanisms are still unclear. The bean bug Riptortus pedestris acquires its gut microbiota from ambient soil and spatially structures them into a multispecies and variable community in the anterior midgut and a specific, monospecies Caballeronia symbiont population in the posterior region. We demonstrate that a particular Burkholderia strain colonizing the anterior midgut stimulates systemic immunity by penetrating gut epithelia and migrating into the hemolymph. The activated immunity, consisting of a humoral and a cellular response, had no negative effect on the host fitness, but on the contrary protected the insect from subsequent infection by pathogenic bacteria. Interruption of contact between the Burkholderia strain and epithelia of the gut weakened the host immunity back to preinfection levels and made the insects more vulnerable to microbial infection, demonstrating that persistent acquisition of environmental bacteria is important to maintain an efficient immunity.


Asunto(s)
Burkholderia , Burkholderiaceae , Animales , Endodermo , Insectos , Suelo
5.
PLoS Pathog ; 20(6): e1012361, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941361

RESUMEN

The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.


Asunto(s)
Antibacterianos , Bacteriófagos , Burkholderia , Antibacterianos/farmacología , Burkholderia/efectos de los fármacos , Regulación hacia Abajo
6.
Proc Natl Acad Sci U S A ; 120(42): e2304668120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812712

RESUMEN

Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.


Asunto(s)
Productos Biológicos , Burkholderia , Humanos , Burkholderia/genética , Péptido Sintasas/genética , Lipopéptidos/química , ADN , Productos Biológicos/química , Serina/genética , Familia de Multigenes
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121656

RESUMEN

Toxin-antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain.


Asunto(s)
Antitoxinas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Dominios Proteicos/genética , Sistemas Toxina-Antitoxina/genética , Proteínas Bacterianas/genética , Burkholderia/genética , Regulación Bacteriana de la Expresión Génica/genética , Guanosina Pentafosfato/genética , Operón/genética , Profagos/genética
8.
J Bacteriol ; 206(4): e0044123, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38501654

RESUMEN

Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple ß-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and ß-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.


Asunto(s)
Burkholderia cenocepacia , Complejo Burkholderia cepacia , Burkholderia , Burkholderia cenocepacia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Complejo Burkholderia cepacia/genética , Burkholderia/metabolismo
9.
Infect Immun ; 92(3): e0001924, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38353543

RESUMEN

Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.


Asunto(s)
Burkholderia pseudomallei , Burkholderia , Animales , Ratones , Proteínas Hemolisinas , Ratones Endogámicos C57BL , Inmunoglobulina G , Ratones Endogámicos BALB C
10.
Mol Plant Microbe Interact ; 37(6): 507-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489400

RESUMEN

Burkholderia gladioli pv. alliicola, B. cepacia, and B. orbicola are common bacterial pathogens of onion. Onions produce organosulfur thiosulfinate defensive compounds after cellular decompartmentalization. Using whole-genome sequencing and in silico analysis, we identified putative thiosulfinate tolerance gene (TTG) clusters in multiple onion-associated Burkholderia species similar to those characterized in other Allium-associated bacterial endophytes and pathogens. Sequence analysis revealed the presence of three Burkholderia TTG cluster types, with both Type A and Type B being broadly distributed in B. gladioli, B. cepacia, and B. orbicola in both the chromosome and plasmids. Based on isolate natural variation and generation of isogenic strains, we determined the in vitro and in vivo contribution of TTG clusters in B. gladioli, B. cepacia, and B. orbicola. The Burkholderia TTG clusters contributed to enhanced allicin tolerance and improved growth in filtered onion extracts by all three species. TTG clusters also made clear contributions to B. gladioli foliar necrosis symptoms and bacterial populations. Surprisingly, the TTG cluster did not contribute to bacterial populations in onion bulb scales by these three species. Based on our findings, we hypothesize onion-associated Burkholderia may evade or inhibit the production of thiosulfinates in onion bulb tissues. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Burkholderia , Familia de Multigenes , Cebollas , Cebollas/microbiología , Burkholderia/genética , Burkholderia/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Ácidos Sulfínicos/farmacología
11.
Emerg Infect Dis ; 30(5): 1055-1057, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666739

RESUMEN

We report a clinical isolate of Burkholderia thailandensis 2022DZh obtained from a patient with an infected wound in southwest China. Genomic analysis indicates that this isolate clusters with B. thailandensis BPM, a human isolate from Chongqing, China. We recommend enhancing monitoring and surveillance for B. thailandensis infection in both humans and livestock.


Asunto(s)
Infecciones por Burkholderia , Burkholderia , Filogenia , Infección de Heridas , Humanos , Masculino , Burkholderia/genética , Burkholderia/aislamiento & purificación , Burkholderia/clasificación , Infecciones por Burkholderia/microbiología , Infecciones por Burkholderia/diagnóstico , China/epidemiología , Genoma Bacteriano , Infección de Heridas/microbiología , Persona de Mediana Edad
12.
Emerg Infect Dis ; 30(6): 1249-1252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782141

RESUMEN

Burkholderia semiarida was previously identified solely as a plant pathogen within the Burkholderia cepacia complex. We present a case in China involving recurrent pneumonia attributed to B. semiarida infection. Of note, the infection manifested in an immunocompetent patient with no associated primary diseases and endured for >3 years.


Asunto(s)
Infecciones por Burkholderia , Burkholderia , Recurrencia , Humanos , Infecciones por Burkholderia/diagnóstico , Infecciones por Burkholderia/microbiología , Infecciones por Burkholderia/tratamiento farmacológico , China , Burkholderia/aislamiento & purificación , Burkholderia/genética , Masculino , Inmunocompetencia , Antibacterianos/uso terapéutico , Persona de Mediana Edad , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/diagnóstico , Neumonía Bacteriana/tratamiento farmacológico
13.
Biochem Biophys Res Commun ; 709: 149822, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38547604

RESUMEN

Aromatic nitriles are of considerable environmental concern, because of their hazardous impacts on the health of both humans and wildlife. In the present study, Burkholderia sp. strain BC1 was observed to be capable of utilizing toxic benzonitrile and hydroxybenzonitrile isomers singly, as sole carbon and energy sources. The results of chromatographic and spectrometric analyses in combination with oxygen uptake and enzyme activity studies, revealed the metabolism of benzonitrile as well as 2-, 3-, and 4-hydroxybenzonitriles by nitrile hydratase-amidase to the corresponding carboxylates. These carboxylates were further metabolized via central pathways, namely benzoate-catechol, salicylate-catechol, 3-hydroxybenzoate-gentisate and 4-hydroxybenzoate-protocatechute pathways in strain BC1, ultimately leading to the TCA cycle intermediates. Studies also evaluated substrate specificity profiles of both nitrile hydratase and amidase(s) involved in the denitrification of the nitriles. In addition, a few metabolic crosstalk events due to the induction of multiple operons by central metabolites were appraised in strain BC1. The present study illustrates the broad degradative potential of strain BC1, harboring diverse catabolic machinery of biotechnological importance, elucidating pathways for the assimilation of benzonitrile and that of hydroxybenzonitrile isomers for the first time.


Asunto(s)
Burkholderia , Humanos , Nitrilos/química , Amidohidrolasas/metabolismo , Catecoles , Biodegradación Ambiental
14.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555312

RESUMEN

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Asunto(s)
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiología , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Fusarium/genética , Genómica
15.
J Virol ; 97(11): e0085023, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37943040

RESUMEN

IMPORTANCE: Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.


Asunto(s)
Bacteriófagos , Burkholderia , Terapia de Fagos , Humanos , Antibacterianos , Bacteriófagos/genética , Burkholderia/virología , Especificidad del Huésped , Fibrosis Quística/microbiología , Infecciones por Burkholderia/terapia
16.
Appl Environ Microbiol ; 90(2): e0225023, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299816

RESUMEN

Burkholderia cepacia complex bacteria have emerged as opportunistic pathogens in patients with cystic fibrosis and immunocompromised individuals, causing life-threatening infections. Because of the relevance of these microorganisms, genetic manipulation is crucial for explaining the genetic mechanisms leading to pathogenesis. Despite the availability of allelic exchange tools to obtain unmarked gene deletions in Burkholderia, these require a step of merodiploid formation and another of merodiploid resolution through two independent homologous recombination events, making the procedure long-lasting. The CRISPR/Cas9-based system could ease this constraint, as only one step is needed for allelic exchange. Here, we report the modification of a two-plasmid system (pCasPA and pACRISPR) for genome editing in Burkholderia multivorans. Several modifications were implemented, including selection marker replacement, the optimization of araB promoter induction for the expression of Cas9 and λ-Red system encoding genes, and the establishment of plasmid curing procedures based on the sacB gene or growth at a sub-optimal temperature of 18°C-20°C with serial passages. We have shown the efficiency of this CRISPR/Cas9 method in the precise and unmarked deletion of different genes (rpfR, bceF, cepR, and bcsB) from two strains of B. multivorans, as well as its usefulness in the targeted insertion of the gfp gene encoding the green fluorescence protein into a precise genome location. As pCasPA was successfully introduced in other Burkholderia cepacia complex species, this study opens up the possibility of using CRISPR/Cas9-based systems as efficient tools for genome editing in these species, allowing faster and more cost-effective genetic manipulation.IMPORTANCEBurkholderia encompasses different species of bacteria, some of them pathogenic to animals and plants, but others are beneficial by promoting plant growth through symbiosis or as biocontrol agents. Among these species, Burkholderia multivorans, a member of the Burkholderia cepacia complex, is one of the predominant species infecting the lungs of cystic fibrosis patients, often causing respiratory chronic infections that are very difficult to eradicate. Since the B. multivorans species is understudied, we have developed a genetic tool based on the CRISPR/Cas9 system to delete genes efficiently from the genomes of these strains. We could also insert foreign genes that can be precisely placed in a chosen genomic region. This method, faster than other conventional strategies based on allelic exchange, will have a major contribution to understanding the virulence mechanisms in B. multivorans, but it can likely be extended to other Burkholderia species.


Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Burkholderia , Fibrosis Quística , Animales , Humanos , Sistemas CRISPR-Cas , Infecciones por Burkholderia/microbiología , Fibrosis Quística/microbiología , Edición Génica , Burkholderia/genética , Complejo Burkholderia cepacia/genética , Genómica
17.
Med Microbiol Immunol ; 213(1): 16, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033094

RESUMEN

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei, an intracellular pathogen with a high mortality rate and significant antibiotic resistance. The high mortality rate and resistance to antibiotics have drawn considerable attention from researchers studying melioidosis. This study evaluated the effects of various concentrations (75, 50, and 25 µg/mL) of promethazine hydrochloride (PTZ), a potent antihistamine, on biofilm formation and lipase activity after 24 h of exposure to B. thailandensis E264. A concentration-dependent decrease in both biofilm biomass and lipase activity was observed. RT-PCR analysis revealed that PTZ treatment not only made the biofilm structure loose but also reduced the expression of btaR1, btaR2, btaR3, and scmR. Single gene knockouts of quorum sensing (QS) receptor proteins (∆btaR1, ∆btaR2, and ∆btaR3) were successfully constructed. Deletion of btaR1 affected biofilm formation in B. thailandensis, while deletion of btaR2 and btaR3 led to reduced lipase activity. Molecular docking and biological performance results demonstrated that PTZ inhibits biofilm formation and lipase activity by suppressing the expression of QS-regulated genes. This study found that repositioning PTZ reduced biofilm formation in B. thailandensis E264, suggesting a potential new approach for combating melioidosis.


Asunto(s)
Biopelículas , Burkholderia , Reposicionamiento de Medicamentos , Prometazina , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Burkholderia/efectos de los fármacos , Burkholderia/fisiología , Burkholderia/genética , Prometazina/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Lipasa/metabolismo , Lipasa/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Percepción de Quorum/efectos de los fármacos
18.
Mol Biol Rep ; 51(1): 519, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625424

RESUMEN

BACKGROUND: Bacterial panicle blight, incited by Burkholderia glumae, has impacted rice production globally. Despite its significance, knowledge about the disease and the virulence pattern of the causal agent is very limited. Bacterial panicle blight is a major challenge in the rice-growing belts of North-western India, resulting in yield reduction. However, the management of B. glumae has become a challenge due to the lack of proper management strategies. METHODOLOGY AND RESULTS: Twenty-one BG strains have been characterized using the 16S rRNA and the gyrB gene-based sequence approach in the present study. The gyrB gene-based phylogenetic analysis resulted in geographic region-specific clustering of the BG isolates. The virulence screening of twenty-one BG strains by inoculating the pathogenic bacterial suspension of 1 × 10-8 cfu/ml at the booting stage (55 DAT) revealed the variation in the disease severity and the grain yield of rice plants. The most virulent BG1 strain resulted in the highest disease incidence (82.11%) and lowest grain yield (11.12 g/plant), and the least virulent BG10 strain resulted in lowest disease incidence of 18.94% and highest grain yield (24.62 g/plant). In vitro evaluation of various biocontrol agents and nano copper at different concentrations by agar well diffusion method revealed that nano copper at 1000 mg/L inhibited the colony growth of B. glumae. Under net house conditions, nano copper at 1000 mg/L reduced the disease severity to 21.23% and increased the grain yield by 20.91% (31.76 g per plant) compared to the positive control (COC 0.25% + streptomycin 200 ppm). Remarkably, pre-inoculation with nano copper at 1000 mg/L followed by challenge inoculation with B. glumae enhanced the activity of enzymatic antioxidants viz., Phenyl ammonia-lyase (PAL), Polyphenol oxidase (PPO) and Peroxidase (POX) and non-enzymatic antioxidant phenol. Additionally, we observed a substantial transcript level upregulation of six defense-related genes to several folds viz., OsPR2, OsPR5, OsWRKY71, OsPAL1, OsAPX1, and OsPPO1 in comparison to the pathogen control and healthy control. CONCLUSIONS: Overall, our study provides valuable insights into the potential and practical application of nano copper for the mitigation of bacterial panicle blight, offering promising prospects for commercial utilization in disease management.


Asunto(s)
Burkholderia , Oryza , Oryza/genética , Filogenia , ARN Ribosómico 16S/genética , Burkholderia/genética , Antioxidantes , Cobre , Grano Comestible
19.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364306

RESUMEN

AIM: The increased availability of genome sequences has enabled the development of valuable tools for the prediction and identification of bacterial natural products. Burkholderia catarinensis 89T produces siderophores and an unknown potent antifungal metabolite. The aim of this work was to identify and purify natural products of B. catarinensis 89T through a genome-guided approach. MATERIALS AND METHODS: The analysis of B. catarinensis 89T genome revealed 16 clusters putatively related to secondary metabolism and antibiotics production. Of particular note was the identification of a nonribosomal peptide synthetase (NRPS) cluster related to the production of the siderophore ornibactin, a hybrid NRPS-polyketide synthase Type 1 cluster for the production of the antifungal glycolipopeptide burkholdine, and a gene cluster encoding homoserine lactones (HSL), probably involved in the regulation of both metabolites. We were able to purify high amounts of the ornibactin derivatives D/C6 and F/C8, while also detecting the derivative B/C4 in mass spectrometry investigations. A group of metabolites with molecular masses ranging from 1188 to 1272 Da could be detected in MS experiments, which we postulate to be new burkholdine analogs produced by B. catarinensis. The comparison of B. catarinensis BGCs with other Bcc members corroborates the hypothesis that this bacterium could produce new derivatives of these metabolites. Moreover, the quorum sensing metabolites C6-HSL, C8-HSL, and 3OH-C8-HSL were observed in LC-MS/MS analysis. CONCLUSION: The new species B. catarinensis is a potential source of new bioactive secondary metabolites. Our results highlight the importance of genome-guided purification and identification of metabolites of biotechnological importance.


Asunto(s)
4-Butirolactona/análogos & derivados , Productos Biológicos , Complejo Burkholderia cepacia , Burkholderia , Lipopéptidos , Sideróforos/metabolismo , Antifúngicos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Burkholderia/genética , Burkholderia/metabolismo , Complejo Burkholderia cepacia/metabolismo , Productos Biológicos/metabolismo , Proteínas Bacterianas/genética
20.
J Nat Prod ; 87(2): 186-194, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38277493

RESUMEN

The rise of multidrug resistant fungal infections highlights the need to identify and develop novel antifungal agents. Occidiofungin is a nonribosomally synthesized glycolipopeptide that has a unique mechanism of action, disrupting actin-mediated functions and inducing cellular apoptosis. Antifungal activity has been observed in vitro against various fungal species, including multidrug resistant Candida auris, and in vivo efficacy has been demonstrated in a murine vulvovaginal candidiasis model. Occidiofungin, a cyclic glycolipopeptide, is composed of eight amino acids and in previous studies, an asparagine residue was assigned at position 7 (ASN7). In this study, new structural variants of occidiofungin have been characterized which have aspartic acid (ASP7), glutamine (GLN7), or glutamic acid (GLU7) at position 7. The side chain of the ASP7 variant contains the only terminal carboxylic acid in the peptide and provides a useful site for selective chemical modifications. Analogues were synthesized at the ASP7 position and tested for antifungal activity. These analogues were shown to be more active as compared to the ASP7 variant against a panel of Candida species. The naturally occurring variants of occidiofungin with a side chain containing a carboxylic acid at the seventh amino acid position can be used to develop semisynthetic analogues with enhanced therapeutic properties.


Asunto(s)
Antifúngicos , Burkholderia , Glicopéptidos , Péptidos Cíclicos , Ratones , Animales , Antifúngicos/química , Burkholderia/química , Ácidos Carboxílicos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA