Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476515

RESUMO

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Pancreáticas , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Neoplasias Pancreáticas
2.
J Biol Chem ; 299(1): 102762, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463962

RESUMO

Chlamydia trachomatis (ct) is the most reported bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Caseinolytic proteases (ClpP) from pathogenic bacteria are attractive antibiotic targets, particularly for bacterial species that form persister colonies with phenotypic resistance against common antibiotics. ClpP functions as a multisubunit proteolytic complex, and bacteria are eradicated when ClpP is disrupted. Although crucial for chlamydial development and the design of agents to treat chlamydia, the structures of ctClpP1 and ctClpP2 have yet to be solved. Here, we report the first crystal structure of full-length ClpP2 as an inactive homotetradecamer in a complex with a candidate antibiotic at 2.66 Å resolution. The structure details the functional domains of the ClpP2 protein subunit and includes the handle domain, which is integral to proteolytic activation. In addition, hydrogen-deuterium exchange mass spectroscopy probed the dynamics of ClpP2, and molecular modeling of ClpP1 predicted an assembly with ClpP2. By leveraging previous enzymatic experiments, we constructed a model of ClpP2 activation and its interaction with the protease subunits ClpP1 and ClpX. The structural information presented will be relevant for future rational drug design against these targets and will lead to a better understanding of ClpP complex formation and activation within this important human pathogen.


Assuntos
Chlamydia trachomatis , Endopeptidase Clp , Modelos Moleculares , Humanos , Antibacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Cristalização , Domínios Proteicos
3.
Bioorg Med Chem Lett ; 94: 129465, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37669721

RESUMO

Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting.


Assuntos
Mitoxantrona , Humanos , Masculino , DNA Topoisomerases Tipo II , Proteínas de Ligação a DNA , Mitoxantrona/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteoma , Proteômica , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino
4.
Anal Biochem ; 569: 46-52, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30707898

RESUMO

Due to the therapeutic potential of targeting protein-protein interactions (PPIs) there is a need for easily executed assays to perform high throughput screening (HTS) of inhibitors. We have developed and optimized an innovative and robust fluorescence-based assay for detecting PPI inhibitors, called FluorIA (Fluorescence-based protein-protein Interaction Assay). Targeting the PPI of RAD52 with replication protein A (RPA) was used as an example, and the FluorIA protocol design, optimization and successful application to HTS of large chemical libraries are described. Here enhanced green fluorescent protein (EGFP)-tagged RAD52 detected the PPI using full-length RPA heterotrimer coated, black microtiter plates and loss in fluorescence intensity identified small molecule inhibitors (SMIs) that displaced the EGFP-tagged RAD52. The FluorIA design and protocol can be adapted and applied to detect PPIs for other protein systems. This should push forward efforts to develop targeted therapeutics against protein complexes in pathological processes.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Mapas de Interação de Proteínas , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Ensaios de Triagem em Larga Escala , Humanos , Concentração de Íons de Hidrogênio , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/química , Bibliotecas de Moléculas Pequenas/metabolismo
5.
J Struct Biol ; 199(1): 68-75, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28461152

RESUMO

Superoxide dismutases (SODs) are enzymes that play a key role in protecting cells from toxic oxygen metabolites by disproportionation of two molecules of superoxide into molecular oxygen and hydrogen peroxide via cyclic reduction and oxidation at the active site metal. The azide anion is a potent competitive inhibitor that binds directly to the metal and is used as a substrate analog to superoxide in studies of SOD. The crystal structure of human MnSOD-azide complex was solved and shows the putative binding position of superoxide, providing a model for binding to the active site. Azide is bound end-on at the sixth coordinate position of the manganese ion. Tetrameric electrostatic surfaces were calculated incorporating accurate partial charges for the active site in three states, including a state with superoxide coordinated to the metal using the position of azide as a model. These show facilitation of the anionic ligand to the active site pit via a 'valley' of positively-charged surface patches. Surrounding ridges of negative charge help guide the superoxide anion. Within the active site pit, Arg173 and Glu162 further guide and align superoxide for efficient catalysis. Superoxide coordination at the sixth position causes the electrostatic surface of the active site pit to become nearly neutral. A model for electrostatic-mediated diffusion, and efficient binding of superoxide for catalysis is presented.


Assuntos
Azidas/química , Superóxido Dismutase/química , Sítios de Ligação , Catálise , Humanos , Modelos Moleculares , Eletricidade Estática , Especificidade por Substrato
7.
Biochim Biophys Acta ; 1833(1): 122-39, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085373

RESUMO

Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Ubiquitinação/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Modelos Biológicos , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo
8.
Genes (Basel) ; 15(2)2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397158

RESUMO

Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA , Proteína de Replicação A , Humanos , DNA/metabolismo , Reparo do DNA/genética , DNA de Cadeia Simples , Fosforilação , Proteína de Replicação A/metabolismo
9.
Mol Cancer Ther ; 23(1): 14-23, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756579

RESUMO

Geranylgeranyl diphosphate synthase (GGDPS), the source of the isoprenoid donor in protein geranylgeranylation reactions, has become an attractive target for anticancer therapy due to the reliance of cancers on geranylgeranylated proteins. Current GGDPS inhibitor development focuses on optimizing the drug-target enzyme interactions of nitrogen-containing bisphosphonate-based drugs. To advance GGDPS inhibitor development, understanding the enzyme structure, active site, and ligand/product interactions is essential. Here we provide a comprehensive structure-focused review of GGDPS. We reviewed available yeast and human GGDPS structures and then used AlphaFold modeling to complete unsolved structural aspects of these models. We delineate the elements of higher-order structure formation, product-substrate binding, the electrostatic surface, and small-molecule inhibitor binding. With the rise of structure-based drug design, the information provided here will serve as a valuable tool for rationally optimizing inhibitor selectivity and effectiveness.


Assuntos
Inibidores Enzimáticos , Neoplasias , Humanos , Farnesiltranstransferase/química , Farnesiltranstransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química , Terpenos/química , Terpenos/farmacologia , Prenilação de Proteína , Neoplasias/tratamento farmacológico
10.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328249

RESUMO

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting O 2 ●- to O 2 and H 2 O 2 with proton-coupled electron transfers (PCETs). Since changes in mitochondrial H 2 O 2 concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, H 2 O 2 . A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the underlying mechanism, we combined neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states to reveal the all-atom structures and electronic configuration of the metal. The data identifies the product-inhibited complex for the first time and a PCET mechanism of inhibition is constructed.

11.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853997

RESUMO

Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O 2 •- ) to molecular oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK a due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.

12.
J Struct Biol ; 182(3): 197-208, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528839

RESUMO

Inosine triphosphate pyrophosphatase (ITPA), a key enzyme involved in maintaining the purity of cellular nucleoside triphosphate pools, specifically recognizes inosine triphosphate and xanthosine triphosphate (including the deoxyribose forms) and detoxifies them by catalyzing the hydrolysis of a phosphoanhydride bond, releasing pyrophosphate. This prevents their inappropriate use as substrates in enzymatic reactions utilizing (d)ATP or (d)GTP. A human genetic polymorphism leads to the substitution of Thr for Pro32 (P32T) and causes ITPA deficiency in erythrocytes, with heterozygotes having on average 22.5% residual activity, and homozygotes having undetectable activity. This polymorphism has been implicated in modulating patients' response to mercaptopurines and ribavirin. Human fibroblasts containing this variant have elevated genomic instability upon treatment with base analogs. We find that the wild-type and P32T forms are dimeric in solution and in the crystal structure. This abolishes the previous speculation that the P32T change disrupts dimerization as a mechanism of inactivation. The only difference in structure from the wild-type protein is that the area surrounding Thr32 is disrupted. Phe31 is flipped from the hydrophobic core out into the solvent, leaving a hole in the hydrophobic core of the protein which likely accounts for the reduced thermal stability of P32T ITPA and ultimately leads to its susceptibility to degradation in human cells. Circular dichroism and thermal denaturation studies confirm these structural results. We propose that the dimer of P32T variant subunit with wild-type subunit is degraded in cells similarly to the P32T homodimer explaining the level of loss of ITPA activity in heterozygotes.


Assuntos
Instabilidade Genômica , Pirofosfatases/genética , Relação Estrutura-Atividade , Dicroísmo Circular , Eritrócitos/citologia , Eritrócitos/metabolismo , Heterozigoto , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Nucleotídeos/genética , Polimorfismo Genético , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/metabolismo
13.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1062-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695251

RESUMO

The toolbox for computational protein crystallography is full of easy-to-use applications for the routine solution and refinement of periodic diffraction data sets and protein structures. There is a gap in the available software when it comes to aperiodic crystallographic data. Current protein crystallography software cannot handle modulated data, and small-molecule software for aperiodic crystallography cannot work with protein structures. To adapt software for modulated protein data requires training data to test and debug the changed software. Thus, a comprehensive training data set consisting of atomic positions with associated modulation functions and the modulated structure factors packaged as both a three-dimensional supercell and as a modulated structure in (3+1)D superspace has been created. The (3+1)D data were imported into Jana2006; this is the first time that this has been performed for protein data.


Assuntos
Proteínas/química , Software , Difração de Raios X/métodos , Simulação por Computador
14.
Mutat Res ; 753(2): 131-146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23969025

RESUMO

Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.


Assuntos
Pirofosfatases/metabolismo , Animais , Escherichia coli/enzimologia , Humanos , Camundongos , Modelos Moleculares , Farmacogenética , Polimorfismo Genético , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/genética , Leveduras/enzimologia
15.
Subcell Biochem ; 62: 171-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22918586

RESUMO

In all organisms from bacteria and archaea to eukarya, single-stranded DNA binding proteins play an essential role in most, if not all, nuclear metabolism involving single-stranded DNA (ssDNA). Replication protein A (RPA), the major eukaryotic ssDNA binding protein, has two important roles in DNA metabolism: (1) in binding ssDNA to protect it and to keep it unfolded, and (2) in coordinating the assembly and disassembly of numerous proteins and protein complexes during processes such as DNA replication. Since its discovery as a vital player in the process of replication, RPAs roles in recombination and DNA repair quickly became evident. This chapter summarizes the current understanding of RPA's roles in replication by reviewing the available structural data, DNA-binding properties, interactions with various replication proteins, and interactions with DNA repair proteins when DNA replication is stalled.


Assuntos
Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA/biossíntese , Recombinação Genética/fisiologia , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Animais , DNA/química , DNA/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteína de Replicação A/genética , Relação Estrutura-Atividade
16.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090570

RESUMO

Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting. Highlights: An 8-step synthesis was used to generate a biotinylated-mitoxantrone probe (MXP).A pulldown of MXP demonstrated selectivity for RAD52, but not Replication Protein A.Western blot confirmed the identity of the isolated protein, RAD52.

17.
NPJ Microgravity ; 9(1): 39, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270576

RESUMO

The NASA mission Perfect Crystals used the microgravity environment on the International Space Station (ISS) to grow crystals of human manganese superoxide dismutase (MnSOD)-an oxidoreductase critical for mitochondrial vitality and human health. The mission's overarching aim is to perform neutron protein crystallography (NPC) on MnSOD to directly visualize proton positions and derive a chemical understanding of the concerted proton electron transfers performed by the enzyme. Large crystals that are perfect enough to diffract neutrons to sufficient resolution are essential for NPC. This combination, large and perfect, is hard to achieve on Earth due to gravity-induced convective mixing. Capillary counterdiffusion methods were developed that provided a gradient of conditions for crystal growth along with a built-in time delay that prevented premature crystallization before stowage on the ISS. Here, we report a highly successful and versatile crystallization system to grow a plethora of crystals for high-resolution NPC.

18.
Vaccines (Basel) ; 11(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37112733

RESUMO

The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain-Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV.

19.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 1): 8-16, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981770

RESUMO

Structurally identifying the enzymatic intermediates of redox proteins has been elusive due to difficulty in resolving the H atoms involved in catalysis and the susceptibility of ligand complexes to photoreduction from X-rays. Cryotrapping ligands for neutron protein crystallography combines two powerful tools that offer the advantage of directly identifying hydrogen positions in redox-enzyme intermediates without radiolytic perturbation of metal-containing active sites. However, translating cryogenic techniques from X-ray to neutron crystallography is not straightforward due to the large crystal volumes and long data-collection times. Here, methods have been developed to visualize the evasive peroxo complex of manganese superoxide dismutase (MnSOD) so that all atoms, including H atoms, could be visualized. The subsequent cryocooling and ligand-trapping methods resulted in neutron data collection to 2.30 Šresolution. The P6122 crystal form of MnSOD is challenging because it has some of the largest unit-cell dimensions (a = b = 77.8, c = 236.8 Å) ever studied using high-resolution cryo-neutron crystallography. The resulting neutron diffraction data permitted the visualization of a dioxygen species bound to the MnSOD active-site metal that was indicative of successful cryotrapping.


Assuntos
Difração de Nêutrons , Peróxidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Superóxido Dismutase/química
20.
Mol Cell Biol ; 42(2): e0052421, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34928169

RESUMO

Loss of RAD52 is synthetically lethal in BRCA-deficient cells, owing to its role in backup homologous recombination (HR) repair of DNA double-strand breaks (DSBs). In HR in mammalian cells, DSBs are processed to single-stranded DNA (ssDNA) overhangs, which are then bound by replication protein A (RPA). RPA is exchanged for RAD51 by mediator proteins: in mammals, BRCA2 is the primary mediator; however, RAD52 provides an alternative mediator pathway in BRCA-deficient cells. RAD51 stimulates strand exchange between homologous DNA duplexes, a critical step in HR. RPA phosphorylation and dephosphorylation are important for HR, but its effect on RAD52 mediator function is unknown. Here, we show that RPA phosphorylation is required for RAD52 to salvage HR in BRCA-deficient cells. In BRCA2-depleted human cells, in which the only available mediator pathway is RAD52 dependent, the expression of a phosphorylation-deficient RPA mutant reduced HR. Furthermore, RPA-phosphomutant cells showed reduced association of RAD52 with RAD51. Interestingly, there was no effect of RPA phosphorylation on RAD52 recruitment to repair foci. Finally, we show that RPA phosphorylation does not affect RAD52-dependent ssDNA annealing. Thus, although RAD52 can be recruited independently of RPA's phosphorylation status, RPA phosphorylation is required for RAD52's association with RAD51 and its subsequent promotion of RAD52-mediated HR.


Assuntos
Reparo do DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Estafilocócica A/metabolismo , Reparo do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Humanos , Fosforilação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Reparo de DNA por Recombinação/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA