Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 149(5): 1048-59, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632969

RESUMO

Here, we use single-molecule techniques to study the aggregation of α-synuclein, the protein whose misfolding and deposition is associated with Parkinson's disease. We identify a conformational change from the initially formed oligomers to stable, more compact proteinase-K-resistant oligomers as the key step that leads ultimately to fibril formation. The oligomers formed as a result of the structural conversion generate much higher levels of oxidative stress in rat primary neurons than do the oligomers formed initially, showing that they are more damaging to cells. The structural conversion is remarkably slow, indicating a high kinetic barrier for the conversion and suggesting that there is a significant period of time for the cellular protective machinery to operate and potentially for therapeutic intervention, prior to the onset of cellular damage. In the absence of added soluble protein, the assembly process is reversed and fibrils disaggregate to form stable oligomers, hence acting as a source of cytotoxic species.


Assuntos
alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Endopeptidase K/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Modelos Moleculares , Neurônios/metabolismo , Estresse Oxidativo , Ratos
2.
PLoS Comput Biol ; 10(7): e1003721, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25078441

RESUMO

Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs) measured under steric alignment by nuclear magnetic resonance (NMR). We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.


Assuntos
Adenilato Quinase/química , Adenilato Quinase/metabolismo , Algoritmos , Regulação Alostérica , Biologia Computacional , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
3.
Biophys J ; 105(5): 1192-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24010662

RESUMO

Structural conversion of the presynaptic, intrinsically disordered protein α-synuclein into amyloid fibrils underlies neurotoxicity in Parkinson's disease. The detailed mechanism by which this conversion occurs is largely unknown. Here, we identify a discrete pattern of transient tertiary interactions in monomeric α-synuclein involving amino acid residues that are, in the fibrillar state, part of ß-strands. Importantly, this pattern of pairwise interactions does not correspond to that found in the amyloid state. A redistribution of this network of fibril-like contacts must precede aggregation into the amyloid structure.


Assuntos
Multimerização Proteica , alfa-Sinucleína/química , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Solubilidade , alfa-Sinucleína/metabolismo
4.
Biophys J ; 104(8): 1740-51, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23601321

RESUMO

In the last decade it has become evident that disordered states of proteins play important physiological and pathological roles and that the transient tertiary interactions often present in these systems can play a role in their biological activity. The structural characterization of such states has so far largely relied on ensemble representations, which in principle account for both their local and global structural features. However, these approaches are inherently of low resolution due to the large number of degrees of freedom of conformational ensembles and to the sparse nature of the experimental data used to determine them. Here, we overcome these limitations by showing that tertiary interactions in disordered states can be mapped at high resolution by fitting paramagnetic relaxation enhancement data to a small number of conformations, which can be as low as one. This result opens up the possibility of determining the topology of cooperatively collapsed and hidden folded states when these are present in the vast conformational landscape accessible to disordered states of proteins. As a first application, we study the long-range tertiary interactions of acid-unfolded apomyoglobin from experimentally measured paramagnetic relaxation enhancement data.


Assuntos
Apoproteínas/química , Simulação de Dinâmica Molecular , Mioglobina/química , Dobramento de Proteína , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Conformação Proteica
5.
EMBO J ; 28(23): 3758-70, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19875982

RESUMO

The ATP-dependent protein chaperone heat-shock protein 70 (Hsp70) displays broad anti-aggregation functions and has a critical function in preventing protein misfolding pathologies. According to in vitro and in vivo models of Parkinson's disease (PD), loss of Hsp70 activity is associated with neurodegeneration and the formation of amyloid deposits of alpha-synuclein (alphaSyn), which constitute the intraneuronal inclusions in PD patients known as Lewy bodies. Here, we show that Hsp70 depletion can be a direct result of the presence of aggregation-prone polypeptides. We show a nucleotide-dependent interaction between Hsp70 and alphaSyn, which leads to the aggregation of Hsp70, in the presence of ADP along with alphaSyn. Such a co-aggregation phenomenon can be prevented in vitro by the co-chaperone Hip (ST13), and the hypothesis that it might do so also in vivo is supported by studies of a Caenorhabditis elegans model of alphaSyn aggregation. Our findings indicate that a decreased expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, impairing chaperone proteostasis and stimulating neurodegeneration.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Homeostase/fisiologia , Complexos Multiproteicos/metabolismo , Doença de Parkinson/metabolismo , Proteínas Supressoras de Tumor/fisiologia , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/fisiologia , Amiloide/antagonistas & inibidores , Amiloide/biossíntese , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Humanos , Chaperonas Moleculares , Complexos Multiproteicos/antagonistas & inibidores , Degeneração Neural/metabolismo , Degeneração Neural/prevenção & controle , Doença de Parkinson/etiologia , Peptídeos/antagonistas & inibidores , Peptídeos/fisiologia , Dobramento de Proteína , Estabilidade Proteica , Ratos , Proteínas Supressoras de Tumor/antagonistas & inibidores , alfa-Sinucleína/antagonistas & inibidores
6.
Analyst ; 138(7): 2156-62, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23420088

RESUMO

We report observations of an intrinsic fluorescence in the visible range, which develops during the aggregation of a range of polypeptides, including the disease-related human peptides amyloid-ß(1-40) and (1-42), lysozyme and tau. Characteristic fluorescence properties such as the emission lifetime and spectra were determined experimentally. This intrinsic fluorescence is independent of the presence of aromatic side-chain residues within the polypeptide structure. Rather, it appears to result from electronic levels that become available when the polypeptide chain folds into a cross-ß sheet scaffold similar to what has been reported to take place in crystals. We use these findings to quantify protein aggregation in vitro by fluorescence imaging in a label-free manner.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fluorescência , Muramidase/química , Fragmentos de Peptídeos/química , Estrutura Terciária de Proteína , Proteínas tau/química , Humanos , Estrutura Secundária de Proteína
7.
Proc Natl Acad Sci U S A ; 107(37): 16084-9, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805515

RESUMO

Intrinsically disordered proteins (IDPs) lack well-defined structure but are widely represented in eukaryotic proteomes. Although the functions of most IDPs are not understood, some have been shown to have molecular recognition and/or regulatory roles where their disordered nature might be advantageous. Anhydrin is an uncharacterized IDP induced by dehydration in an anhydrobiotic nematode, Aphelenchus avenae. We show here that anhydrin is a moonlighting protein with two novel, independent functions relating to desiccation tolerance. First, it has a chaperone-like activity that can reduce desiccation-induced enzyme aggregation and inactivation in vitro. When expressed in a human cell line, anhydrin localizes to the nucleus and reduces the propensity of a polyalanine expansion protein associated with oculopharyngeal muscular dystrophy to form aggregates. This in vivo activity is distinguished by a loose association of anhydrin with its client protein, consistent with a role as a molecular shield. In addition, anhydrin exhibits a second function as an endonuclease whose substrates include supercoiled, linear, and chromatin linker DNA. This nuclease activity could be involved in either repair of desiccation-induced DNA damage incurred during anhydrobiosis or in apoptotic or necrotic processes, for example, but it is particularly unexpected for anhydrin because IDP functions defined to date anticorrelate with enzyme activity. Enzymes usually require precise three-dimensional positioning of residues at the active site, but our results suggest this need not be the case. Anhydrin therefore extends the range of IDP functional categories to include catalysis and highlights the potential for the discovery of new functions in disordered proteomes.


Assuntos
Biocatálise , Dessecação , Chaperonas Moleculares/química , Tylenchida/química , Sequência de Aminoácidos , Animais , Linhagem Celular , DNA/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Tylenchida/metabolismo
8.
J Biol Chem ; 286(37): 32036-44, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21795682

RESUMO

The fibrillation of amyloidogenic proteins is a critical step in the etiology of neurodegenerative disorders such as Alzheimer and Parkinson diseases. There is major interest in the therapeutic intervention on such aberrant aggregation phenomena, and the utilization of polyaromatic scaffolds has lately received considerable attention. In this regard, the molecular and structural basis of the anti-amyloidogenicity of polyaromatic compounds, required to evolve this molecular scaffold toward therapeutic drugs, is not known in detail. We present here biophysical and biochemical studies that have enabled us to characterize the interaction of metal-substituted, tetrasulfonated phthalocyanines (PcTS) with α-synuclein (AS), the major protein component of amyloid-like deposits in Parkinson disease. The inhibitory activity of the assayed compounds on AS amyloid fibril formation decreases in the order PcTS[Ni(II)] ~ PcTS > PcTS[Zn(II)] >> PcTS[Al(III)] ≈ 0. Using NMR and electronic absorption spectroscopies we demonstrated conclusively that the differences in binding capacity and anti-amyloid activity of phthalocyanines on AS are attributed to their relative ability to self-stack through π-π interactions, modulated by the nature of the metal ion bound at the molecule. Low order stacked aggregates of phthalocyanines were identified as the active amyloid inhibitory species, whose effects are mediated by residue specific interactions. Such sequence-specific anti-amyloid behavior of self-stacked phthalocyanines contrasts strongly with promiscuous amyloid inhibitors with self-association capabilities that act via nonspecific sequestration of AS molecules. The new findings reported here constitute an important contribution for future drug discovery efforts targeting amyloid formation.


Assuntos
Amiloide/química , Indóis/química , alfa-Sinucleína/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloide/genética , Amiloide/metabolismo , Descoberta de Drogas , Humanos , Isoindóis , Ressonância Magnética Nuclear Biomolecular , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
Proc Natl Acad Sci U S A ; 106(50): 21057-62, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19948969

RESUMO

The identification of aggregation inhibitors and the investigation of their mechanism of action are fundamental in the quest to mitigate the pathological consequences of amyloid formation. Here, characterization of the structural and mechanistic basis for the antiamyloidogenic effect of phthalocyanine tetrasulfonate (PcTS) on alpha-synuclein (AS) allowed us to demonstrate that specific aromatic interactions are central for ligand-mediated inhibition of amyloid formation. We provide evidence indicating that the mechanism behind the antiamyloidogenic effect of PcTS is correlated with the trapping of prefibrillar AS species during the early stages of the assembly process. By using NMR spectroscopy, we have located the primary binding region for PcTS to a specific site in the N terminus of AS, involving the amino acid Tyr-39 as the anchoring residue. Moreover, the residue-specific structural characterization of the AS-PcTS complex provided the basis for the rational design of nonamyloidogenic species of AS, highlighting the role of aromatic interactions in driving AS amyloid assembly. A comparative analysis with other proteins involved in neurodegenerative disorders reveals that aromatic recognition interfaces might constitute a key structural element to target their aggregation pathways. These findings emphasize the use of aggregation inhibitors as molecular probes to assess structural and toxic mechanisms related to amyloid formation and the potential of small molecules as therapeutics for amyloid-related pathologies.


Assuntos
Amiloide/biossíntese , Indóis/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Sondas Moleculares , Multimerização Proteica
10.
J Am Chem Soc ; 133(33): 12902-5, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21793568

RESUMO

Misfolding and aggregation of peptides and proteins is a characteristic of many neurodegenerative disorders, including Alzheimer's disease (AD). In AD the ß-amyloid peptide (Aß) aggregates to form characteristic fibrillar structures, which are the deposits found as plaques in the brains of patients. We have used direct stochastic optical reconstruction microscopy, dSTORM, to probe the process of in situ Aß aggregation and the morphology of the ensuing aggregates with a resolution better than 20 nm. We are able to distinguish different types of structures, including oligomeric assemblies and mature fibrils, and observe a number of morphological differences between the species formed in vitro and in vivo, which may be significant in the context of disease. Our data support the recent view that intracellular Aß could be associated with Aß pathogenicity in AD, although the major deposits are extracellular, and suggest that this approach will be widely applicable to studies of the molecular mechanisms of protein deposition diseases.


Assuntos
Amiloide/biossíntese , Amiloide/química , Microscopia de Fluorescência/métodos , Doença de Alzheimer , Amiloide/ultraestrutura , Linhagem Celular , Humanos , Métodos , Microscopia Eletrônica de Transmissão
11.
Chemphyschem ; 12(3): 673-680, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21308945

RESUMO

Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for a-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated.


Assuntos
Amiloide/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
Biochemistry ; 48(35): 8322-34, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19645507

RESUMO

Increasing evidence links the misfolding and aberrant self-assembly of proteins with the molecular events that underlie a range of neurodegenerative diseases, yet the mechanistical details of these processes are still poorly understood. The fact that many of these proteins are intrinsically unstructured makes it particularly challenging to develop strategies for discovering small molecule inhibitors of their aggregation. We present here a broad biophysical approach that enables us to characterize the mechanisms of interaction between alpha-synuclein, a protein whose aggregation is closely connected with Parkinson's disease, and two small molecules, Congo red and Lacmoid, which inhibit its fibrillization. Both compounds are found to interact with the N-terminal and central regions of the monomeric protein although with different binding mechanisms and affinities. The differences can be attributed to the chemical nature of the compounds as well as their abilities to self-associate. We further show that alpha-synuclein binding and aggregation inhibition are mediated by small oligomeric species of the compounds that interact with distinct regions of the monomeric protein. These findings provide potential explanations of the nonspecific antiamyloid effect observed for these compounds as well as important mechanistical information for future drug discovery efforts targeting the misfolding and aggregation of intrinsically unstructured proteins.


Assuntos
Vermelho Congo/metabolismo , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/química , Humanos , Microscopia de Força Atômica , Dados de Sequência Molecular , Estrutura Molecular , Doença de Parkinson/metabolismo , Conformação Proteica , Dobramento de Proteína , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/metabolismo , Espectrofotometria Ultravioleta , alfa-Sinucleína/metabolismo
13.
J Am Chem Soc ; 131(21): 7222-3, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19432443

RESUMO

We report here the use of protonless NMR spectroscopy to extract structural information under biologically relevant conditions when conventional proton-detection NMR spectroscopy fails due to the loss of labile proton resonances. By direct (13)C detection, correlations between nonlabile nuclei of a given biomolecule can be determined with high resolution, which becomes particularly useful when the system of interests is sensitive to solvent exchange at elevated temperatures, such as intrinsically disordered proteins. Human alpha-synuclein, which is associated with Parkinson's disease, is used as a model system to illustrate the usefulness of protonless NMR spectroscopy in recovering hitherto missing spectral information.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , Temperatura Alta , Humanos , Solventes/química , alfa-Sinucleína/química
14.
Sci Rep ; 9(1): 16947, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740740

RESUMO

The over-expression and aggregation of α-synuclein (αSyn) are linked to the onset and pathology of Parkinson's disease. Native monomeric αSyn exists in an intrinsically disordered ensemble of interconverting conformations, which has made its therapeutic targeting by small molecules highly challenging. Nonetheless, here we successfully target the monomeric structural ensemble of αSyn and thereby identify novel drug-like small molecules that impact multiple pathogenic processes. Using a surface plasmon resonance high-throughput screen, in which monomeric αSyn is incubated with microchips arrayed with tethered compounds, we identified novel αSyn interacting drug-like compounds. Because these small molecules could impact a variety of αSyn forms present in the ensemble, we tested representative hits for impact on multiple αSyn malfunctions in vitro and in cells including aggregation and perturbation of vesicular dynamics. We thereby identified a compound that inhibits αSyn misfolding and is neuroprotective, multiple compounds that restore phagocytosis impaired by αSyn overexpression, and a compound blocking cellular transmission of αSyn. Our studies demonstrate that drug-like small molecules that interact with native αSyn can impact a variety of its pathological processes. Thus, targeting the intrinsically disordered ensemble of αSyn offers a unique approach to the development of small molecule research tools and therapeutics for Parkinson's disease.


Assuntos
Bibliotecas de Moléculas Pequenas/farmacologia , alfa-Sinucleína/metabolismo , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Fagocitose/efeitos dos fármacos , Dobramento de Proteína , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/toxicidade , Ressonância de Plasmônio de Superfície , alfa-Sinucleína/química , alfa-Sinucleína/efeitos dos fármacos
15.
J Am Chem Soc ; 130(35): 11801-12, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-18693689

RESUMO

The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. Protein-metal interactions play a critical role in AS aggregation and might represent the link between the pathological processes of protein aggregation and oxidative damage. Our previous studies established a hierarchy in AS-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. In this work, we have addressed unresolved structural details related to the binding specificity of Cu(II) through the design of site-directed and domain-truncated mutants of AS and by the characterization of the metal-binding features of its natural homologue beta-synuclein (BS). The structural properties of the Cu(II) complexes were determined by the combined application of nuclear magnetic resonance, electron paramagnetic resonance, UV-vis, circular dichroism spectroscopy, and matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). Two independent, noninteracting copper-binding sites with significantly different affinities for the metal ion were detected in the N-terminal regions of AS and BS. MALDI MS provided unique evidence for the direct involvement of Met1 as the primary anchoring residue for Cu(II) in both proteins. Comparative spectroscopic analysis of the two proteins allowed us to deconvolute the Cu(II) binding modes and unequivocally assign the higher-affinity site to the N-terminal amino group of Met1 and the lower-affinity site to the imidazol ring of the sole His residue. Through the use of competitive chelators, the affinity of the first equivalent of bound Cu(II) was accurately determined to be in the submicromolar range for both AS and BS. Our results prove that Cu(II) binding in the C-terminal region of synucleins represents a nonspecific, very low affinity process. These new insights into the bioinorganic chemistry of PD are central to an understanding of the role of Cu(II) in the fibrillization process of AS and have implications for the molecular mechanism by which BS might inhibit AS amyloid assembly.


Assuntos
Cobre/química , Metaloproteínas/química , alfa-Sinucleína/química , beta-Sinucleína/química , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
J Mol Biol ; 372(3): 708-22, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17681539

RESUMO

The synuclein family of intrinsically unfolded proteins is composed of three highly homologous members, alpha-synuclein (alphaS), beta-synuclein (betaS) and gamma-synuclein (gammaS), which are linked to neurodegenerative disorders and cancer. alphaS has been studied intensively after its identification as the major protein component of amyloid-like deposits in Parkinson's disease and dementia with Lewy bodies. betaS, on the other hand, was found to act as a potent inhibitor of alphaS amyloid formation, and it is proposed as a natural regulator of its neurotoxicity. It is then of particular interest to elucidate the structural and dynamic features of the soluble state of betaS as a first step to understand the molecular basis of its anti-amyloidogenic effect on alphaS. We present here the characterization of natively unstructured betaS by high resolution heteronuclear NMR techniques. A combination of pulse-field gradient, three-dimensional heteronuclear correlation, residual dipolar couplings, paramagnetic relaxation enhancement and backbone relaxation experiments were employed to characterize the ensemble of conformations populated by the protein. The results indicate that betaS adopts extended conformations in its native state, characterized by the lack of the long-range contacts as previously reported for alphaS. Despite the lack of defined secondary structure, we found evidence for transient polyproline II conformations clustered at the C-terminal region. The structuring of the backbone at the C terminus is locally encoded, stabilized by the presence of eight proline residues embedded in a polypeptide stretch rich in hydrophilic and negatively charged amino acids. The structural and functional implications of these findings are analyzed via a thorough comparison with its neurotoxic homolog alphaS.


Assuntos
Dobramento de Proteína , alfa-Sinucleína/química , beta-Sinucleína/química , beta-Sinucleína/metabolismo , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Isótopos de Nitrogênio , Peptídeos/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Prótons , Soluções , Fatores de Tempo
17.
Structure ; 26(1): 145-152.e3, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29225078

RESUMO

The androgen receptor is a transcription factor that plays a key role in the development of prostate cancer, and its interactions with general transcription regulators are therefore of potential therapeutic interest. The mechanistic basis of these interactions is poorly understood due to the intrinsically disordered nature of the transactivation domain of the androgen receptor and the generally transient nature of the protein-protein interactions that trigger transcription. Here, we identify a motif of the transactivation domain that contributes to transcriptional activity by recruiting the C-terminal domain of subunit 1 of the general transcription regulator TFIIF. These findings provide molecular insights into the regulation of androgen receptor function and suggest strategies for treating castration-resistant prostate cancer.


Assuntos
DNA/química , Proteínas Intrinsicamente Desordenadas/química , Receptores Androgênicos/química , Fatores de Transcrição TFII/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Masculino , Modelos Moleculares , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Ativação Transcricional
18.
ACS Chem Biol ; 11(9): 2499-505, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27356095

RESUMO

Castration-resistant prostate cancer is the lethal condition suffered by prostate cancer patients that become refractory to androgen deprivation therapy. EPI-001 is a recently identified compound active against this condition that modulates the activity of the androgen receptor, a nuclear receptor that is essential for disease progression. The mechanism by which this compound exerts its inhibitory activity is however not yet fully understood. Here we show, by using high resolution solution nuclear magnetic resonance spectroscopy, that EPI-001 selectively interacts with a partially folded region of the transactivation domain of the androgen receptor, known as transactivation unit 5, that is key for the ability of prostate cells to proliferate in the absence of androgens, a distinctive feature of castration-resistant prostate cancer. Our results can contribute to the development of more potent and less toxic novel androgen receptor antagonists for treating this disease.


Assuntos
Compostos Benzidrílicos/farmacologia , Cloridrinas/farmacologia , Orquiectomia , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Compostos Benzidrílicos/uso terapêutico , Cloridrinas/uso terapêutico , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ativação Transcricional
19.
Chem Biol ; 21(6): 732-42, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24856820

RESUMO

Insight into how amyloid ß (Aß) aggregation occurs in vivo is vital for understanding the molecular pathways that underlie Alzheimer's disease and requires new techniques that provide detailed kinetic and mechanistic information. Using noninvasive fluorescence lifetime recordings, we imaged the formation of Aß(1-40) and Aß(1-42) aggregates in live cells. For both peptides, the cellular uptake via endocytosis is rapid and spontaneous. They are then retained in lysosomes, where their accumulation leads to aggregation. The kinetics of Aß(1-42) aggregation are considerably faster than those of Aß(1-40) and, unlike those of the latter peptide, show no detectable lag phase. We used superresolution fluorescence imaging to examine the resulting aggregates and could observe compact amyloid structures, likely because of spatial confinement within cellular compartments. Taken together, these findings provide clues as to how Aß aggregation may occur within neurons.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , Peptídeos beta-Amiloides/biossíntese , Sobrevivência Celular , Humanos , Cinética , Fragmentos de Peptídeos/biossíntese , Células Tumorais Cultivadas
20.
PLoS One ; 9(2): e87133, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551051

RESUMO

The misfolding of intrinsically disordered proteins such as α-synuclein, tau and the Aß peptide has been associated with many highly debilitating neurodegenerative syndromes including Parkinson's and Alzheimer's diseases. Therapeutic targeting of the monomeric state of such intrinsically disordered proteins by small molecules has, however, been a major challenge because of their heterogeneous conformational properties. We show here that a combination of computational and experimental techniques has led to the identification of a drug-like phenyl-sulfonamide compound (ELN484228), that targets α-synuclein, a key protein in Parkinson's disease. We found that this compound has substantial biological activity in cellular models of α-synuclein-mediated dysfunction, including rescue of α-synuclein-induced disruption of vesicle trafficking and dopaminergic neuronal loss and neurite retraction most likely by reducing the amount of α-synuclein targeted to sites of vesicle mobilization such as the synapse in neurons or the site of bead engulfment in microglial cells. These results indicate that targeting α-synuclein by small molecules represents a promising approach to the development of therapeutic treatments of Parkinson's disease and related conditions.


Assuntos
Proteínas Intrinsicamente Desordenadas/antagonistas & inibidores , Terapia de Alvo Molecular , Doença de Parkinson/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , alfa-Sinucleína/antagonistas & inibidores , Animais , Sítios de Ligação , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Modelos Biológicos , Modelos Moleculares , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/patologia , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA