Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Horm Behav ; 164: 105578, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925074

RESUMEN

Neuropeptides play essential roles in coordinating reproduction. Egg-laying hormone (ELH) is conserved in genetic sequence and behavioral function across molluscs, where neuronal clusters secrete ELH to modulate and induce egg-laying. Here we investigated ELH in the nudibranch mollusc, Berghia stephanieae. ELH preprohormone gene orthologs, which showed clade-specific differences at the C-terminus of the predicted bioactive peptide, were identified in brain transcriptomes across several nudipleuran species, including B. stephanieae. ELH shares deep homology with the corticotropin-releasing hormone gene family, which has roles broadly in stress response. Injection of synthesized B. stephanieae ELH peptide into mature individuals induced egg-laying. ELH gene expression in the brain and body was mapped using in-situ hybridization chain reaction. Across the adult brain, 300-400 neurons expressed ELH. Twenty-one different cell types were identified in adults, three of which were located unilaterally on the right side, which corresponds to the location of the reproductive organs. Ten cell types were present in pre-reproductive juvenile stages. An asymmetric cluster of approximately 100 small neurons appeared in the right pedal ganglion of late-stage juveniles. Additional neurons in the pleural and pedal ganglia expressed ELH only in adults that were actively laying eggs and sub-adults that were on the verge of doing so, implicating their direct role in reproduction. Outside the brain, ELH was expressed on sensory appendages, including in presumptive sensory neurons. Its widespread expression in the nudibranch B. stephanieae suggests that ELH plays a role beyond reproduction in gastropod molluscs.


Asunto(s)
Gastrópodos , Neuronas , Animales , Neuronas/metabolismo , Neuronas/fisiología , Gastrópodos/genética , Gastrópodos/fisiología , Gastrópodos/metabolismo , Femenino , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Reproducción/fisiología , Neuropéptidos/metabolismo , Neuropéptidos/genética , Hormonas de Invertebrados/genética , Hormonas de Invertebrados/metabolismo , Oviposición/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38122925

RESUMEN

Crustacean hyperglycemic hormone (CHH) superfamily peptides constitute a group of neurohormones, including the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), which reportedly play an essential role in regulating various biological activities by binding to their receptors in crustaceans. Although bioinformatics analyses have identified G protein-coupled receptors (GPCRs) as potential CHH receptors, no validation through binding experiments has been carried out. This study employed a eukaryotic expression system, HEK293T cell transient transfection, and ligand-receptor interaction tests to identify the GPCRs of CHHs in the mud crab Scylla paramamosain. We found that four GPCRs (Sp-GPCR-A34-A37) were activated by their corresponding CHHs (Sp-CHH1-v1, Sp-MIH, Sp-VIH) in a dose-dependent manner. Of these, Sp-GPCR-A34 was exclusively activated by Sp-VIH; Sp-GPCR-A35 was activated by Sp-CHH1-v1 and Sp-VIH, respectively; Sp-GPCR-A36 was activated by Sp-CHH1-v1 and Sp-MIH; Sp-GPCR-A37 was exclusively activated by Sp-MIH. The half-maximal effective concentration (EC50) values for all CHHs/GPCRs pairs (both Ca2+ and cAMP signaling) were in the nanomolar range. Overall, our study provided hitherto undocumented evidence of the presence of G protein-coupled receptors of CHH in crustaceans, providing the foothold for further studies on the signaling pathways of CHHs and their corresponding GPCRs.


Asunto(s)
Braquiuros , Hormonas de Invertebrados , Humanos , Animales , Braquiuros/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Péptidos/química , Proteínas Portadoras/metabolismo , Hormonas de Invertebrados/genética , Hormonas de Invertebrados/metabolismo , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38977174

RESUMEN

Ecdysis-triggering hormone (ETH) is a neuropeptide hormone characterized by a conserved KxxKxxPRx amide structure widely identified in arthropods. While its involvement in the regulation of molting and reproduction in insects is well-established, its role in crustaceans has been overlooked. This study aimed to de-orphanise a receptor for ETH in the mud crab Scylla paramamosain and explore its potential impact on ovarian development. A 513-amino-acid G protein-coupled receptor for ETH (SpETHR) was identified in S. paramamosain, exhibiting a dose-dependent activation by SpETH with an EC50 value of 75.18 nM. Tissue distribution analysis revealed SpETH was in the cerebral ganglion and thoracic ganglion, while SpETHR was specifically expressed in the ovary, hepatopancreas, and Y-organ of female crabs. In vitro experiments demonstrated that synthetic SpETH (at a concentration of 10-8 M) significantly increased the expression of SpVgR in the ovary and induced ecdysone biosynthesis in the Y-organ. In vivo experiments showed a significant upregulation of SpEcR in the ovary and Disembodied and Shadow in the Y-organ after 12 h of SpETH injection. Furthermore, a 16-day administration of SpETH significantly increased 20E titers in hemolymph, gonadosomatic index (GSI) and oocyte size of S. paramamosain. In conclusion, our findings suggest that SpETH may play stimulatory roles in ovarian development and ecdysone biosynthesis by the Y-organ.


Asunto(s)
Braquiuros , Ovario , Animales , Braquiuros/metabolismo , Braquiuros/fisiología , Braquiuros/crecimiento & desarrollo , Femenino , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Secuencia de Aminoácidos , Filogenia , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neuropéptidos/metabolismo , Neuropéptidos/genética , Hormonas de Invertebrados/metabolismo , Hormonas de Invertebrados/genética , Muda , Clonación Molecular
4.
Pestic Biochem Physiol ; 203: 106011, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084776

RESUMEN

To accommodate growth, insects must periodically shed their exoskeletons. In Manduca sexta, Drosophila melanogaster and Tribolium castaneum, Bursicon (Burs)/ Partner of bursicon (Pburs)-LGR2 signal is an indispensable component for the proper execution of ecdysis behavior during adult eclosion. Nevertheless, the behavioral events and the roles of bursicon signaling in other insects deserve further exploration. In the current paper, we found that the pupal-adult ecdysis in Henosepilachna vigintioctomaculata could be divided into three distinct stages, preecdysis, ecdysis and postecdysis. Preecdysis behavioral sequences included abdomen twitches, dorsal-ventral contractions and air filling that function to loosen the old cuticle. Ecdysis events began with anterior-posterior contractions that gradually split the old integument along the dorsal body midline, followed by freeing of legs and mouthparts, and culminated in detachment from pupal cuticle. Postecdysis behavioral processes contained three actions: perch selection and stretching of elytra and hindwings. RNA interference for HvBurs, HvPburs or Hvrk (encoding LGR2) strongly impaired wing expansion actions, and slightly influenced preecdysis and ecdysis behaviors. The RNAi beetles failed to extend their elytra and hindwings. In addition, injected with dsrk also caused kinked femurs and tibia. Our findings establish that bursicon pathway is involved in regulation of adult eclosion behavior, especially wing expansion motor programs. Given that wings facilitate food foraging, courtship, predator avoidance, dispersal and migration, our results provide a potential target for controlling H. vigintioctomaculata.


Asunto(s)
Escarabajos , Animales , Escarabajos/fisiología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Transducción de Señal , Muda/fisiología , Pupa , Interferencia de ARN , Conducta Animal , Hormonas de Invertebrados/metabolismo , Alas de Animales
5.
Mol Reprod Dev ; 88(1): 34-42, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33244845

RESUMEN

A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B-chain (21 aa), C-peptide (47 aa), and A-chain (24 aa). There are three putative processing sites (Lys-Arg) between the B-chain and C-peptide, between the C-peptide and A-chain, and within the C-peptide. This structural organization revealed that the mature AscRGP is composed of A- and B-chains with two interchain disulfide bonds and one intrachain disulfide bond. The C-terminal residues of the B-chain are Gln-Gly-Arg, which is a potential substrate for formation of an amidated C-terminal Gln residue. Non-amidated (AscRGP-GR) and amidated (AscRGP-NH2 ) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP-GR and AscRGP-NH2 induced oocyte maturation and ovulation in similar dose-dependent manners. This is the first report on a C-terminally amidated functional RGP. Collectively, these results suggest that AscRGP-GR and AscRGP-NH2 act as a natural gonadotropic hormone in A. scoparius.


Asunto(s)
Gonadotropinas/química , Gonadotropinas/metabolismo , Hormonas de Invertebrados/química , Hormonas de Invertebrados/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Oocitos/metabolismo , Ovario/metabolismo , Estrellas de Mar/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , Femenino , Gonadotropinas/síntesis química , Gonadotropinas/farmacología , Hormonas de Invertebrados/síntesis química , Hormonas de Invertebrados/farmacología , Neuropéptidos/síntesis química , Neuropéptidos/farmacología , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Ovario/efectos de los fármacos , Ovulación/efectos de los fármacos , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nervio Radial/metabolismo , Estrellas de Mar/efectos de los fármacos , Estrellas de Mar/genética
6.
Gen Comp Endocrinol ; 310: 113831, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089706

RESUMEN

A relaxin-like gonad-stimulating peptide (RGP) acts as a gonadotropic hormone in starfish. In this study, antibodies to Asterias rubens RGP (AruRGP) were used for the development of a specific and sensitive enzyme-linked immunosorbent assay (ELISA) to measure AruRGP. Biotin-conjugated RGP (biotin-AruRGP) that binds to peroxidase-conjugated streptavidin was synthesized chemically so that it could be specifically detected using 3, 3', 5, 5'-tetramethylbenzidine (TMB)/hydrogen peroxide as a substrate. Similar to AruRGP, biotin-AruRGP bound to AruRGP antibodies. In binding experiments with biotin-AruRGP using wells coated with AruRGP antibodies, a displacement curve was obtained using serial dilutions of AruRGP. Using this ELISA system, AruRGP could be measured in the range 0.01-5.0 pmol per 50 µl test solution. Furthermore, 0.22 ± 0.03 and 0.20 ± 0.04 pmol AruRGP/mg wet weight tissue were detected in the radial nerve cords and circumoral nerve-rings of A. rubens, respectively. Smaller amounts of AruRGP were detected in tube feet, pyloric stomach and cardiac stomach but AruRGP was not detected in pyloric caeca, ovaries and testes. Analysis of the specificity of the AruRGP antibodies revealed that the A- and B-chains of AruRGP, Patiria pectinifera RGP, Aphelasterias japonica RGP, and human relaxin exhibit little or no cross-reactivity in the ELISA. We conclude, therefore, that we have successfully generated an ELISA system that is highly sensitive and specific for detection of AruRGP.


Asunto(s)
Asterias , Ensayo de Inmunoadsorción Enzimática , Hormonas de Invertebrados , Relaxina , Animales , Asterias/metabolismo , Gónadas/metabolismo , Hormonas de Invertebrados/metabolismo , Relaxina/metabolismo
7.
Gen Comp Endocrinol ; 314: 113901, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34530000

RESUMEN

Crustacean Y-organs secrete ecdysteroid molting hormones. Ecdysteroids are released in increased amount during premolt, circulate in hemolymph, and stimulate the events in target cells that lead to molting. During much of the molting cycle, ecdysteroid production is suppressed by molt-inhibiting hormone (MIH), a peptide neurohormone produced in the eyestalks. The suppressive effect of MIH is mediated by a cyclic nucleotide second messenger. A decrease in circulating MIH is associated with an increase in the hemolymphatic ecdysteroid titer during pre-molt. Nevertheless, it has long been hypothesized that a positive regulatory signal or stimulus is also involved in promoting ecdysteroidogenensis during premolt. Data reviewed here are consistent with the hypothesis that an intracellular Ca2+ signal provides that stimulus. Pharmacological agents that increase intracellular Ca2+ in Y-organs promote ecdysteroidogenesis, while agents that lower intracellular Ca2+ or disrupt Ca2+ signaling suppress ecdysteroidogenesis. Further, an increase in the hemolymphatic ecdysteroid titer after eyestalk ablation or during natural premolt is associated with an increase in intracellular free Ca2+ in Y-organ cells. Several lines of evidence suggest elevated intracellular calcium is linked to enhanced ecdysteroidogenesis through activation of Ca2+/calmodulin dependent cyclic nucleotide phosphodiesterase, thereby lowering intracellular cyclic nucleotide second messenger levels and promoting ecdysteroidogenesis. Results of transcriptomic studies show genes involved in Ca2+ signaling are well represented in Y-organs. Several recent studies have focused on Ca2+ transport proteins in Y-organs. Complementary DNAs encoding a plasma membrane Ca2+ ATPase (PMCA) and a sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) have been cloned from crab Y-organs. The relative abundance of PMCA and SERCA transcripts in Y-organs is elevated during premolt, a time when Ca2+ levels in Y-organs are likewise elevated. The results are consistent with the notion that these transport proteins act to maintain the Ca2+ gradient across the cell membrane and re-set the cell for future Ca2+ signals.


Asunto(s)
Braquiuros , Hormonas de Invertebrados , Animales , Braquiuros/metabolismo , Señalización del Calcio , Ecdisteroides/metabolismo , Hemolinfa/metabolismo , Hormonas de Invertebrados/metabolismo , Muda/genética
8.
BMC Biol ; 18(1): 17, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075655

RESUMEN

BACKGROUND: In insects, continuous growth requires the periodic replacement of the exoskeleton. Once the remains of the exoskeleton from the previous stage have been shed during ecdysis, the new one is rapidly sclerotized (hardened) and melanized (pigmented), a process collectively known as tanning. The rapid tanning that occurs after ecdysis is critical for insect survival, as it reduces desiccation, and gives the exoskeleton the rigidity needed to support the internal organs and to provide a solid anchor for the muscles. This rapid postecdysial tanning is triggered by the "tanning hormone", bursicon. Since bursicon is released into the hemolymph, it has naturally been assumed that it would act on the epidermal cells to cause the tanning of the overlying exoskeleton. RESULTS: Here we investigated the site of bursicon action in Drosophila by examining the consequences on tanning of disabling the bursicon receptor (encoded by the rickets gene) in different tissues. To our surprise, we found that rapid tanning does not require rickets function in the epidermis but requires it instead in peptidergic neurons of the ventral nervous system (VNS). Although we were unable to identify the signal that is transmitted from the VNS to the epidermis, we show that neurons that express the Drosophila insulin-like peptide ILP7, but not the ILP7 peptide itself, are involved. In addition, we found that some of the bursicon targets involved in melanization are different from those that cause sclerotization. CONCLUSIONS: Our findings show that bursicon does not act directly on the epidermis to cause the tanning of the overlying exoskeleton but instead requires an intermediary messenger produced by peptidergic neurons within the central nervous system. Thus, this work has uncovered an unexpected layer of control in a process that is critical for insect survival, which will significantly alter the direction of future research aimed at understanding how rapid postecdysial tanning occurs.


Asunto(s)
Exoesqueleto/fisiología , Drosophila/fisiología , Hormonas de Insectos/metabolismo , Hormonas de Invertebrados/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Epidermis/fisiología , Femenino , Masculino , Neuropéptidos/metabolismo
9.
J Therm Biol ; 100: 103076, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34503813

RESUMEN

Hyperglycemia is a stress responsible mechanism induced in crustaceans through the secretion of Crustacean Hyperglycemic Hormone (CHH). The effect of thermal shock on the hemolymph CHH levels was studied in P. pelagicus. Crabs were exposed to varying temperatures for 3 h and were then transferred to ambient temperature (28 °C). A higher CHH level of 47.30 ± 2.26 fmol/ml was observed on exposure of crabs to 24 °C, over a recovery period of 3 h. This was reflected with increase in hemolymph glucose causing hyperglycemia and subsequent decrease in hepatopancreas glycogen levels. The results suggest the modulatory role of CHH in producing the energy required for the physiological reparation faced by the crabs during thermal stress.


Asunto(s)
Braquiuros/metabolismo , Glucosa/metabolismo , Respuesta al Choque Térmico , Animales , Proteínas de Artrópodos/metabolismo , Braquiuros/fisiología , Glucógeno/metabolismo , Hemolinfa/metabolismo , Hepatopáncreas/metabolismo , Hormonas de Invertebrados/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Regulación hacia Arriba
10.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681803

RESUMEN

A neuropeptide (Sco-CHH-L), belonging to the crustacean hyperglycemic hormone (CHH) superfamily and preferentially expressed in the pericardial organs (POs) of the mud crab Scylla olivacea, was functionally and structurally studied. Its expression levels were significantly higher than the alternative splice form (Sco-CHH) in the POs, and increased significantly after the animals were subjected to a hypo-osmotic stress. Sco-CHH-L, but not Sco-CHH, significantly stimulated in vitro the Na+, K+-ATPase activity in the posterior (6th) gills. Furthermore, the solution structure of Sco-CHH-L was resolved using nuclear magnetic resonance spectroscopy, revealing that it has an N-terminal tail, three α-helices (α2, Gly9-Asn28; α3, His34-Gly38; and α5, Glu62-Arg72), and a π-helix (π4, Cys43-Tyr54), and is structurally constrained by a pattern of disulfide bonds (Cys7-Cys43, Cys23-Cys39, and Cys26-Cys52), which is characteristic of the CHH superfamily-peptides. Sco-CHH-L is topologically most similar to the molt-inhibiting hormone from the Kuruma prawn Marsupenaeus japonicus with a backbone root-mean-square-deviation of 3.12 Å. Ten residues of Sco-CHH-L were chosen for alanine-substitution, and the resulting mutants were functionally tested using the gill Na+, K+-ATPase activity assay, showing that the functionally important residues (I2, F3, E45, D69, I71, and G73) are located at either end of the sequence, which are sterically close to each other and presumably constitute the receptor binding sites. Sco-CHH-L was compared with other members of the superfamily, revealing a folding pattern, which is suggested to be common for the crustacean members of the superfamily, with the properties of the residues constituting the presumed receptor binding sites being the major factors dictating the ligand-receptor binding specificity.


Asunto(s)
Proteínas de Artrópodos , Braquiuros , Hormonas de Invertebrados , Proteínas del Tejido Nervioso , Neuropéptidos , Receptores de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Braquiuros/genética , Braquiuros/metabolismo , Hormonas de Invertebrados/química , Hormonas de Invertebrados/genética , Hormonas de Invertebrados/metabolismo , Modelos Moleculares , Familia de Multigenes , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/metabolismo , Pericardio/metabolismo , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad
11.
Biol Reprod ; 103(4): 817-827, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32582944

RESUMEN

To date, the molecular mechanisms of the unique gonadal development mode known as protandric simultaneous hermaphroditism (PSH) are unclear in crustaceans. In this study, cDNA of a gonad-inhibiting hormone (Lv-GIH1) was isolated from the PSH peppermint shrimp Lysmata vittata, and its expression was exclusively found in the eyestalk ganglion. Real-time quantitative polymerase chain reaction (qRT-PCR) revealed that the expression of Lv-GIH1 increased during gonadal development of the functional male stages but decreased significantly at subsequent simultaneous hermaphroditism stage. Further in vitro experiment showed that recombinant GIH1 protein (rGIH1) effectively inhibited Vg expression in the cultured hepatopancreas tissues while the short-term injection of GIH1-dsRNA resulted in reduced expression of Lv-GIH1 and upregulated expression of Vg in the hepatopancreas. Moreover, long-term rGIH1 injection led to significantly reduced expression of Lv-Vg, Lv-VgR, and Lv-CFSH1, subdued growth of oocytes, and feathery setae as a secondary sexual characteristic in females. Interestingly, while germ cells in testicular part were suppressed by rGIH1 injection, the expression of Lv-IAGs showed no significant difference; and long-term GIH1-dsRNA injection results were contrary to those of rGIH1 injection. Taken together, the results of this study indicate that Lv-GIH1 is involved in gonadal development and might also participate in controlling secondary sexual characteristic development in L. vittata by inhibiting Lv-CFSH1 expression.


Asunto(s)
Decápodos/fisiología , Regulación de la Expresión Génica/fisiología , Organismos Hermafroditas/metabolismo , Hormonas de Invertebrados/metabolismo , Animales , Clonación Molecular , Decápodos/crecimiento & desarrollo , Técnicas de Silenciamiento del Gen , Gónadas/crecimiento & desarrollo , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Hormonas de Invertebrados/farmacología , Filogenia , ARN/genética , ARN/metabolismo , Diferenciación Sexual
12.
Artículo en Inglés | MEDLINE | ID: mdl-32470528

RESUMEN

The burrowing crab Neohelice granulata is a key omnivorous species in intertidal areas along the southwestern Atlantic from southern Brazil to northern Argentinean Patagonia. This crab is adapted to starvation and can endure natural periods of food deprivation. The metabolic adjustments during starvation depend on the type of diet the crabs were fed previously. Since eyestalk-crustacean hyperglycemic hormone (CHH) is the principal regulator of glucose homeostasis in decapods, we investigated whether CHH transcription was affected by diet composition and starvation. Crabs were maintained in the laboratory for two weeks and subsequently divided in two groups. One received a high carbohydrate (HC) diet, and the other was fed a high protein (HP) diet. After this period, they were starved for four weeks. The full-length cDNA sequence of N. granulata CHH was determined and aligned with CHH sequences of other crabs. Levels of circulating glucose and glycogen were higher in the hepatopancreas and muscle of the HC-fed group and decreased after starvation. Glucose and glycogen concentrations were not altered by starvation in the HP group. Triglyceride levels within the hemolymph were not altered by diet or starvation. However, triglycerides concentration was higher in the hepatopancreas of HC compared to HP-fed group. Long-term starvation and diet composition did not affect CHH transcription.


Asunto(s)
Braquiuros/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/metabolismo , Braquiuros/genética , Brasil , ADN Complementario/genética , ADN Complementario/metabolismo , Dieta , Glucosa/metabolismo , Hemolinfa/metabolismo , Hepatopáncreas/metabolismo , Hormonas de Invertebrados/metabolismo , Masculino , Músculos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Filogenia , Homología de Secuencia , Inanición/metabolismo
13.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722594

RESUMEN

In crustaceans, the regulation of sex differentiation is mediated by insulin-like androgenic hormone (IAG) and crustacean female sex hormone (CFSH). CFSH is reported to inhibit IAG gene (Sp-IAG) expression in the mud crab Scylla paramamosain, but the regulatory mechanism is not well understood. A 2674 bp 5' flanking Sp-IAG contains many potential transcription factor binding sites. In this study, analysis of serially deleted 5' flanking Sp-IAG and site-directed mutation (SDM) of transcription factor binding sites of the same gene showed that the promoter activity of reporter vectors with Sox-5-binding site, signal transducers and activators of transcription (STAT)-binding site and activator protein 1 (AP-1)-binding site were significantly higher than that of vectors without these regions, suggesting that they were involved in transcriptional regulation of Sp-IAG expression. The expression analysis of these transcription factor showed that there was no difference in the level of mRNA in Sox-5 and AP-1 in androgenic gland treated with recombinant CFSH, but expression of Sp-STAT was significantly reduced, suggesting that CFSH regulates the expression of Sp-STAT, inhibiting its function to regulate Sp-IAG. Further experiment revealed that RNAi mediated Sp-STAT gene knockdown reduced the expression of Sp-IAG. These results suggested that Sp-CFSH regulates Sp-IAG by inhibiting STAT. This is a pioneering finding on the transcriptional mechanism of IAG gene in crustaceans.


Asunto(s)
Proteínas de Artrópodos/biosíntesis , Braquiuros/metabolismo , Regulación de la Expresión Génica/fisiología , Hormonas de Invertebrados/metabolismo , Diferenciación Sexual/fisiología , Transcripción Genética/fisiología , Animales , Proteínas de Artrópodos/genética , Braquiuros/genética , Femenino , Hormonas de Invertebrados/genética
14.
J Neurosci ; 38(35): 7622-7634, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30037836

RESUMEN

In the hemaphroditic sea snail, Aplysia californica, reproduction is initiated when the bag cell neurons secrete egg-laying hormone during a protracted afterdischarge. A source of depolarization for the afterdischarge is a voltage-gated, nonselective cation channel, similar to transient receptor potential (TRP) channels. Once the afterdischarge is triggered, phospholipase C (PLC) is activated to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3). We previously reported that a DAG analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), activates a prominent, inward whole-cell cationic current that is enhanced by IP3 To examine the underlying mechanism, we investigated the effect of exogenous OAG and IP3, as well as PLC activation, on cation channel activity and voltage dependence in excised, inside-out patches from cultured bag cell neurons. OAG transiently elevated channel open probability (PO) when applied to excised patches; however, coapplication of IP3 prolonged the OAG-induced response. In patches exposed to OAG and IP3, channel voltage dependence was left-shifted; this was also observed with OAG, but not to the same extent. Introducing the PLC activator, m-3M3FBS, to patches increased channel PO, suggesting PLC may be physically linked to the channels. Accordingly, blocking PLC with U-73122 ablated the m-3M3FBS-induced elevation in PO Treatment with m-3M3FBS left-shifted cation channel voltage dependence to a greater extent than exogenous OAG and IP3 Finally, OAG and IP3 potentiated the stimulatory effect of PKC, which is also associated with the channel. Thus, the PLC-PKC signaling system is physically localized such that PIP2 breakdown products liberated during the afterdischarge modulate the cation channel and temporally influence neuronal activity.SIGNIFICANCE STATEMENT Using excised patches from Aplysia bag cell neurons, we present the first evidence of a nonselective cation channel physically associating with phospholipase C (PLC) at the single-channel level. PLC-mediated breakdown of phospholipids generates diacylglycerol and inositol trisphosphate, which activate the cation channel. This is mimicked by exogenous lipids; furthermore, these second messengers left-shift channel voltage dependence and enhance the response of the channel to protein kinase C. PLC-mediated lipid signaling controls single-channel currents to ensure depolarization is maintained for an extended period of firing, termed the afterdischarge, when the bag cell neurons secrete egg-laying hormone to trigger reproduction.


Asunto(s)
Aplysia/enzimología , Canales Iónicos/fisiología , Fosfatidilinositoles/metabolismo , Fosfolipasas de Tipo C/fisiología , Animales , Calcio/metabolismo , Cationes/metabolismo , Células Cultivadas , Diglicéridos/metabolismo , Diglicéridos/farmacología , Hidrólisis , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacología , Hormonas de Invertebrados/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo
15.
J Exp Biol ; 222(Pt 15)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31266778

RESUMEN

The transport of ions and ammonia in gills may be regulated by neuroendocrine factors. In order to explore the mechanism of dopamine (DA) regulation, we investigated hemolymph neuroendocrine hormones, gill intracellular signaling pathways, ion and ammonia transporters, hemolymph osmolality and ammonia concentration in Litopenaeus vannamei after injection of 10-7 and 10-6 mol DA per shrimp. The data showed a significant increase in crustacean hyperglycemic hormone (CHH) concentration at 1-12 h and a transient significant decrease in corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol concentration under DA stimulation. The up-regulation of guanylyl cyclase (GC) mRNA, cyclic guanosine monophosphate (cGMP) and protein kinase G (PKG) concentration, together with the down-regulation of DA receptor D4 mRNA and up-regulation of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), diacylglycerol (DAG) and protein kinase C (PKC) concentration suggested the activation of complicated intracellular signaling pathways. The expression of cAMP response element-binding protein (CREB), FXYD2 and 14-3-3 protein mRNA was significantly increased by PKA regulation. The increase in Na+/K+-ATPase (NKA) activity and the stabilization of V-type H+-ATPase (V-rATPase) activity were accompanied by an up-regulation of K+ channel, Na+/K+/2Cl- cotransporter (NKCC), Rh protein and vesicle associated membrane protein (VAMP) mRNA, resulting in an increase in hemolymph osmolality and a decrease in hemolymph ammonia concentration. These results suggest that DA stimulates the secretion of CHH and inhibits the release of cortisol, which activates intracellular signaling factors to facilitate ion and ammonia transport across the gills, and may not affect intracellular acidification.


Asunto(s)
Dopamina/farmacología , Branquias/metabolismo , Penaeidae/efectos de los fármacos , Penaeidae/metabolismo , Amoníaco/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Femenino , Hemolinfa/química , Hormonas de Invertebrados/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
16.
Fish Shellfish Immunol ; 84: 906-911, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30385246

RESUMEN

Bursicon is a neurohormone belonging to the cystine knot protein family. It consists of two subunits (burs α and burs ß) and plays a pivotal role in cuticle tanning and wing expansion in insects. Recent studies show that homologous crustacean bursicon stimulates cuticle thickening and granulation of hemocytes in the crab Callinectes sapidus. Here we investigate whether bursicon homodimers function in immunoprotective defense systems of shrimp. We found that abdominal ganglion was the main neurohemal release site of bursicon in Neocaridina heteropoda. Bacterial infections induced overexpression of burs α (bursicon α) and burs ß (bursicon ß). RNAi of burs α, burs ß or both inhibited the expression of anti-microbial peptide (AMP) genes. Treating shrimp adults with r-bursicon (recombinant bursicon) homodimers led to up-regulation of three AMP genes. Besides, through the induced AMPs, r-bursicon homodimers enhanced the bacteriostasis of shrimp in vivo and in vitro. These findings demonstrate a novel function of bursicon in crustacean that it induces innate immune via up-regulating the expression of genes encoding AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Decápodos/genética , Decápodos/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Hormonas de Invertebrados/genética , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Dimerización , Perfilación de la Expresión Génica , Hormonas de Invertebrados/metabolismo
17.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426335

RESUMEN

Antistasin, which was originally discovered in the salivary glands of the Mexican leech Haementeria officinalis, was newly isolated from Helobdella austinensis. To confirm the temporal expression of antistasin during embryogenesis, we carried out semi-quantitative RT-PCR. Hau-antistasin1 was uniquely expressed at stage 4 of the cleavage and was strongly expressed in the late stages of organogenesis, as were other antistasin members. In order to confirm the spatial expression of antistasin, we performed fluorescence in situ hybridization in the late stages of organogenesis. The expression of each antistasin in the proboscis showed a similar pattern and varied in expression in the body. In addition, the spatial expression of antistasin orthologs in different leeches showed the possibility of different function across leech species. Hau-antistasin1 was expressed in the same region as hedgehog, which is a known mediator of signal transduction pathway. Hau-antistasin1 is probably a downstream target of Hedgehog signaling, involved in segment polarity signal pathway.


Asunto(s)
Anticoagulantes/análisis , Hormonas de Invertebrados/análisis , Sanguijuelas/química , Animales , Anticoagulantes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/análisis , Proteínas Hedgehog/metabolismo , Hormonas de Invertebrados/genética , Hormonas de Invertebrados/metabolismo , Sanguijuelas/embriología , Sanguijuelas/genética , Sanguijuelas/metabolismo , Filogenia , Transducción de Señal
18.
Apoptosis ; 23(1): 41-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29224041

RESUMEN

Activation of caspases is an essential step toward initiating apoptotic cell death. During metamorphosis of Drosophila melanogaster, many larval neurons are programmed for elimination to establish an adult central nervous system (CNS) as well as peripheral nervous system (PNS). However, their neuronal functions have remained mostly unknown due to the lack of proper tools to identify them. To obtain detailed information about the neurochemical phenotypes of the doomed larval neurons and their timing of death, we generated a new GFP-based caspase sensor (Casor) that is designed to change its subcellular position from the cell membrane to the nucleus following proteolytic cleavage by active caspases. Ectopic expression of Casor in vCrz and bursicon, two different peptidergic neuronal groups that had been well-characterized for their metamorphic programmed cell death, showed clear nuclear translocation of Casor in a caspase-dependent manner before their death. We found similar events in some cholinergic neurons from both CNS and PNS. Moreover, Casor also reported significant caspase activities in the ventral and dorsal common excitatory larval motoneurons shortly after puparium formation. These motoneurons were previously unknown for their apoptotic fate. Unlike the events seen in the neurons, expression of Casor in non-neuronal cell types, such as glial cells and S2 cells, resulted in the formation of cytoplasmic aggregates, preventing its use as a caspase sensor in these cell types. Nonetheless, our results support Casor as a valuable molecular tool not only for identifying novel groups of neurons that become caspase-active during metamorphosis but also for monitoring developmental timing and cytological changes within the dying neurons.


Asunto(s)
Técnicas Biosensibles , Caspasas/genética , Drosophila melanogaster/genética , Larva/genética , Metamorfosis Biológica/genética , Neuronas/metabolismo , Proteínas Recombinantes de Fusión/genética , Transporte Activo de Núcleo Celular/genética , Animales , Caspasas/metabolismo , Muerte Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Citosol/metabolismo , Citosol/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hormonas de Invertebrados/genética , Hormonas de Invertebrados/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Neuronas/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
19.
Gen Comp Endocrinol ; 259: 131-140, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29170022

RESUMEN

In this study, the 5'-flanking region of molt-inhibiting hormone (MIH) gene was cloned by Tail-PCR. It is 2024 bp starting from the translation initiation site, and 1818 bp starting from the predicted transcription start site. Forecast analysis results by the bioinformatics software showed that the transcription start site is located at 207 bp upstream of the start codon ATG, and TATA box is located at 240 bp upstream of the start codon ATG. Potential transcription factor binding sites include Sp1, NF-1, Oct-1, Sox-2, RAP1, and so on. There are two CpG islands, located at -25- +183 bp and -1451- -1316 bp respectively. The transfection results of luciferase reporter constructs showed that the core promoter region was located in the fragment -308 bp to -26 bp. NF-kappaB and RAP1 were essential for mih basal transcriptional activity. There are three kinds of polymorphism CA in the 5'-flanking sequence, and they can influence mih promoter activity. These findings provide a genetic foundation of the further research of mih transcription regulation.


Asunto(s)
Hormonas de Invertebrados/genética , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Animales , Braquiuros/metabolismo , Hormonas de Invertebrados/metabolismo , Transfección
20.
Gen Comp Endocrinol ; 266: 157-165, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29750969

RESUMEN

Crustacean hyperglycemic hormone (CHH) and vitellogenesis-inhibiting hormone (VIH) belong to the CHH family, a neuropeptide superfamily conserved in ecdysozoans. To date, no receptor for the CHH family peptides has been identified in crustaceans. Here, we used a CHH family isoform, Mj-sinus gland peptide (SGP)-VII, as a representative of CHH and VIH in order to determine its target tissues and obtain biochemical information regarding its receptor in the kuruma prawn Marsupenaeus japonicus (Crustacea, Decapoda). An in vitro binding assay using a radiolabeled recombinant Mj-SGP-VII and tissue membranes showed that ligand-receptor binding was specific and dissociable. Six tissues, including the hepatopancreas, gill, heart, skeletal muscle, hindgut, and ovary, were identified as the main targets for Mj-SGP-VII. Scatchard analysis of these six tissues determined the dissociation constant and maximum binding capacity values as Kd = 0.86-3.6 nM and Bmax = 102-915 fmol/mg protein, respectively. Of these six tissues, the hepatopancreas, heart, and ovary showed changes in the levels of ligand-binding after the elimination of endogenous ligands by eyestalk ablation. In the hepatopancreas, an increase in the amount of ligand-binding was observed after eyestalk ablation, independent of gender, which appears to be associated with hypoglycemia caused by the treatment. The change observed in the hepatopancreas was due to the increase in the ligand-binding capacity, but not in the ligand-binding affinity, of the receptors. Furthermore, chemical cross-linking analysis demonstrated the presence of target tissue-specific receptors for Mj-SGP-VII with molecular masses of 34-62 kDa. Collectively, the present data provided important information on tissue distribution, temporal changes in expression level, and molecular mass, for the identification and characterization of receptors for CHH family peptides in crustaceans.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Proteínas Portadoras/metabolismo , Hormonas de Invertebrados/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Penaeidae/metabolismo , Secuencia de Aminoácidos , Animales , Reactivos de Enlaces Cruzados/metabolismo , Ojo/metabolismo , Hepatopáncreas/metabolismo , Ligandos , Unión Proteica , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado , Factores de Tiempo , Distribución Tisular , Vitelogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA