Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2311570121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830095

RESUMEN

Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.


Asunto(s)
Corteza Auditiva , Gerbillinae , Pérdida Auditiva , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiopatología , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Receptores de GABA-B/metabolismo , Receptores de GABA-B/genética , Glutamato Descarboxilasa/metabolismo , Glutamato Descarboxilasa/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Parvalbúminas/metabolismo , Parvalbúminas/genética , Percepción Auditiva/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Vectores Genéticos/genética
2.
Brain ; 146(7): 2846-2860, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36729681

RESUMEN

4H leukodystrophy is a rare genetic disorder classically characterized by hypomyelination, hypodontia and hypogonadotropic hypogonadism. With the discovery that 4H is caused by mutations that affect RNA polymerase III, mainly involved in the transcription of small non-coding RNAs, patients with atypical presentations with mainly a neuronal phenotype were also identified. Pathomechanisms of 4H brain abnormalities are still unknown and research is hampered by a lack of preclinical models. We aimed to identify cells and pathways that are affected by 4H mutations using induced pluripotent stem cell models. RNA sequencing analysis on induced pluripotent stem cell-derived cerebellar cells revealed several differentially expressed genes between 4H patients and control samples, including reduced ARX expression. As ARX is involved in early brain and interneuron development, we studied and confirmed interneuron changes in primary tissue of 4H patients. Subsequently, we studied interneuron changes in more depth and analysed induced pluripotent stem cell-derived cortical neuron cultures for changes in neuronal morphology, synaptic balance, network activity and myelination. We showed a decreased percentage of GABAergic synapses in 4H, which correlated to increased neuronal network activity. Treatment of cultures with GABA antagonists led to a significant increase in neuronal network activity in control cells but not in 4H cells, also pointing to lack of inhibitory activity in 4H. Myelination and oligodendrocyte maturation in cultures with 4H neurons was normal, and treatment with sonic hedgehog agonist SAG did not improve 4H related neuronal phenotypes. Quantitative PCR analysis revealed increased expression of parvalbumin interneuron marker ERBB4, suggesting that the development rather than generation of interneurons may be affected in 4H. Together, these results indicate that interneurons are involved, possibly parvalbumin interneurons, in disease mechanisms of 4H leukodystrophy.


Asunto(s)
Proteínas Hedgehog , Parvalbúminas , Proteínas Hedgehog/genética , Parvalbúminas/genética , Parvalbúminas/metabolismo , Interneuronas/metabolismo , Mutación
3.
Cereb Cortex ; 33(19): 10272-10285, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37566909

RESUMEN

The cortical plate (CP) is composed of excitatory and inhibitory neurons, the latter of which originate in the ganglionic eminences. From their origin in the ventral telencephalon, maturing postmitotic interneurons migrate during embryonic development over some distance to reach their final destination in the CP. The histone methyltransferase Disruptor of Telomeric Silencing 1-like (DOT1L) is necessary for proper CP development and layer distribution of glutamatergic neurons. However, its specific role on cortical interneuron development has not yet been explored. Here, we demonstrate that DOT1L affects interneuron development in a cell autonomous manner. Deletion of Dot1l in Nkx2.1-expressing interneuron precursor cells results in an overall reduction and altered distribution of GABAergic interneurons in the CP from postnatal day 0 onwards. We observed an altered proportion of GABAergic interneurons in the cortex, with a significant decrease in parvalbumin-expressing interneurons. Moreover, a decreased number of mitotic cells at the embryonic day E14.5 was observed upon Dot1l deletion. Altogether, our results indicate that reduced numbers of cortical interneurons upon DOT1L deletion result from premature cell cycle exit, but effects on postmitotic differentiation, maturation, and migration are likely at play as well.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Interneuronas , Parvalbúminas , Telencéfalo , Diferenciación Celular/fisiología , Interneuronas/citología , Interneuronas/metabolismo , Parvalbúminas/genética , Parvalbúminas/metabolismo , Telencéfalo/citología , Animales , Ratones , N-Metiltransferasa de Histona-Lisina/genética
4.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876772

RESUMEN

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as PTEN, TSC1/2, AKT3, PIK3CA, and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)-induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human PIK3CA mutation that enhances the activity of the PI3K-AKT pathway (Pik3caH1047R-Pvalb ) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.


Asunto(s)
Epilepsia/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Neuronas/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Epilepsia/genética , Epilepsia/fisiopatología , Factores Eucarióticos de Iniciación/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Inhibición Neural , Neuronas/fisiología , Parvalbúminas/genética , Parvalbúminas/metabolismo
5.
Asian Pac J Allergy Immunol ; 42(1): 1-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38165149

RESUMEN

Fish allergy is one of the "big nine" categories of food allergens worldwide, and its prevalence is increasing with the higher demand for this nutritious food source. Fish allergies are a significant health concern as it is a leading cause of food anaphylaxis, accounting for 9% of all deaths from anaphylaxis. The gaps in treating fish allergies at present are the incomplete identification of fish allergens, lack of component-resolved diagnosis of fish allergens in the clinical setting, and the variability in sensitization profiles based on different fish consumption practices. Allergen immunotherapy (AIT) improves tolerance towards accidental consumption of fish and is longer lasting than pharmacotherapy. Current practice or research of fish AIT ranges from the use of whole fish via oral desensitization, to the use of purified recombinant parvalbumin and its hypoallergenic variant, passive IgG immunization, and modifying the allergenicity of parvalbumin by changing the diet of farmed fish. However, the focus of fish allergen-based studies in the context of AIT has been restricted to parvalbumins. More research is required to understand the involvement of other fish allergens, and several other strategies of AIT including peptide vaccines, DNA vaccines, hybrid allergens, and the use of nanobodies that have the capacity to treat multiple allergens have been proposed. For AIT, other important aspects to consider are the route of desensitization, and the biomarkers to assess the success of immunotherapy. Finally, we also address several clinical considerations for fish AIT.


Asunto(s)
Anafilaxia , Hipersensibilidad a los Alimentos , Animales , Anafilaxia/etiología , Anafilaxia/prevención & control , Parvalbúminas/genética , Desensibilización Inmunológica , Hipersensibilidad a los Alimentos/terapia , Alérgenos
6.
Proc Natl Acad Sci U S A ; 117(38): 23242-23251, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32503914

RESUMEN

Brain plasticity is dynamically regulated across the life span, peaking during windows of early life. Typically assessed in the physiological range of milliseconds (real time), these trajectories are also influenced on the longer timescales of developmental time (nurture) and evolutionary time (nature), which shape neural architectures that support plasticity. Properly sequenced critical periods of circuit refinement build up complex cognitive functions, such as language, from more primary modalities. Here, we consider recent progress in the biological basis of critical periods as a unifying rubric for understanding plasticity across multiple timescales. Notably, the maturation of parvalbumin-positive (PV) inhibitory neurons is pivotal. These fast-spiking cells generate gamma oscillations associated with critical period plasticity, are sensitive to circadian gene manipulation, emerge at different rates across brain regions, acquire perineuronal nets with age, and may be influenced by epigenetic factors over generations. These features provide further novel insight into the impact of early adversity and neurodevelopmental risk factors for mental disorders.


Asunto(s)
Encéfalo/fisiología , Plasticidad Neuronal , Animales , Encéfalo/crecimiento & desarrollo , Relojes Circadianos , Humanos , Neuronas/fisiología , Parvalbúminas/genética , Parvalbúminas/metabolismo , Factores de Tiempo
7.
J Neurosci ; 41(44): 9223-9234, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34561234

RESUMEN

The basolateral amygdala (BLA) is obligatory for fear learning. This learning is linked to BLA excitatory projection neurons whose activity is regulated by complex networks of inhibitory interneurons, dominated by parvalbumin (PV)-expressing GABAergic neurons. The roles of these GABAergic interneurons in learning to fear and learning not to fear, activity profiles of these interneurons across the course of fear learning, and whether or how these change across the course of learning all remain poorly understood. Here, we used PV cell-type-specific recording and manipulation approaches in male transgenic PV-Cre rats during pavlovian fear conditioning to address these issues. We show that activity of BLA PV neurons during the moments of aversive reinforcement controls fear learning about aversive events, but activity during moments of nonreinforcement does not control fear extinction learning. Furthermore, we show expectation-modulation of BLA PV neurons during fear learning, with greater activity to an unexpected than expected aversive unconditioned stimulus (US). This expectation-modulation was specifically because of BLA PV neuron sensitivity to aversive prediction error. Finally, we show that BLA PV neuron function in fear learning is conserved across these variations in prediction error. We suggest that aversive prediction-error modulation of PV neurons could enable BLA fear-learning circuits to retain selectivity for specific sensory features of aversive USs despite variations in the strength of US inputs, thereby permitting the rapid updating of fear associations when these sensory features change.SIGNIFICANCE STATEMENT The capacity to learn about sources of danger in the environment is essential for survival. This learning depends on complex microcircuitries of inhibitory interneurons in the basolateral amygdala. Here, we show that parvalbumin-positive GABAergic interneurons in the rat basolateral amygdala are important for fear learning during moments of danger, but not for extinction learning during moments of safety, and that the activity of these neurons is modulated by expectation of danger. This may enable fear-learning circuits to retain selectivity for specific aversive events across variations in expectation, permitting the rapid updating of learning when aversive events change.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo , Neuronas GABAérgicas/fisiología , Refuerzo en Psicología , Amígdala del Cerebelo/citología , Animales , Condicionamiento Clásico , Extinción Psicológica , Neuronas GABAérgicas/metabolismo , Masculino , Parvalbúminas/genética , Parvalbúminas/metabolismo , Ratas
8.
J Neurosci ; 41(42): 8761-8778, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34493543

RESUMEN

Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). However, under certain conditions, neurons can respond reliably with highly precise responses to the same visual stimuli from trial to trial. This suggests that there exists intrinsic neural circuit mechanisms that dynamically modulate the intertrial variability of visual cortical neurons. Here, we sought to elucidate the role of different inhibitory interneurons (INs) in reliable coding in mouse V1. To study the interactions between somatostatin-expressing interneurons (SST-INs) and parvalbumin-expressing interneurons (PV-INs), we used a dual-color calcium imaging technique that allowed us to simultaneously monitor these two neural ensembles while awake mice, of both sexes, passively viewed natural movies. SST neurons were more active during epochs of reliable pyramidal neuron firing, whereas PV neurons were more active during epochs of unreliable firing. SST neuron activity lagged that of PV neurons, consistent with a feedback inhibitory SST→PV circuit. To dissect the role of this circuit in pyramidal neuron activity, we used temporally limited optogenetic activation and inactivation of SST and PV interneurons during periods of reliable and unreliable pyramidal cell firing. Transient firing of SST neurons increased pyramidal neuron reliability by actively suppressing PV neurons, a proposal that was supported by a rate-based model of V1 neurons. These results identify a cooperative functional role for the SST→PV circuit in modulating the reliability of pyramidal neuron activity.SIGNIFICANCE STATEMENT Cortical neurons often respond to identical sensory stimuli with large variability. However, under certain conditions, the same neurons can also respond highly reliably. The circuit mechanisms that contribute to this modulation remain unknown. Here, we used novel dual-wavelength calcium imaging and temporally selective optical perturbation to identify an inhibitory neural circuit in visual cortex that can modulate the reliability of pyramidal neurons to naturalistic visual stimuli. Our results, supported by computational models, suggest that somatostatin interneurons increase pyramidal neuron reliability by suppressing parvalbumin interneurons via the inhibitory SST→PV circuit. These findings reveal a novel role of the SST→PV circuit in modulating the fidelity of neural coding critical for visual perception.


Asunto(s)
Interneuronas/metabolismo , Parvalbúminas/metabolismo , Percepción/fisiología , Somatostatina/metabolismo , Corteza Visual/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/genética , Somatostatina/genética , Corteza Visual/citología
9.
J Neurosci ; 41(43): 8876-8886, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34503995

RESUMEN

Cortical parvalbumin-expressing (Pvalb+) neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb+ neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb+ neurons until adulthood, we used conditional knock-out strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb+ neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb+ neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb+ neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb+ neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb+ neurons' synaptic output. Furthermore, Pvalb+ neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphologic synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb+ neurons into adulthood.SIGNIFICANCE STATEMENT Cortical parvalbumin-expressing (Pvalb+) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons. Here, we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb+ neurons until adulthood, leaving unaffected other maturational features of this neuronal population.


Asunto(s)
Corteza Cerebral/metabolismo , Neuronas/metabolismo , Parvalbúminas/biosíntesis , Factores de Transcripción SOXD/biosíntesis , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Parvalbúminas/genética , Factores de Transcripción SOXD/genética , Sinapsis/genética
10.
J Neurosci ; 41(42): 8848-8857, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34452937

RESUMEN

Exposure to loud noises not only leads to trauma and loss of output from the ear but also alters downstream central auditory circuits. A perceptual consequence of noise-induced central auditory disruption is impairment in gap-induced prepulse inhibition, also known as gap detection. Recent studies have implicated cortical parvalbumin (PV)-positive inhibitory interneurons in gap detection and prepulse inhibition. Here, we show that exposure to loud noises specifically reduces the density of cortical PV but not somatostatin (SOM)-positive interneurons in the primary auditory cortex in mice (C57BL/6) of both sexes. Optogenetic activation of PV neurons produced less cortical inhibition in noise-exposed than sham-exposed animals, indicative of reduced PV neuron function. Activation of SOM neurons resulted in similar levels of cortical inhibition in noise- and sham-exposed groups. Furthermore, chemogenetic activation of PV neurons with the hM3-based designer receptor exclusively activated by designer drugs completely reversed the impairments in gap detection for noise-exposed animals. These results support the notions that cortical PV neurons encode gap in sound and that PV neuron dysfunction contributes to noise-induced impairment in gap detection.SIGNIFICANCE STATEMENT Noise-induced hearing loss contributes to a range of central auditory processing deficits (CAPDs). The mechanisms underlying noise-induced CAPDs are still poorly understood. Here we show that exposure to loud noises results in dysfunction of PV-positive but not somatostatin-positive inhibitory interneurons in the primary auditory cortex. In addition, cortical PV inhibitory neurons in noise-exposed animals had reduced expression of glutamic acid decarboxylases and weakened inhibition on cortical activity. Noise exposure resulted in impaired gap detection, indicative of disrupted temporal sound processing and possibly tinnitus. We found that chemogenetic activation of cortical PV inhibitory interneurons alleviated the deficits in gap detection. These results implicate PV neuron dysfunction as a mechanism for noise-induced CAPDs.


Asunto(s)
Estimulación Acústica/efectos adversos , Corteza Auditiva/metabolismo , Percepción Auditiva/fisiología , Pérdida Auditiva Provocada por Ruido/metabolismo , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Animales , Corteza Auditiva/química , Femenino , Pérdida Auditiva Provocada por Ruido/genética , Interneuronas/química , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Optogenética/métodos , Parvalbúminas/genética
11.
J Neurosci ; 41(14): 3142-3162, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33593857

RESUMEN

Receptive fields of primary auditory cortex (A1) neurons show excitatory neuronal frequency preference and diverse inhibitory sidebands. While the frequency preferences of excitatory neurons in local A1 areas can be heterogeneous, those of inhibitory neurons are more homogeneous. To date, the diversity and the origin of inhibitory sidebands in local neuronal populations and the relation between local cellular frequency preference and inhibitory sidebands are unknown. To reveal both excitatory and inhibitory subfields, we presented two-tone and pure tone stimuli while imaging excitatory neurons (Thy1) and two types of inhibitory neurons (parvalbumin and somatostatin) in L2/3 of mice A1. We classified neurons into six classes based on frequency response area (FRA) shapes and sideband inhibition depended both on FRA shapes and cell types. Sideband inhibition showed higher local heterogeneity than frequency tuning, suggesting that sideband inhibition originates from diverse sources of local and distant neurons. Two-tone interactions depended on neuron subclasses with excitatory neurons showing the most nonlinearity. Onset and offset neurons showed dissimilar spectral integration, suggesting differing circuits processing sound onset and offset. These results suggest that excitatory neurons integrate complex and nonuniform inhibitory input. Thalamocortical terminals also exhibited sideband inhibition, but with different properties from those of cortical neurons. Thus, some components of sideband inhibition are inherited from thalamocortical inputs and are further modified by converging intracortical circuits. The combined heterogeneity of frequency tuning and diverse sideband inhibition facilitates complex spectral shape encoding and allows for rapid and extensive plasticity.SIGNIFICANCE STATEMENT Sensory systems recognize and differentiate between different stimuli through selectivity for different features. Sideband inhibition serves as an important mechanism to sharpen stimulus selectivity, but its cortical mechanisms are not entirely resolved. We imaged pyramidal neurons and two common classes of interneurons suggested to mediate sideband inhibition (parvalbumin and somatostatin positive) in the auditory cortex and inferred their inhibitory sidebands. We observed a higher degree of variability in the inhibitory sideband than in the local frequency tuning, which cannot be predicted from the relative high homogeneity of responses by inhibitory interneurons. This suggests that cortical sideband inhibition is nonuniform and likely results from a complex interplay between existing functional inhibition in the feedforward input and cortical refinement.


Asunto(s)
Estimulación Acústica/métodos , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Inhibición Neural/fisiología , Tálamo/fisiología , Animales , Corteza Auditiva/química , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Parvalbúminas/genética , Parvalbúminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Tálamo/química
12.
J Neurosci ; 41(14): 3120-3141, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33593856

RESUMEN

Inhibitory interneurons expressing parvalbumin (PV) are central to cortical network dynamics, generation of γ oscillations, and cognition. Dysfunction of PV interneurons disrupts cortical information processing and cognitive behavior. Brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (trkB) signaling regulates the maturation of cortical PV interneurons but is also implicated in their adult multidimensional functions. Using a novel viral strategy for cell-type-specific and spatially restricted expression of a dominant-negative trkB (trkB.DN), we show that BDNF/trkB signaling is essential to the integrity and maintenance of prefrontal PV interneurons in adult male and female mice. Reduced BDNF/trkB signaling in PV interneurons in the medial prefrontal cortex (mPFC) resulted in deficient PV inhibition and increased baseline local field potential (LFP) activity in a broad frequency band. The altered network activity was particularly pronounced during increased activation of the prefrontal network and was associated with changed dynamics of local excitatory neurons, as well as decreased modulation of the LFP, abnormalities that appeared to generalize across stimuli and brain states. In addition, our findings link reduced BDNF/trkB signaling in prefrontal PV interneurons to increased aggression. Together our investigations demonstrate that BDNF/trkB signaling in PV interneurons in the adult mPFC is essential to local network dynamics and cognitive behavior. Our data provide direct support for the suggested association between decreased trkB signaling, deficient PV inhibition, and altered prefrontal circuitry.SIGNIFICANCE STATEMENT Brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (trkB) signaling promotes the maturation of inhibitory parvalbumin (PV) interneurons, neurons central to local cortical dynamics, γ rhythms, and cognition. Here, we used a novel viral approach for reduced BDNF/trkB signaling in PV interneurons in the medial prefrontal cortex (mPFC) to establish the role of BDNF/trkB signaling in adult prefrontal network activities. Reduced BDNF/trkB signaling caused pronounced morphologic alterations, reduced PV inhibition, and deficient prefrontal network dynamics. The altered network activity appeared to manifest across stimuli and brain states and was associated with aberrant local field potential (LFP) activities and increased aggression. The results demonstrate that adult BDNF/trkB signaling is essential to PV inhibition and prefrontal circuit function and directly links BDNF/trkB signaling to network integrity in the adult brain.


Asunto(s)
Interneuronas/metabolismo , Glicoproteínas de Membrana/metabolismo , Red Nerviosa/metabolismo , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Factores de Edad , Animales , Femenino , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Parvalbúminas/genética , Proteínas Tirosina Quinasas/genética
13.
J Cell Physiol ; 237(1): 949-964, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34491578

RESUMEN

Signaling by neurotrophins such as the brain-derived neurotrophic factor (BDNF) is known to modulate development of interneurons, but the circuit effects of this modulation remain unclear. Here, we examined the impact of deleting TrkB, a BDNF receptor, in parvalbumin-expressing (PV) interneurons on the balance of excitation and inhibition (E-I) in cortical circuits. In the mouse olfactory cortex, TrkB deletion impairs multiple aspects of PV neuronal function including synaptic excitation, intrinsic excitability, and the innervation pattern of principal neurons. Impaired PV cell function resulted in aberrant spiking patterns in principal neurons in response to stimulation of sensory inputs. Surprisingly, dampened PV neuronal function leads to a paradoxical decrease in overall excitability in cortical circuits. Our study demonstrates that, by modulating PV circuit plasticity and development, TrkB plays a critical role in shaping the evoked pattern of activity in a cortical network.


Asunto(s)
Parvalbúminas , Receptor trkB , Animales , Interneuronas/fisiología , Ratones , Neuronas , Parvalbúminas/genética , Receptor trkB/genética
14.
J Neurophysiol ; 128(4): 837-846, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36043700

RESUMEN

GABAA signaling is surprisingly involved in the initiation of epileptiform activity since increased interneuron firing, presumably leading to excessive GABA release, often precedes ictal discharges. Field potential theta (4-12 Hz) oscillations, which are thought to mirror the synchronization of interneuron networks, also lead to ictogenesis. However, the exact role of parvalbumin-positive (PV) interneurons in generating theta oscillations linked to epileptiform discharges remains unexplored. We analyzed here the field responses recorded in the CA3, entorhinal cortex (EC), and dentate gyrus (DG) during 8-Hz optogenetic stimulation of PV-positive interneurons in brain slices obtained from PV-ChR2 mice during 4-aminopyridine (4AP) application. This optogenetic protocol triggered similar field oscillations in both control conditions and during 4AP application. However, in the presence of 4AP, optogenetic stimuli also induced: 1) interictal discharges that were associated in all regions with 8-Hz field oscillations and 2) low-voltage fast onset ictal discharges. Interictal and ictal events occurred more frequently during optogenetic activation than during periods of no stimulation. 4AP also increased synchronicity during PV-interneuron activation in all three regions. In opsin-negative mice, optogenetic stimulation did not change the rate of both types of epileptiform activity. Our findings suggest that PV-interneuron recruitment at theta (8 Hz) frequency contributes to epileptiform synchronization in limbic structures in the in vitro 4AP model.NEW & NOTEWORTHY Previous studies have identified contradictory roles of PV-interneurons in ictogenesis and the link between theta oscillations and epileptiform activity remains unexplored. Here, we investigated in vitro the effect of PV-interneuron optogenetic stimulation under 4AP in temporal lobe regions obtained from PV-ChR2 transgenic mice. Under theta (8 Hz) optogenetic stimulation and 4AP application, interictal spikes and low-voltage fast onset ictal discharges were triggered, suggesting that the activation of PV-interneurons favors synchronization and ictogenesis.


Asunto(s)
Optogenética , Parvalbúminas , 4-Aminopiridina , Animales , Interneuronas/fisiología , Ratones , Ratones Transgénicos , Opsinas , Parvalbúminas/genética , Ácido gamma-Aminobutírico
15.
Neurobiol Dis ; 168: 105713, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35346832

RESUMEN

KCNT1 encodes the sodium-activated potassium channel KNa1.1, expressed preferentially in the frontal cortex, hippocampus, cerebellum, and brainstem. Pathogenic missense variants in KCNT1 are associated with intractable epilepsy, namely epilepsy of infancy with migrating focal seizures (EIMFS), and sleep-related hypermotor epilepsy (SHE). In vitro studies of pathogenic KCNT1 variants support predominantly a gain-of-function molecular mechanism, but how these variants behave in a neuron or ultimately drive formation of an epileptogenic circuit is an important and timely question. Using CRISPR/Cas9 gene editing, we introduced a gain-of-function variant into the endogenous mouse Kcnt1 gene. Compared to wild-type (WT) littermates, heterozygous and homozygous knock-in mice displayed greater seizure susceptibility to the chemoconvulsants kainate and pentylenetetrazole (PTZ), but not to flurothyl. Using acute slice electrophysiology in heterozygous and homozygous Kcnt1 knock-in and WT littermates, we demonstrated that CA1 hippocampal pyramidal neurons exhibit greater amplitude of miniature inhibitory postsynaptic currents in mutant mice with no difference in frequency, suggesting greater inhibitory tone associated with the Kcnt1 mutation. To address alterations in GABAergic signaling, we bred Kcnt1 knock-in mice to a parvalbumin-tdTomato reporter line, and found that parvalbumin-expressing (PV+) interneurons failed to fire repetitively with large amplitude current injections and were more prone to depolarization block. These alterations in firing can be recapitulated by direct application of the KNa1.1 channel activator loxapine in WT but are occluded in knock-in littermates, supporting a direct channel gain-of-function mechanism. Taken together, these results suggest that KNa1.1 gain-of-function dampens interneuron excitability to a greater extent than it impacts pyramidal neuron excitability, driving seizure susceptibility in a mouse model of KCNT1-associated epilepsy.


Asunto(s)
Epilepsia , Parvalbúminas , Animales , Mutación con Ganancia de Función , Interneuronas/metabolismo , Ratones , Mutación , Proteínas del Tejido Nervioso/metabolismo , Parvalbúminas/genética , Canales de potasio activados por Sodio , Convulsiones/genética , Canales de Sodio/genética
16.
Neuropathol Appl Neurobiol ; 48(6): e12833, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35790454

RESUMEN

AIMS: Alpers' syndrome is a severe neurodegenerative disease typically caused by bi-allelic variants in the mitochondrial DNA (mtDNA) polymerase gene, POLG, leading to mtDNA depletion. Intractable epilepsy, often with an occipital focus, and extensive neurodegeneration are prominent features of Alpers' syndrome. Mitochondrial oxidative phosphorylation (OXPHOS) is severely impaired with mtDNA depletion and is likely to be a major contributor to the epilepsy and neurodegeneration in Alpers' syndrome. We hypothesised that parvalbumin-positive(+) interneurons, a neuronal class critical for inhibitory regulation of physiological cortical rhythms, would be particularly vulnerable in Alpers' syndrome due to the excessive energy demands necessary to sustain their fast-spiking activity. METHODS: We performed a quantitative neuropathological investigation of inhibitory interneuron subtypes (parvalbumin+, calretinin+, calbindin+, somatostatin interneurons+) in postmortem neocortex from 14 Alpers' syndrome patients, five sudden unexpected death in epilepsy (SUDEP) patients (to control for effects of epilepsy) and nine controls. RESULTS: We identified a severe loss of parvalbumin+ interneurons and clear evidence of OXPHOS impairment in those that remained. Comparison of regional abundance of interneuron subtypes in control tissues demonstrated enrichment of parvalbumin+ interneurons in the occipital cortex, while other subtypes did not exhibit such topographic specificity. CONCLUSIONS: These findings suggest that the vulnerability of parvalbumin+ interneurons to OXPHOS deficits coupled with the high abundance of parvalbumin+ interneurons in the occipital cortex is a key factor in the aetiology of the occipital-predominant epilepsy that characterises Alpers' syndrome. These findings provide novel insights into Alpers' syndrome neuropathology, with important implications for the development of preclinical models and disease-modifying therapeutics.


Asunto(s)
Esclerosis Cerebral Difusa de Schilder , Epilepsia , Enfermedades Neurodegenerativas , ADN Mitocondrial/genética , Esclerosis Cerebral Difusa de Schilder/complicaciones , Epilepsia/patología , Humanos , Interneuronas/patología , Enfermedades Neurodegenerativas/complicaciones , Parvalbúminas/genética
17.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613660

RESUMEN

Low-frequency electrical stimulation is used to treat some drug-resistant forms of epilepsy. Despite the effectiveness of the method in suppressing seizures, there is a considerable risk of side effects. An optogenetic approach allows the targeting of specific populations of neurons, which can increase the effectiveness and safety of low-frequency stimulation. In our study, we tested the efficacy of the suppression of ictal activity in entorhinal cortex slices in a 4-aminopyridine model with three variants of low-frequency light stimulation (LFLS): (1) activation of excitatory and inhibitory neurons (on Thy1-ChR2-YFP mice), (2) activation of inhibitory interneurons only (on PV-Cre mice after virus injection with channelrhodopsin2 gene), and (3) hyperpolarization of excitatory neurons (on Wistar rats after virus injection with archaerhodopsin gene). Only in the first variant did simultaneous LFLS of excitatory and inhibitory neurons replace ictal activity with interictal activity. We suggest that LFLS caused changes in the concentration gradients of K+ and Na+ cations across the neuron membrane, which activated Na-K pumping. According to the mathematical modeling, the increase in Na-K pump activity in neurons induced by LFLS led to an antiepileptic effect. Thus, a less specific and generalized optogenetic effect on entorhinal cortex neurons was more effective in suppressing ictal activity in the 4-aminopyridine model.


Asunto(s)
Corteza Entorrinal , Interneuronas , Animales , Ratones , Ratas , 4-Aminopiridina/farmacología , Corteza Entorrinal/metabolismo , Interneuronas/metabolismo , Optogenética , Parvalbúminas/genética , Parvalbúminas/metabolismo , Ratas Wistar
18.
Molecules ; 27(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080437

RESUMEN

Canned tuna is considered one of the most popular and most commonly consumed products in the seafood market, globally. However, in past decades, fish allergens have been detected as the main concern regarding food safety in these seafood products and are listed as the top eight food allergies. In the group of fish allergens, parvalbumin is the most common. As a thermally stable and calcium-binding protein, parvalbumin can be easily altered with changing the food matrices. This study investigated the effect of a can-filling medium (tomato sauce, spices, and brine solutions) on the parvalbumin levels in canned tuna. The effect of pH, calcium content, and the DNA quality of canned tuna was also investigated before the parvalbumin-specific encoded gene amplification. The presence of fish allergens was determined by melting curve analyses and confirmed by agarose gel electrophoresis. The obtained results showed that the presence of parvalbumin in commercially canned tuna was driven by can-filling mediums, thermal conductivity, calcium content, and the acidity of various ingredients in food matrices. The intra-specific differences revealed a variation in fish allergens that are caused by cryptic species. This study proved that allergens encoding gene analyses by agarose electrophoresis could be used as a reliable approach for other food-borne allergens in complex food matrices.


Asunto(s)
Hipersensibilidad a los Alimentos , Atún , Alérgenos/genética , Animales , Calcio , Peces/genética , Parvalbúminas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Atún/genética
19.
J Neurosci ; 40(49): 9386-9400, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33127853

RESUMEN

Growing evidence suggests that early-life interactions among genetic, immune, and environment factors may modulate neurodevelopment and cause psycho-cognitive deficits. Maternal immune activation (MIA) induces autism-like behaviors in offspring, but how it interplays with perinatal brain injury (especially birth asphyxia or hypoxia ischemia [HI]) is unclear. Herein we compared the effects of MIA (injection of poly[I:C] to dam at gestational day 12.5), HI at postnatal day 10, and the combined MIA/HI insult in murine offspring of both sexes. We found that MIA induced autistic-like behaviors without microglial activation but amplified post-HI NFκB signaling, pro-inflammatory responses, and brain injury in offspring. Conversely, HI neither provoked autistic-like behaviors nor concealed them in the MIA offspring. Instead, the dual MIA/HI insult added autistic-like behaviors with diminished synaptic density and reduction of autism-related PSD-95 and Homer-1 in the hippocampus, which were missing in the singular MIA or HI insult. Further, the dual MIA/HI insult enhanced the brain influx of Otx2-positive monocytes that are associated with an increase of perineuronal net-enwrapped parvalbumin neurons. Using CCR2-CreER mice to distinguish monocytes from the resident microglia, we found that the monocytic infiltrates gradually adopted a ramified morphology and expressed the microglial signature genes (Tmem119, P2RY12, and Sall1) in post-MIA/HI brains, with some continuing to express the proinflammatory cytokine TNFα. Finally, genetic or pharmacological obstruction of monocytic influx significantly reduced perineuronal net-enwrapped parvalbumin neurons and autistic-like behaviors in MIA/HI offspring. Together, these results suggest a pathologic role of monocytes in the two-hit (immune plus neonatal HI) model of neurodevelopmental defects.SIGNIFICANCE STATEMENT In autism spectrum disorders (ASDs), prenatal infection or maternal immune activation (MIA) may act as a primer for multiple genetic and environmental factors to impair neurodevelopment. This study examined whether MIA cooperates with neonatal cerebral hypoxia ischemia to promote ASD-like aberrations in mice using a novel two-hit model. It was shown that the combination of MIA and neonatal hypoxia ischemia produces autistic-like behaviors in the offspring, and has synergistic effects in inducing neuroinflammation, monocytic infiltrates, synaptic defects, and perineuronal nets. Furthermore, genetic or pharmacological intervention of the MCP1-CCR2 chemoattractant pathway markedly reduced monocytic infiltrates, perineuronal nets, and autistic-like behaviors. These results suggest reciprocal escalation of immune and neonatal brain injury in a subset of ASD that may benefit from monocyte-targeted treatments.


Asunto(s)
Trastorno Autístico/inmunología , Trastorno Autístico/psicología , Conducta Animal , Discapacidades del Desarrollo/inmunología , Discapacidades del Desarrollo/psicología , Monocitos/inmunología , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/psicología , Femenino , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , FN-kappa B , Parvalbúminas/genética , Poli I-C , Densidad Postsináptica , Embarazo , Transducción de Señal , Conducta Social
20.
J Neurosci ; 40(41): 7855-7876, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32868462

RESUMEN

The external globus pallidus (GPe) is a critical node within the basal ganglia circuit. Phasic changes in the activity of GPe neurons during movement and their alterations in Parkinson's disease (PD) argue that the GPe is important in motor control. Parvalbumin-positive (PV+) neurons and Npas1+ neurons are the two principal neuron classes in the GPe. The distinct electrophysiological properties and axonal projection patterns argue that these two neuron classes serve different roles in regulating motor output. However, the causal relationship between GPe neuron classes and movement remains to be established. Here, by using optogenetic approaches in mice (both males and females), we showed that PV+ neurons and Npas1+ neurons promoted and suppressed locomotion, respectively. Moreover, PV+ neurons and Npas1+ neurons are under different synaptic influences from the subthalamic nucleus (STN). Additionally, we found a selective weakening of STN inputs to PV+ neurons in the chronic 6-hydroxydopamine lesion model of PD. This finding reinforces the idea that the reciprocally connected GPe-STN network plays a key role in disease symptomatology and thus provides the basis for future circuit-based therapies.SIGNIFICANCE STATEMENT The external pallidum is a key, yet an understudied component of the basal ganglia. Neural activity in the pallidum goes awry in neurologic diseases, such as Parkinson's disease. While this strongly argues that the pallidum plays a critical role in motor control, it has been difficult to establish the causal relationship between pallidal activity and motor function/dysfunction. This was in part because of the cellular complexity of the pallidum. Here, we showed that the two principal neuron types in the pallidum have opposing roles in motor control. In addition, we described the differences in their synaptic influence. Importantly, our research provides new insights into the cellular and circuit mechanisms that explain the hypokinetic features of Parkinson's disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Globo Pálido/fisiología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Parvalbúminas/genética , Animales , Axones/patología , Fenómenos Electrofisiológicos , Femenino , Globo Pálido/citología , Locomoción/fisiología , Masculino , Ratones , Red Nerviosa/citología , Optogenética , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA