Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 86(1): 213-223, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35821127

RESUMO

Open-cast mining leads to the loss of naturally developed soils and their ecosystem functions and services. Soil restoration after mining aims to restore the agricultural productivity in which the functions of the fungal community play a crucial role. Whether fungi reach a comparable functional state as in the soil before mining within half a century of recultivation is still unanswered. Here, we characterised the soil fungal community using ITS amplicon Illumina sequencing across a 52-year chronosequence of agricultural recultivation after open-cast mining in northern Europe. Both taxonomic and functional community composition showed profound shifts over time, which could be attributed to the changes in nutrient status, especially phosphorus availability. However, taxonomic composition did not reach the pre-mining state, whereas functional composition did. Importantly, we identified a positive development of arbuscular mycorrhizal root fungal symbionts after the initial three years of alfalfa cultivation, followed by a decline after conversion to conventional farming, with arbuscular mycorrhizal fungi being replaced by soil saprobes. We conclude that appropriate agricultural management can steer the fungal community to its functional pre-mining state despite stochasticity in the reestablishment of soil fungal communities. Nonetheless, conventional agricultural management results in the loss of plant symbionts, favouring non-symbiotic fungi.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Fungos , Microbiologia do Solo , Agricultura , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Plantas/microbiologia , Solo/química , Íntrons/genética , Mineração , Biodiversidade
2.
Rapid Commun Mass Spectrom ; 36(22): e9370, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35906712

RESUMO

RATIONALE: Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni ) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15 N in NO3 - and NH4 + and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking. METHODS: Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15 N in NO3 - and NH4 + . The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2 O (CM-N2 O) or N2 (CM-N2 ), and (c) the denitrifier (DN) methods. RESULTS: The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2 O performing superior for both NO3 - and NH4 + , followed by DN. Laboratories using MD significantly underestimated the "true" values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15 N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3 - and ± 32.9‰ for NH4 + ; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered. CONCLUSIONS: The inconsistency among all methods and laboratories raises concern about reported δ15 N values particularly from environmental samples.


Assuntos
Ecossistema , Nitrogênio , Laboratórios , Isótopos de Nitrogênio/análise
3.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274502

RESUMO

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Assuntos
Ecossistema , Ciência Ambiental , Biodiversidade , Ecologia , Solo
4.
New Phytol ; 226(1): 98-110, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31792975

RESUMO

Root water uptake is a key ecohydrological process for which a physically based understanding has been developed in the past decades. However, due to methodological constraints, knowledge gaps remain about the plastic response of whole plant root systems to a rapidly changing environment. We designed a laboratory system for nondestructive monitoring of stable isotopic composition in plant transpiration of a herbaceous species (Centaurea jacea) and of soil water across depths, taking advantage of newly developed in situ methods. Daily root water uptake profiles were obtained using a statistical Bayesian multisource mixing model. Fast shifts in the isotopic composition of both soil and transpiration water could be observed with the setup and translated into dynamic and pronounced shifts of the root water uptake profile, even in well watered conditions. The incorporation of plant physiological and soil physical information into statistical modelling improved the model output. A simple exercise of water balance closure underlined the nonunique relationship between root water uptake profile on the one hand, and water content and root distribution profiles on the other, illustrating the continuous adaption of the plant water uptake as a function of its root hydraulic architecture and soil water availability during the experiment.


Assuntos
Centaurea , Raízes de Plantas , Solo , Teorema de Bayes , Raízes de Plantas/fisiologia , Transpiração Vegetal , Água
5.
Glob Chang Biol ; 26(6): 3601-3626, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32154969

RESUMO

Yield development of agricultural crops over time is not merely the result of genetic and agronomic factors, but also the outcome of a complex interaction between climatic and site-specific soil conditions. However, the influence of past climatic changes on yield trends remains unclear, particularly under consideration of different soil conditions. In this study, we determine the effects of single agrometeorological factors on the evolution of German winter wheat yields between 1958 and 2015 from 298 published nitrogen (N)-fertilization experiments. For this purpose, we separate climatic from genetic and agronomic yield effects using linear mixed effect models and estimate the climatic influence based on a coefficient of determination for these models. We found earlier occurrence of wheat growth stages, and shortened development phases except for the phase of stem elongation. Agrometeorological factors are defined as climate covariates related to the growth of winter wheat. Our results indicate a general and strong effect of agroclimatic changes on yield development, in particular due to increasing mean temperatures and heat stress events during the grain-filling period. Except for heat stress days with more than 31°C, yields at sites with higher yield potential were less prone to adverse weather effects than at sites with lower yield potential. Our data furthermore reveal that a potential yield levelling, as found for many West-European countries, predominantly occurred at sites with relatively low yield potential and about one decade earlier (mid-1980s) compared to averaged yield data for the whole of Germany. Interestingly, effects related to high precipitation events were less relevant than temperature-related effects and became relevant particularly during the vegetative growth phase. Overall, this study emphasizes the sensitivity of yield productivity to past climatic conditions, under consideration of regional differences, and underlines the necessity of finding adaptation strategies for food production under ongoing and expected climate change.


Assuntos
Produtos Agrícolas , Triticum , Mudança Climática , Europa (Continente) , Alemanha , Estações do Ano
6.
Environ Res ; 179(Pt A): 108806, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31627026

RESUMO

The last step of denitrification, i.e. the reduction of N2O to N2, has been intensively studied in the laboratory to understand the denitrification process, predict nitrogen fertiliser losses, and to establish mitigation strategies for N2O. However, assessing N2 production via denitrification at large spatial scales is still not possible due to lack of reliable quantitative approaches. Here, we present a novel numerical "mapping approach" model using the δ15Nsp/δ18O slope that has been proposed to potentially be used to indirectly quantify N2O reduction to N2 at field or larger spatial scales. We evaluate the model using data obtained from seven independent soil incubation studies conducted under a He-O2 atmosphere. Furthermore, we analyse the contribution of different parameters to the uncertainty of the model. The model performance strongly differed between studies and incubation conditions. Re-evaluation of the previous data set demonstrated that using soils-specific instead of default endmember values could largely improve model performance. Since the uncertainty of modelled N2O reduction was relatively high, further improvements to estimate model parameters to obtain more precise estimations remain an on-going matter, e.g. by determination of soil-specific isotope fractionation factors and isotopocule endmember values of N2O production processes using controlled laboratory incubations. The applicability of the mapping approach model is promising with an increasing availability of real-time and field based analysis of N2O isotope signatures.


Assuntos
Desnitrificação , Modelos Químicos , Dióxido de Nitrogênio/análise , Nitrogênio/análise , Solo , Óxido Nitroso , Incerteza
7.
Glob Chang Biol ; 23(3): 1338-1352, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27416519

RESUMO

Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3- (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2 O fluxes as well as hydrological NH4+ and NO2- fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.


Assuntos
Mudança Climática , Ciclo do Nitrogênio , Solo , Ecossistema , Nitrificação , Nitrogênio , Áreas Alagadas
8.
Glob Chang Biol ; 23(10): 4068-4083, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28142211

RESUMO

Animal manure application as organic fertilizer does not only sustain agricultural productivity and increase soil organic carbon (SOC) stocks, but also affects soil nitrogen cycling and nitrous oxide (N2 O) emissions. However, given that the sign and magnitude of manure effects on soil N2 O emissions is uncertain, the net climatic impact of manure application in arable land is unknown. Here, we performed a global meta-analysis using field experimental data published in peer-reviewed journals prior to December 2015. In this meta-analysis, we quantified the responses of N2 O emissions to manure application relative to synthetic N fertilizer application from individual studies and analyzed manure characteristics, experimental duration, climate, and soil properties as explanatory factors. Manure application significantly increased N2 O emissions by an average 32.7% (95% confidence interval: 5.1-58.2%) compared to application of synthetic N fertilizer alone. The significant stimulation of N2 O emissions occurred following cattle and poultry manure applications, subsurface manure application, and raw manure application. Furthermore, the significant stimulatory effects on N2 O emissions were also observed for warm temperate climate, acid soils (pH < 6.5), and soil texture classes of sandy loam and clay loam. Average direct N2 O emission factors (EFs) of 1.87% and 0.24% were estimated for upland soils and rice paddy soils receiving manure application, respectively. Although manure application increased SOC stocks, our study suggested that the benefit of increasing SOC stocks as GHG sinks could be largely offset by stimulation of soil N2 O emissions and aggravated by CH4 emissions if, particularly for rice paddy soils, the stimulation of CH4 emissions by manure application was taken into account.


Assuntos
Agricultura , Ciclo do Carbono , Óxido Nitroso , Solo , Animais , Carbono , Bovinos , Fertilizantes , Esterco
9.
Rapid Commun Mass Spectrom ; 31(16): 1333-1343, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28557104

RESUMO

RATIONALE: Chemodenitrification is an important N2 O source in soil; however, knowledge about the production of CO2 and N2 O from abiotic nitrite-SOM reactions, especially the N2 O isotopic signatures (intramolecular 15 N site preference (SP), and δ15 Nbulk and δ18 O values), is quite limited at present. METHODS: N2 O and CO2 emissions from chemical reactions of nitrite with lignin products were determined with gas chromatography, and their response surfaces as a function of pH from 3 to 6 and nitrite concentration from 0.1 to 0.5 mM were explored with polynomial regression. The intramolecular 15 N distribution of N2 O, as well as δ15 Nbulk and δ18 O values, were measured with an isotope ratio mass spectrometer coupled to an online pre-concentration unit. The variability in N2 O SP values was tested from pH 3 to 5, and for nitrite concentrations from 0.3 to 0.5 mM. RESULTS: Both CO2 and N2 O emissions varied largely with pH and the structure of lignin products. The highest N2 O emission occurred at pH 4-5 in 4-hydroxy-3,5-dimethoxybenzaldehyde and 4-hydroxy-3,5-dimethoxybenzoic acid treatments, and at pH 3 in the treatments with lignin, 4-hydroxy-3-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxybenzaldehyde, and 4-hydroxybenzoic acid. A wide range of N2 O SP values (11.9-37.4‰), which was pH dependent and not distinguishable from microbial pathways, was observed at pH 3-5. The δ15 Nbulk and δ18 O values of N2 O were both in a similar range to that reported for fungal denitrification and bacterial denitrification. CONCLUSIONS: These results present the first characterization of the isotopic composition of N2 O from chemodenitrification in pure chemical assays. Chemical reactions of nitrite with lignin are pH-dependent and associated with substantial CO2 and N2 O emissions. The SP values of N2 O derived from chemodenitrification were neither distinguishable from the biotic pathways nor remained stable with varying pH. Therefore, the use of N2 O isotopic signatures for source partitioning is restricted when chemodenitrification is contributing significantly to N2 O emission.

10.
Environ Sci Technol ; 51(22): 13122-13132, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29039187

RESUMO

Abiotic processes involving the reactive ammonia-oxidation intermediates nitric oxide (NO) or hydroxylamine (NH2OH) for N2O production have been indicated recently. The latter process would require the availability of substantial amounts of free NH2OH for chemical reactions during ammonia (NH3) oxidation, but little is known about extracellular NH2OH formation by the different clades of ammonia-oxidizing microbes. Here we determined extracellular NH2OH concentrations in culture media of several ammonia-oxidizing bacteria (AOB) and archaea (AOA), as well as one complete ammonia oxidizer (comammox) enrichment (Ca. Nitrospira inopinata) during incubation under standard cultivation conditions. NH2OH was measurable in the incubation media of Nitrosomonas europaea, Nitrosospira multiformis, Nitrososphaera gargensis, and Ca. Nitrosotenuis uzonensis, but not in media of the other tested AOB and AOA. NH2OH was also formed by the comammox enrichment during NH3 oxidation. This enrichment exhibited the largest NH2OH:final product ratio (1.92%), followed by N. multiformis (0.56%) and N. gargensis (0.46%). The maximum proportions of NH4+ converted to N2O via extracellular NH2OH during incubation, estimated on the basis of NH2OH abiotic conversion rates, were 0.12%, 0.08%, and 0.14% for AOB, AOA, and Ca. Nitrospira inopinata, respectively, and were consistent with published NH4+:N2O conversion ratios for AOB and AOA.


Assuntos
Amônia , Nitrosomonas europaea , Archaea , Nitrificação , Óxido Nitroso , Oxirredução , Filogenia , Microbiologia do Solo
12.
Rapid Commun Mass Spectrom ; 30(18): 2017-26, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27470312

RESUMO

RATIONALE: Denitrification (the reduction of oxidized forms of inorganic nitrogen (N) to N2 O and N2 ) from upland soils is considered to be the least well-understood process in the global N cycle. The main reason for this lack of understanding is that the terminal product (N2 ) of denitrification is extremely difficult to measure against the large atmospheric background. METHODS: We describe a system that combines the (15) N-tracer technique with a 40-fold reduced N2 (2% v/v) atmosphere in a fully automated incubation setup for direct quantification of N2 and N2 O emissions. The δ(15) N values of the emitted N2 and N2 O were determined using a custom-built gas preparation unit that was connected to a DELTA V Plus isotope ratio mass spectrometer. The system was tested on a pasture soil from sub-tropical Australia under different soil moisture conditions and combined with (15) N tracing in extractable soil N pools to establish a full N balance. RESULTS: The method proved to be highly sensitive for detecting N2 (1.12 µg N h(-1)  kg(-1) dry soil (ds)) and N2 O (0.36 µg N h(-1)  kg(-1) ds) emissions. The main end product of denitrification in the investigated soil was N2 O for both water contents, with N2 accounting for only 3% to 13% of the total denitrification losses. Between 90 and 95% of the added (15) N fertiliser could be recovered in N gases and extractable soil N pools. CONCLUSIONS: The high and N2 O-dominated denitrification rates found in this study are pointing at both the high ecological and the agronomic importance of denitrification in subtropical pasture soils. The new system allows for a direct and highly sensitive detection of N2 and N2 O fluxes from soils and may help to significantly improve our mechanistic understanding of N cycling and denitrification in terrestrial agro-ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Desnitrificação , Isótopos de Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Limite de Detecção , Modelos Lineares , Isótopos de Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Microbiologia do Solo
13.
Rapid Commun Mass Spectrom ; 30(5): 620-6, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26842583

RESUMO

RATIONALE: The aim of this study was to determine the impact of isotope fractionation associated with N2O reduction during soil denitrification on N2O site preference (SP) values and hence quantify the potential bias on SP-based N2O source partitioning. METHODS: The N2O SP values (n = 431) were derived from six soil incubation studies in N2-free atmosphere, and determined by isotope ratio mass spectrometry (IRMS). The N2 and N2O concentrations were measured directly by gas chromatography. Net isotope effects (NIE) during N2O reduction to N2 were compensated for using three different approaches: a closed-system model, an open-system model and a dynamic apparent NIE function. The resulting SP values were used for N2O source partitioning based on a two end-member isotopic mass balance. RESULTS: The average SP0 value, i.e. the average SP values of N2O prior to N2O reduction, was recalculated with the closed-system model, resulting in -2.6 ‰ (±9.5), while the open-system model and the dynamic apparent NIE model gave average SP0 values of 2.9 ‰ (±6.3) and 1.7 ‰ (±6.3), respectively. The average source contribution of N2O from nitrification/fungal denitrification was 18.7% (±21.0) according to the closed-system model, while the open-system model and the dynamic apparent NIE function resulted in values of 31.0% (±14.0) and 28.3% (±14.0), respectively. CONCLUSIONS: Using a closed-system model with a fixed SP isotope effect may significantly overestimate the N2O reduction effect on SP values, especially when N2O reduction rates are high. This is probably due to soil inhomogeneity and can be compensated for by the application of a dynamic apparent NIE function, which takes the variable reduction rates in soil micropores into account.


Assuntos
Óxido Nitroso/análise , Solo/química , Desnitrificação , Espectrometria de Massas , Nitrificação , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Oxirredução
14.
Nature ; 464(7290): 881-4, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20376147

RESUMO

Atmospheric concentrations of the greenhouse gas nitrous oxide (N(2)O) have increased significantly since pre-industrial times owing to anthropogenic perturbation of the global nitrogen cycle, with animal production being one of the main contributors. Grasslands cover about 20 per cent of the temperate land surface of the Earth and are widely used as pasture. It has been suggested that high animal stocking rates and the resulting elevated nitrogen input increase N(2)O emissions. Internationally agreed methods to upscale the effect of increased livestock numbers on N(2)O emissions are based directly on per capita nitrogen inputs. However, measurements of grassland N(2)O fluxes are often performed over short time periods, with low time resolution and mostly during the growing season. In consequence, our understanding of the daily and seasonal dynamics of grassland N(2)O fluxes remains limited. Here we report year-round N(2)O flux measurements with high and low temporal resolution at ten steppe grassland sites in Inner Mongolia, China. We show that short-lived pulses of N(2)O emission during spring thaw dominate the annual N(2)O budget at our study sites. The N(2)O emission pulses are highest in ungrazed steppe and decrease with increasing stocking rate, suggesting that grazing decreases rather than increases N(2)O emissions. Our results show that the stimulatory effect of higher stocking rates on nitrogen cycling and, hence, on N(2)O emission is more than offset by the effects of a parallel reduction in microbial biomass, inorganic nitrogen production and wintertime water retention. By neglecting these freeze-thaw interactions, existing approaches may have systematically overestimated N(2)O emissions over the last century for semi-arid, cool temperate grasslands by up to 72 per cent.


Assuntos
Criação de Animais Domésticos , Animais Domésticos/metabolismo , Ecossistema , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Microbiologia do Solo , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/estatística & dados numéricos , Animais , Atmosfera/química , Biomassa , China , Clima Desértico , Congelamento , Efeito Estufa , Nitrogênio/metabolismo , Plantas/metabolismo , Poaceae/metabolismo , Estações do Ano , Neve , Solo/análise , Água/análise , Água/metabolismo
15.
Plant Physiol ; 165(1): 37-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24590857

RESUMO

The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. ß-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.


Assuntos
Hemiterpenos/biossíntese , Análise do Fluxo Metabólico/métodos , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Populus/metabolismo , Butadienos , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Regulação para Baixo/efeitos da radiação , Eritritol/análogos & derivados , Eritritol/metabolismo , Hemiterpenos/metabolismo , Marcação por Isótopo , Luz , Modelos Biológicos , Compostos Organofosforados/metabolismo , Pentanos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos da radiação , Plastídeos/enzimologia , Plastídeos/efeitos da radiação , Populus/efeitos da radiação , Fosfatos Açúcares/metabolismo , Temperatura , Transferases/metabolismo
16.
Rapid Commun Mass Spectrom ; 28(18): 1995-2007, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25132300

RESUMO

RATIONALE: In recent years, research and applications of the N2O site-specific nitrogen isotope composition have advanced, reflecting awareness of the contribution of N2O to the anthropogenic greenhouse effect, and leading to significant progress in instrument development. Further dissemination of N2O isotopomer analysis, however, is hampered by a lack of internationally agreed gaseous N2O reference materials and an uncertain compatibility of different laboratories and analytical techniques. METHODS: In a first comparison approach, eleven laboratories were each provided with N2O at tropospheric mole fractions (target gas T) and two reference gases (REF1 and REF2). The laboratories analysed all gases, applying their specific analytical routines. Compatibility of laboratories was assessed based on N2O isotopocule data for T, REF1 and REF2. Results for T were then standardised using REF1 and REF2 to evaluate the potential of N2O reference materials for improving compatibility between laboratories. RESULTS: Compatibility between laboratories depended on the analytical technique: isotope ratio mass spectrometry (IRMS) results showed better compatibility for δ(15)N values, while the performance of laser spectroscopy was superior with respect to N2O site preference. This comparison, however, is restricted by the small number of participating laboratories applying laser spectroscopy. Offset and two-point calibration correction of the N2O isotopomer data significantly improved the consistency of position-dependent nitrogen isotope data while the effect on δ(15)N values was only minor. CONCLUSIONS: The study reveals that for future research on N2O isotopocules, standardisation against N2O reference material is essential to improve interlaboratory compatibility. For atmospheric monitoring activities, we suggest N2O in whole air as a unifying scale anchor.


Assuntos
Gases/química , Espectrometria de Massas , Isótopos de Nitrogênio/química , Óxido Nitroso/química , Algoritmos , Gases/análise , Lasers , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Espectrometria de Massas/tendências , Isótopos de Nitrogênio/análise , Óxido Nitroso/análise
17.
New Phytol ; 198(1): 116-126, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23383758

RESUMO

Carbon (C) allocation strongly influences plant and soil processes. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. Using in situ (13) CO(2) pulse labeling, we studied the effects of 1 wk of shading on the transfer of recent photoassimilates between sugars and starch of above- and belowground plant organs and to soil microbial communities of a mountain meadow. C allocation to roots and microbial communities was rapid. Shading strongly reduced sucrose and starch concentrations in shoots, but not roots, and affected tracer dynamics in sucrose and starch of shoots, but not roots: recent C was slowly incorporated into root starch irrespective of the shading treatment. Shading reduced leaf respiration more strongly than root respiration. It caused no reduction in the amount of (13) C incorporated into fungi and Gram-negative bacteria, but increased its residence time. These findings suggest that, under interrupted C supply, belowground C allocation (as reflected by the amount of tracer allocated to root starch, soil microbial communities and belowground respiration) was maintained at the expense of aboveground C status, and that C source strength may affect the turnover of recent plant-derived C in soil microbial communities.


Assuntos
Altitude , Carbono/metabolismo , Ecossistema , Poaceae/fisiologia , Análise de Variância , Biomassa , Metabolismo dos Carboidratos , Isótopos de Carbono , Respiração Celular , Fosfolipídeos/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Amido/metabolismo , Sacarose/metabolismo , Fatores de Tempo
18.
J Environ Qual ; 52(1): 1-12, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36327389

RESUMO

The application of livestock slurry in soils can lead to nitrogen (N) losses through ammonia (NH3 ) emission or nitrate (NO3 - ) leaching. Oxidized biochar has great potential to mitigate N losses due to its strong adsorption capacity; however, the effects of oxidized biochar in different soils treated with slurry are currently unclear. Here, we investigated the effect of untreated and oxidized biochar (applied at a rate of 50 kg C m-3 slurry) on reducing N losses in a laboratory experiment with three different soils (loamy sand, sandy loam, loam) amended with cattle slurry at an application rate of 73 kg N ha-1 . Oxidized biochar reduced NH3 emissions by 64-75% in all soils, whereas untreated biochar reduced NH3 emissions by 61% only in the loamy sand. Oxidized biochar significantly reduced the NO3 - content in the soil solution of the loamy sand in the early phase of the incubation and led to a significantly higher NO3 - concentration in the same soil compared with the slurry-only treatment at the end of the experiment, indicating a significant increase in NO3 - retention in this organic C-poor soil. We conclude that oxidized biochar can reduce N losses, both in the form of NH3 emission and NO3 - leaching, from cattle slurry applied to soil, particularly in soil with soil organic carbon content <1% and pH <5 (i.e., oxidized biochar can serve as a means for improving the quality of marginal and acidic soils).


Assuntos
Areia , Solo , Bovinos , Animais , Solo/química , Carbono , Carvão Vegetal , Nitrogênio
19.
Microorganisms ; 11(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36838273

RESUMO

Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta, together with green cuttings and straw, with and without biochar. Beta-lactamase genes blaCTX-M, blaIMP, and blaTEM conferring resistance to broad-spectrum beta-lactam antibiotics, as well as horizontal gene transfer marker genes, intI1 and korB, were quantified using qPCR. We found low concentrations of the beta-lactamase genes in all samples, with non-significant mean decreases in blaCTX-M and blaTEM copy numbers and a mean increase in blaIMP copy numbers. The decrease in both intI1 and korB genes from start to end of composting indicated that thermophilic composting can decrease the horizontal spread of resistance genes. Thus, thermophilic composting can be a suitable treatment for the recycling of human excreta.

20.
J Environ Qual ; 52(4): 814-828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37117005

RESUMO

Ecological sanitation combined with thermophilic composting is a viable option to transform human excreta into a stabilized, pathogen-free, and nutrient-rich fertilizer. In combination with suitable bulking materials such as sawdust and straw, and additives such as biochar, this could also be a suitable waste management strategy for reducing greenhouse gas (GHG) emissions. In this study, we conducted a 143-days thermophilic composting of human excreta or cattle manure together with teff straw, organic waste, and biochar to investigate the effect that biochar has on GHG (CO2 , N2 O, and CH4 ) and NH3 emissions. The composting was performed in wooden boxes (1.5 × 1.5 × 1.4 m3 ), GHG were measured by using a portable FTIR gas analyzer and NH3 was sampled as ammonium in an H2 SO4 trap. We found that the addition of biochar significantly reduced CH4 emissions by 91% in the cattle manure compost, and N2 O emissions by 56%-57% in both humanure and cattle manure composts. Overall, non-CO2 GHG emissions were reduced by 51%-71%. In contrast, we did not observe a significant biochar effect on CO2 and NH3 emissions. Previous data already showed that it is possible to sanitize human fecal material when using this composting method. Our results suggest that thermophilic composting with biochar addition is a safe and cost-effective waste management practice for producing a nutrient-rich fertilizer from human excreta, while reducing GHG emissions at the same time.


Assuntos
Compostagem , Gases de Efeito Estufa , Humanos , Bovinos , Animais , Esterco , Fertilizantes , Carvão Vegetal , Metano/análise , Solo , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA