Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.738
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 255-275, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36737596

RESUMEN

The evolution of IgE in mammals added an extra layer of immune protection at body surfaces to provide a rapid and local response against antigens from the environment. The IgE immune response employs potent expulsive and inflammatory forces against local antigen provocation, at the risk of damaging host tissues and causing allergic disease. Two well-known IgE receptors, the high-affinity FcεRI and low-affinity CD23, mediate the activities of IgE. Unlike other known antibody receptors, CD23 also regulates IgE expression, maintaining IgE homeostasis. This mechanism evolved by adapting the function of the complement receptor CD21. Recent insights into the dynamic character of IgE structure, its resultant capacity for allosteric modulation, and the potential for ligand-induced dissociation have revealed previously unappreciated mechanisms for regulation of IgE and IgE complexes. We describe recent research, highlighting structural studies of the IgE network of proteins to analyze the uniquely versatile activities of IgE and anti-IgE biologics.


Asunto(s)
Productos Biológicos , Receptores de IgE , Humanos , Animales , Receptores de IgE/química , Receptores de IgE/metabolismo , Inmunoglobulina E/metabolismo , Receptores Fc , Mamíferos/metabolismo
2.
Annu Rev Immunol ; 40: 121-141, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35007128

RESUMEN

Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against Candida spp. and Aspergillus spp. while macrophages are essential for controlling mycoses due to Cryptococcus spp., Histoplasma spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.


Asunto(s)
Micosis , Animales , Hongos , Humanos , Inmunidad Innata , Huésped Inmunocomprometido , Macrófagos , Mamíferos
3.
Annu Rev Immunol ; 40: 221-247, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35061510

RESUMEN

As central effectors of the adaptive immune response, immunoglobulins, or antibodies, provide essential protection from pathogens through their ability to recognize foreign antigens, aid in neutralization, and facilitate elimination from the host. Mammalian immunoglobulins can be classified into five isotypes-IgA, IgD, IgE, IgG, and IgM-each with distinct roles in mediating various aspects of the immune response. Of these isotypes, IgA and IgM are the only ones capable of multimerization, arming them with unique biological functions. Increased valency of polymeric IgA and IgM provides high avidity for binding low-affinity antigens, and their ability to be transported across the mucosal epithelium into secretions by the polymeric immunoglobulin receptor allows them to play critical roles in mucosal immunity. Here we discuss the molecular assembly, structure, and function of these multimeric antibodies.


Asunto(s)
Inmunoglobulina A , Receptores de Inmunoglobulina Polimérica , Animales , Humanos , Inmunidad Mucosa , Inmunoglobulina M/química , Inmunoglobulina M/metabolismo , Mamíferos/metabolismo , Membrana Mucosa , Receptores de Inmunoglobulina Polimérica/química
4.
Annu Rev Immunol ; 37: 349-375, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30673536

RESUMEN

Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.


Asunto(s)
Inmunidad Innata/genética , ARN Bicatenario/genética , Virosis/inmunología , 2',5'-Oligoadenilato Sintetasa/metabolismo , Animales , Proteína 58 DEAD Box/metabolismo , Humanos , Inmunomodulación , Mamíferos , Nucleótido Desaminasas/metabolismo , Interferencia de ARN , eIF-2 Quinasa/metabolismo
5.
Cell ; 187(7): 1769-1784.e18, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552613

RESUMEN

Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput. Here, we present a method for rapid multiplexed super-resolution microscopy that can, in principle, be applied to a nearly unlimited number of molecular targets by leveraging fluorogenic labeling in conjunction with transient adapter-mediated switching for high-throughput DNA-PAINT (FLASH-PAINT). We demonstrate the versatility of FLASH-PAINT with four applications: mapping nine proteins in a single mammalian cell, elucidating the functional organization of primary cilia by nine-target imaging, revealing the changes in proximity of thirteen different targets in unperturbed and dissociated Golgi stacks, and investigating and quantifying inter-organelle contacts at 3D super-resolution.


Asunto(s)
Microscopía Fluorescente , Animales , ADN , Aparato de Golgi , Mamíferos , Microscopía Fluorescente/métodos , Oligonucleótidos , Proteínas
6.
Cell ; 187(2): 345-359.e16, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38181787

RESUMEN

Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.


Asunto(s)
Proteínas Bacterianas , Células Eucariotas , Transducción de Señal , Animales , Mamíferos , Biología Sintética/métodos , Células Eucariotas/metabolismo
7.
Annu Rev Biochem ; 92: 299-332, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001140

RESUMEN

According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Inmunidad Innata/genética , Envejecimiento/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mamíferos/genética
8.
Annu Rev Biochem ; 92: 435-464, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37018845

RESUMEN

The polyamines putrescine, spermidine, and spermine are abundant polycations of vital importance in mammalian cells. Their cellular levels are tightly regulated by degradation and synthesis, as well as by uptake and export. Here, we discuss the delicate balance between the neuroprotective and neurotoxic effects of polyamines in the context of Parkinson's disease (PD). Polyamine levels decline with aging and are altered in patients with PD, whereas recent mechanistic studies on ATP13A2 (PARK9) demonstrated a driving role of a disturbed polyamine homeostasis in PD. Polyamines affect pathways in PD pathogenesis, such as α-synuclein aggregation, and influence PD-related processes like autophagy, heavy metal toxicity, oxidative stress, neuroinflammation, and lysosomal/mitochondrial dysfunction. We formulate outstanding research questions regarding the role of polyamines in PD, their potential as PD biomarkers, and possible therapeutic strategies for PD targeting polyamine homeostasis.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Poliaminas/metabolismo , Neuroprotección , Espermidina/metabolismo , Mamíferos/metabolismo
9.
Annu Rev Biochem ; 92: 115-144, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001137

RESUMEN

Transcription-coupled repair (TCR), discovered as preferential nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers located in transcribed mammalian genes compared to those in nontranscribed regions of the genome, is defined as faster repair of the transcribed strand versus the nontranscribed strand in transcribed genes. The phenomenon, universal in model organisms including Escherichia coli, yeast, Arabidopsis, mice, and humans, involves a translocase that interacts with both RNA polymerase stalled at damage in the transcribed strand and nucleotide excision repair proteins to accelerate repair. Drosophila, a notable exception, exhibits TCR but lacks an obvious TCR translocase. Mutations inactivating TCR genes cause increased damage-induced mutagenesis in E. coli and severe neurological and UV sensitivity syndromes in humans. To date, only E. coli TCR has been reconstituted in vitro with purified proteins. Detailed investigations of TCR using genome-wide next-generation sequencing methods, cryo-electron microscopy, single-molecule analysis, and other approaches have revealed fascinating mechanisms.


Asunto(s)
Escherichia coli , Transcripción Genética , Humanos , Animales , Ratones , Escherichia coli/genética , Escherichia coli/metabolismo , Microscopía por Crioelectrón , Reparación del ADN , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Mamíferos/genética
10.
Cell ; 186(22): 4729-4733, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37890455

RESUMEN

Semantics and lack of data have clouded our understanding about menopause in non-human mammals. The traditional definition of menopause based on the last menstrual bleed is limited and hinders cross-species comparison. Here, we redefine it as the permanent cessation of ovulation and show menopause to be widespread across mammalian orders.


Asunto(s)
Mamíferos , Menopausia , Animales , Femenino
11.
Cell ; 186(3): 479-496.e23, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736300

RESUMEN

Using four-dimensional whole-embryo light sheet imaging with improved and accessible computational tools, we longitudinally reconstruct early murine cardiac development at single-cell resolution. Nascent mesoderm progenitors form opposing density and motility gradients, converting the temporal birth sequence of gastrulation into a spatial anterolateral-to-posteromedial arrangement. Migrating precardiac mesoderm does not strictly preserve cellular neighbor relationships, and spatial patterns only become solidified as the cardiac crescent emerges. Progenitors undergo a mesenchymal-to-epithelial transition, with a first heart field (FHF) ridge apposing a motile juxta-cardiac field (JCF). Anchored along the ridge, the FHF epithelium rotates the JCF forward to form the initial heart tube, along with push-pull morphodynamics of the second heart field. In Mesp1 mutants that fail to make a cardiac crescent, mesoderm remains highly motile but directionally incoherent, resulting in density gradient inversion. Our practicable live embryo imaging approach defines spatial origins and behaviors of cardiac progenitors and identifies their unanticipated morphological transitions.


Asunto(s)
Corazón , Mesodermo , Ratones , Animales , Diferenciación Celular , Morfogénesis , Embrión de Mamíferos , Mamíferos
12.
Cell ; 186(10): 2041-2043, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172560

RESUMEN

Viruses and multinucleated cells rely on fusogens to facilitate the fusion of their membranes. In this issue of Cell, Millay and colleagues demonstrate that replacing viral fusogens with mammalian skeletal muscle fusogens leads to the specific transduction of skeletal muscle and the ability to deliver gene therapy constructs in a therapeutically relevant muscle disease.


Asunto(s)
Terapia Genética , Músculo Esquelético , Virus , Animales , Fusión Celular , Mamíferos
13.
Cell ; 186(4): 683-685, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36803599

RESUMEN

Transgenerational epigenetic inheritance in mammals has long been debatable. In this issue of Cell, Takahashi et al. induce DNA methylation at promoter-associated CpG islands (CGIs) of two metabolism-related genes and show that the acquired epigenetic changes and associated metabolic phenotypes are stably propagated across several generations in transgenic mice.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Ratones , Animales , Mamíferos/genética , Patrón de Herencia , Islas de CpG/genética
14.
Cell ; 186(4): 715-731.e19, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36754048

RESUMEN

Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Ratones , Humanos , Animales , Islas de CpG , Patrón de Herencia , Mamíferos/genética
15.
Cell ; 186(18): 3826-3844.e26, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37536338

RESUMEN

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.


Asunto(s)
Cromosomas de Insectos , Drosophila , Animales , Cromatina/genética , Empaquetamiento del ADN , Drosophila/genética , Mamíferos/genética , Neurogénesis , Neuronas , Factores de Transcripción , Proteínas de Drosophila , Genoma de los Insectos , Regulación de la Expresión Génica
16.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36638792

RESUMEN

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Asunto(s)
Envejecimiento , Epigénesis Genética , Animales , Envejecimiento/genética , Metilación de ADN , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
17.
Cell ; 186(19): 4003-4004, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37714131

RESUMEN

Avian influenza viruses continue to cross the species barrier and infect mammals. In this issue of Cell, Sun and colleagues demonstrate that viruses obtained from humans infected with an emergent avian H3N8 viruses exhibit increasing accumulation of mutations that promote respiratory droplet transmission and disease in mammals.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Virus de la Influenza A , Animales , Humanos , Virus de la Influenza A/genética , Mutación , Mamíferos
18.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116474

RESUMEN

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Asunto(s)
Virus , Zoonosis , Animales , Humanos , Mamíferos , Brotes de Enfermedades , Medición de Riesgo
19.
Cell ; 186(14): 3095-3110.e19, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321219

RESUMEN

The human body contains thousands of metabolites derived from mammalian cells, the microbiota, food, and medical drugs. Many bioactive metabolites act through the engagement of G-protein-coupled receptors (GPCRs); however, technological limitations constrain current explorations of metabolite-GPCR interactions. Here, we developed a highly multiplexed screening technology called PRESTO-Salsa that enables simultaneous assessment of nearly all conventional GPCRs (>300 receptors) in a single well of a 96-well plate. Using PRESTO-Salsa, we screened 1,041 human-associated metabolites against the GPCRome and uncovered previously unreported endogenous, exogenous, and microbial GPCR agonists. Next, we leveraged PRESTO-Salsa to generate an atlas of microbiome-GPCR interactions across 435 human microbiome strains from multiple body sites, revealing conserved patterns of cross-tissue GPCR engagement and activation of CD97/ADGRE5 by the Porphyromonas gingivalis protease gingipain K. These studies thus establish a highly multiplexed bioactivity screening technology and expose a diverse landscape of human, diet, drug, and microbiota metabolome-GPCRome interactions.


Asunto(s)
Microbiota , Receptores Acoplados a Proteínas G , Animales , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Metaboloma , Mamíferos/metabolismo
20.
Cell ; 186(13): 2725-2727, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37352832

RESUMEN

Inside sperm flagella, there are nine doublet microtubules composed of A and B tubules. In this issue of Cell, Leung et al. and Zhou et al. present high-resolution cryo-EM structures of doublet microtubules from mammalian sperms and show unprecedented structures of the A tubules, which are almost entirely occupied with tektin bundles.


Asunto(s)
Microtúbulos , Semen , Animales , Masculino , Microtúbulos/química , Proteínas de Microtúbulos/química , Cola del Espermatozoide/química , Flagelos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA