Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Med Genet A ; 158A(7): 1535-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22614953

RESUMO

Braddock-Carey syndrome is characterized by Pierre Robin sequence, agenesis of the corpus callosum, facial dysmorphisms, developmental delay, and congenital thrombocytopenia. Recently, Braddock-Carey syndrome was demonstrated to be caused by chromosomal microdeletion in 21q22 including the RUNX1 gene, whose haploinsufficiency is responsible for thrombocytopenia phenotype. Therefore, the syndrome has emerged as a contiguous gene deletion syndrome. Here, we describe an infant with Pierre Robin sequence, facial anomalies, congenital heart defects, hypotonia, and the absence of thrombocytopenia, who was found to have a 1.9 Mb microdeletion within the Braddock-Carey contiguous deletion syndrome region. This deletion spares the RUNX1 gene, narrowing the genomic region responsible for a part of the Braddock-Carey syndrome phenotype. Further studies are awaited to understand the role of the genes located within 21q22 in the pathogenesis of Braddock-Carey syndrome.


Assuntos
Agenesia do Corpo Caloso , Deleção Cromossômica , Cromossomos Humanos Par 21 , Fácies , Transtornos do Crescimento , Fenótipo , Síndrome de Pierre Robin , Trombocitopenia/congênito , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Hibridização Genômica Comparativa , Feminino , Humanos , Lactente , Cariotipagem
2.
J Clin Invest ; 130(3): 1431-1445, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794431

RESUMO

Epigenetic integrity is critical for many eukaryotic cellular processes. An important question is how different epigenetic regulators control development and influence disease. Lysine acetyltransferase 8 (KAT8) is critical for acetylation of histone H4 at lysine 16 (H4K16), an evolutionarily conserved epigenetic mark. It is unclear what roles KAT8 plays in cerebral development and human disease. Here, we report that cerebrum-specific knockout mice displayed cerebral hypoplasia in the neocortex and hippocampus, along with improper neural stem and progenitor cell (NSPC) development. Mutant cerebrocortical neuroepithelia exhibited faulty proliferation, aberrant neurogenesis, massive apoptosis, and scant H4K16 propionylation. Mutant NSPCs formed poor neurospheres, and pharmacological KAT8 inhibition abolished neurosphere formation. Moreover, we describe KAT8 variants in 9 patients with intellectual disability, seizures, autism, dysmorphisms, and other anomalies. The variants altered chromobarrel and catalytic domains of KAT8, thereby impairing nucleosomal H4K16 acetylation. Valproate was effective for treating epilepsy in at least 2 of the individuals. This study uncovers a critical role of KAT8 in cerebral and NSPC development, identifies 9 individuals with KAT8 variants, and links deficient H4K16 acylation directly to intellectual disability, epilepsy, and other developmental anomalies.


Assuntos
Hipocampo/enzimologia , Histona Acetiltransferases/metabolismo , Deficiência Intelectual/enzimologia , Neocórtex/enzimologia , Células-Tronco Neurais/enzimologia , Acetilação , Animais , Células HEK293 , Hipocampo/patologia , Histona Acetiltransferases/genética , Humanos , Deficiência Intelectual/patologia , Camundongos , Camundongos Knockout , Neocórtex/patologia , Células-Tronco Neurais/patologia , Nucleossomos/genética , Nucleossomos/metabolismo
3.
Genetics ; 198(2): 723-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25316788

RESUMO

Neurodevelopmental defects in humans represent a clinically heterogeneous group of disorders. Here, we report the genetic and functional dissection of a multigenerational pedigree with an X-linked syndromic disorder hallmarked by microcephaly, growth retardation, and seizures. Using an X-linked intellectual disability (XLID) next-generation sequencing diagnostic panel, we identified a novel missense mutation in the gene encoding 60S ribosomal protein L10 (RPL10), a locus associated previously with autism spectrum disorders (ASD); the p.K78E change segregated with disease under an X-linked recessive paradigm while, consistent with causality, carrier females exhibited skewed X inactivation. To examine the functional consequences of the p.K78E change, we modeled RPL10 dysfunction in zebrafish. We show that endogenous rpl10 expression is augmented in anterior structures, and that suppression decreases head size in developing morphant embryos, concomitant with reduced bulk translation and increased apoptosis in the brain. Subsequently, using in vivo complementation, we demonstrate that p.K78E is a loss-of-function variant. Together, our findings suggest that a mutation within the conserved N-terminal end of RPL10, a protein in close proximity to the peptidyl transferase active site of the 60S ribosomal subunit, causes severe defects in brain formation and function.


Assuntos
Microcefalia/genética , Proteínas Ribossômicas/genética , Adulto , Animais , Apoptose , Encéfalo/patologia , Proliferação de Células , Pré-Escolar , Feminino , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Proteína Ribossômica L10 , Adulto Jovem , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA