Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Ther ; 25(12): 2727-2742, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28882452

RESUMO

The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies.


Assuntos
Dependovirus/genética , Expressão Gênica , Vetores Genéticos/genética , beta-Glucosidase/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Ativação Enzimática , Ordem dos Genes , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Transdução Genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Biochem Soc Trans ; 41(1): 231-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356288

RESUMO

ACRs (atypical chemokine receptors) were initially referred to as 'silent' receptors on the basis of a lack of signalling and functional activities that are typically observed with conventional chemokine receptors. Although ACRs do not directly induce cell migration, they indirectly control leucocyte recruitment by shaping chemokine gradients in tissues through degradation, transcytosis or local concentration of their cognate ligands. Recent evidence also suggests that these biological activities are supported by G-protein-independent, ß-arrestin-dependent signalling events. In the present article, we review current knowledge on structural and signalling properties of ACRs that are changing our view on this entire class of receptors from silent to endogenous ß-arrestin-biased signalling receptors.


Assuntos
Receptores de Quimiocinas/fisiologia , Sequência de Aminoácidos , Arrestinas/metabolismo , Humanos , Dados de Sequência Molecular , Conformação Proteica , Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transcitose , beta-Arrestinas
3.
Front Mol Biosci ; 9: 1060555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483536

RESUMO

ACKR2 is an atypical chemokine receptor which is structurally uncoupled from G proteins and is unable to activate signaling pathways used by conventional chemokine receptors to promote cell migration. Nonetheless, ACKR2 regulates inflammatory and immune responses by shaping chemokine gradients in tissues via scavenging inflammatory chemokines. To investigate the signaling pathways downstream to ACKR2, a quantitative SILAC-based phosphoproteomic analysis coupled with a systems biology approach with network analysis, was carried out on a HEK293 cell model expressing either ACKR2 or its conventional counterpart CCR5. The model was stimulated with the common agonist CCL3L1 for short (3 min) and long (30 min) durations. As expected, many of the identified proteins are known to participate in conventional signal transduction pathways and in the regulation of cytoskeleton dynamics. However, our analyses revealed unique phosphorylation and network signatures, suggesting roles for ACKR2 other than its scavenger activity. In conclusion, the mapping of phosphorylation events at a holistic level indicated that conventional and atypical chemokine receptors differ in signaling properties. This provides an unprecedented level of detail in chemokine receptor signaling and identifying potential targets for the regulation of ACKR2 and CCR5 function.

4.
Nat Commun ; 12(1): 4050, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193871

RESUMO

The investigation of genetic forms of juvenile neurodegeneration could shed light on the causative mechanisms of neuronal loss. Schinzel-Giedion syndrome (SGS) is a fatal developmental syndrome caused by mutations in the SETBP1 gene, inducing the accumulation of its protein product. SGS features multi-organ involvement with severe intellectual and physical deficits due, at least in part, to early neurodegeneration. Here we introduce a human SGS model that displays disease-relevant phenotypes. We show that SGS neural progenitors exhibit aberrant proliferation, deregulation of oncogenes and suppressors, unresolved DNA damage, and resistance to apoptosis. Mechanistically, we demonstrate that high SETBP1 levels inhibit P53 function through the stabilization of SET, which in turn hinders P53 acetylation. We find that the inheritance of unresolved DNA damage in SGS neurons triggers the neurodegenerative process that can be alleviated either by PARP-1 inhibition or by NAD + supplementation. These results implicate that neuronal death in SGS originates from developmental alterations mainly in safeguarding cell identity and homeostasis.


Assuntos
Anormalidades Múltiplas/patologia , Proteínas de Transporte/metabolismo , Anormalidades Craniofaciais/patologia , Dano ao DNA , Deformidades Congênitas da Mão/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Deficiência Intelectual/patologia , Mutação , Unhas Malformadas/patologia , Células-Tronco Neurais/patologia , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Unhas Malformadas/genética , Unhas Malformadas/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/genética , Organoides
5.
Vaccines (Basel) ; 8(3)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957704

RESUMO

The atypical chemokine receptor ACKR2, formerly named D6, is a scavenger chemokine receptor with a non-redundant role in the control of inflammation and immunity. The scavenging activity of ACKR2 depends on its trafficking properties, which require actin cytoskeleton rearrangements downstream of a ß-arrestin1-Rac1-PAK1-LIMK1-cofilin-dependent signaling pathway. We here demonstrate that in basal conditions, ACKR2 trafficking properties require intact actin and microtubules networks. The dynamic turnover of actin filaments is required to sustain ACKR2 constitutive endocytosis, while both actin and microtubule networks are involved in processes regulating ACKR2 constitutive sorting to rapid, Rab4-dependent and slow, Rab11-dependent recycling pathways, respectively. After chemokine engagement, ACKR2 requires myosin Vb activity to promote its trafficking from Rab11-positive recycling endosomes to the plasma membrane, which sustains its scavenging activity. Other than cofilin phosphorylation, induction of the ß-arrestin1-dependent signaling pathway by ACKR2 agonists also leads to the rearrangement of microtubules, which is required to support the myosin Vb-dependent ACKR2 upregulation and its scavenging properties. Disruption of the actin-based cytoskeleton by the apoptosis-inducing agent staurosporine results in impaired ACKR2 internalization and chemokine degradation that is consistent with the emerging scavenging-independent activity of the receptor in apoptotic neutrophils instrumental for promoting efficient efferocytosis during the resolution of inflammation. In conclusion, we provide evidence that ACKR2 activates a ß-arrestin1-dependent signaling pathway, triggering both the actin and the microtubule cytoskeletal networks, which control its trafficking and scavenger properties.

6.
Stem Cell Reports ; 13(5): 832-846, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587993

RESUMO

Neuroferritinopathy (NF) is a movement disorder caused by alterations in the L-ferritin gene that generate cytosolic free iron. NF is a unique pathophysiological model for determining the direct consequences of cell iron dysregulation. We established lines of induced pluripotent stem cells from fibroblasts from two NF patients and one isogenic control obtained by CRISPR/Cas9 technology. NF fibroblasts, neural progenitors, and neurons exhibited the presence of increased cytosolic iron, which was also detectable as: ferritin aggregates, alterations in the iron parameters, oxidative damage, and the onset of a senescence phenotype, particularly severe in the neurons. In this spontaneous senescence model, NF cells had impaired survival and died by ferroptosis. Thus, non-ferritin-bound iron is sufficient per se to cause both cell senescence and ferroptotic cell death in human fibroblasts and neurons. These results provide strong evidence supporting the primary role of iron in neuronal aging and degeneration.


Assuntos
Ferroptose , Distúrbios do Metabolismo do Ferro/patologia , Ferro/metabolismo , Distrofias Neuroaxonais/patologia , Neurônios/patologia , Células Cultivadas , Senescência Celular , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Distúrbios do Metabolismo do Ferro/metabolismo , Pessoa de Meia-Idade , Distrofias Neuroaxonais/metabolismo , Neurônios/metabolismo
7.
Cell Rep ; 22(8): 2066-2079, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466734

RESUMO

Dysfunctions in mitochondrial dynamics and metabolism are common pathological processes associated with Parkinson's disease (PD). It was recently shown that an inherited form of PD and dementia is caused by mutations in the OPA1 gene, which encodes for a key player in mitochondrial fusion and structure. iPSC-derived neural cells from these patients exhibited severe mitochondrial fragmentation, respiration impairment, ATP deficits, and heightened oxidative stress. Reconstitution of normal levels of OPA1 in PD-derived neural cells normalized mitochondria morphology and function. OPA1-mutated neuronal cultures showed reduced survival in vitro. Intriguingly, selective inhibition of necroptosis effectively rescued this survival deficit. Additionally, dampening necroptosis in MPTP-treated mice protected from DA neuronal cell loss. This human iPSC-based model captures both early pathological events in OPA1 mutant neural cells and the beneficial effects of blocking necroptosis, highlighting this cell death process as a potential therapeutic target for PD.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/genética , Necrose , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Nat Commun ; 8: 14088, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169300

RESUMO

Schwann cells (SCs) generate the myelin wrapping of peripheral nerve axons and are promising candidates for cell therapy. However, to date a renewable source of SCs is lacking. In this study, we show the conversion of skin fibroblasts into induced Schwann cells (iSCs) by driving the expression of two transcription factors, Sox10 and Egr2. iSCs resembled primary SCs in global gene expression profiling and PNS identity. In vitro, iSCs wrapped axons generating compact myelin sheaths with regular nodal structures. Conversely, iSCs from Twitcher mice showed a severe loss in their myelinogenic potential, demonstrating that iSCs can be an attractive system for in vitro modelling of PNS diseases. The same two factors were sufficient to convert human fibroblasts into iSCs as defined by distinctive molecular and functional traits. Generating iSCs through direct conversion of somatic cells offers opportunities for in vitro disease modelling and regenerative therapies.


Assuntos
Reprogramação Celular/genética , Proteína 2 de Resposta de Crescimento Precoce/fisiologia , Fibroblastos/fisiologia , Fatores de Transcrição SOXE/fisiologia , Células de Schwann/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular , Técnicas de Cocultura , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Traumatismos dos Nervos Periféricos/terapia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Roedores , Células de Schwann/transplante , Células de Schwann/ultraestrutura , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia , Pele/citologia
9.
Sci Rep ; 6: 37540, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857203

RESUMO

The CRISPR/Cas9 system is a rapid and customizable tool for gene editing in mammalian cells. In particular, this approach has widely opened new opportunities for genetic studies in neurological disease. Human neurons can be differentiated in vitro from hPSC (human Pluripotent Stem Cells), hNPCs (human Neural Precursor Cells) or even directly reprogrammed from fibroblasts. Here, we described a new platform which enables, rapid and efficient CRISPR/Cas9-mediated genome targeting simultaneously with three different paradigms for in vitro generation of neurons. This system was employed to inactivate two genes associated with neurological disorder (TSC2 and KCNQ2) and achieved up to 85% efficiency of gene targeting in the differentiated cells. In particular, we devised a protocol that, combining the expression of the CRISPR components with neurogenic factors, generated functional human neurons highly enriched for the desired genome modification in only 5 weeks. This new approach is easy, fast and that does not require the generation of stable isogenic clones, practice that is time consuming and for some genes not feasible.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/classificação , Sistemas CRISPR-Cas/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Inativação Gênica , Vetores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo
10.
EMBO Mol Med ; 8(10): 1197-1211, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27516453

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is an early onset and severely disabling neurodegenerative disease for which no therapy is available. PKAN is caused by mutations in PANK2, which encodes for the mitochondrial enzyme pantothenate kinase 2. Its function is to catalyze the first limiting step of Coenzyme A (CoA) biosynthesis. We generated induced pluripotent stem cells from PKAN patients and showed that their derived neurons exhibited premature death, increased ROS production, mitochondrial dysfunctions-including impairment of mitochondrial iron-dependent biosynthesis-and major membrane excitability defects. CoA supplementation prevented neuronal death and ROS formation by restoring mitochondrial and neuronal functionality. Our findings provide direct evidence that PANK2 malfunctioning is responsible for abnormal phenotypes in human neuronal cells and indicate CoA treatment as a possible therapeutic intervention.


Assuntos
Coenzima A/metabolismo , Neurônios/patologia , Neurodegeneração Associada a Pantotenato-Quinase/fisiopatologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Morte Celular , Células Cultivadas , Humanos , Mitocôndrias/patologia , Células-Tronco Pluripotentes/fisiologia , Espécies Reativas de Oxigênio/metabolismo
11.
Methods Enzymol ; 521: 151-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23351738

RESUMO

Atypical chemokine receptors are a distinct subset of chemokine receptors able to modulate immune responses by acting as chemokine decoy/scavengers or transporters. Intracellular trafficking properties sustained by Gαi-independent signaling have emerged as a major determinant of their biological properties, which support continuous uptake, transport, and/or concentration, of the ligands. Here, we are providing methods to study both trafficking and signaling of this class of chemokine receptors focusing on the atypical chemokine receptor D6 that degrades inflammatory CC chemokines.


Assuntos
Citometria de Fluxo/métodos , Microscopia Confocal/métodos , Receptores CCR10/análise , Receptores CCR10/metabolismo , Animais , Quimiocinas CC/imunologia , Humanos , Immunoblotting/métodos , Proteínas Monoméricas de Ligação ao GTP/análise , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transporte Proteico , Receptores CCR10/imunologia , Transdução de Sinais , Transfecção/métodos , Receptor D6 de Quimiocina
12.
Mol Immunol ; 55(1): 87-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22939232

RESUMO

The atypical chemokine receptor D6 was initially called "silent" on the basis of lack of conventional signaling events that lead to directional cell migration. It has emerged that D6 is able to bind and drive to degradative compartments most inflammatory CC chemokines and that is able to convey G-protein independent signaling events to optimize its scavenging activity. We here summarize the knowledge available today on D6 structural and signaling properties and its essential role for the control of inflammatory cells traffic and proper development of the adaptive immune response.


Assuntos
Receptores CCR10/química , Receptores CCR10/fisiologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Animais , Movimento Celular/genética , Movimento Celular/imunologia , Humanos , Modelos Biológicos , Transporte Proteico , Receptores CCR10/genética , Receptores CCR10/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Receptor D6 de Quimiocina
13.
Chest ; 143(1): 98-106, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22797410

RESUMO

BACKGROUND: D6 is an atypical chemokine receptor involved in chemokine degradation and resolution of acute inflammatory responses in mice. Emerging evidence suggests that D6 might behave differently in human chronic inflammatory conditions. We, therefore, investigated the involvement of D6 in the immune responses in COPD, a chronic inflammatory condition of the lung. METHODS: D6 expression was quantified by immunohistochemistry in surgical resected lung specimens from 16 patients with COPD (FEV(1), 57% ± 6% predicted) and 18 control subjects with normal lung function (nine smokers and nine nonsmokers). BAL was also obtained and analyzed by flow cytometry, immunofluorescence, and molecular analysis for further assessment of D6 involvement. RESULTS: D6 expression in the lung was mainly detected in alveolar macrophages (AMs). The percentage of D6(+) AMs was markedly increased in patients with COPD as compared with both smoker and nonsmoker control subjects (P < .0005 for both). D6 expression was detected at both transcript and protein level in AMs but not in monocyte-derived macrophages. Finally, D6 expression was positively correlated with markers of immune activation (CD8(+) T lymphocytes, IL-32, tumor necrosis factor-α, B-cell activating factor of the tumor necrosis factor family, phospho-p38 mitogen-activated protein kinase) and negatively with lung function (FEV(1), FEV(1)/FVC). CONCLUSIONS: D6 is expressed in AMs from patients with COPD, and its expression correlates with the degree of functional impairment and markers of immune activation. Upregulation of D6 in AMs could indicate that, besides its known scavenger activity in acute inflammation, D6 may have additional roles in chronic inflammatory conditions possibly promoting immune activation.


Assuntos
Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores CCR10/metabolismo , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Fumar/metabolismo , Regulação para Cima , Receptor D6 de Quimiocina
14.
Sci Signal ; 6(273): ra30.1-11, S1-3, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23633677

RESUMO

Chemokines promote the recruitment of leukocytes to sites of infection and inflammation by activating conventional heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). Chemokines are also recognized by a set of atypical chemokine receptors (ACRs), which cannot induce directional cell migration but are required for the generation of chemokine gradients in tissues. ACRs are presently considered "silent receptors" because no G protein-dependent signaling activity is observed after their engagement by cognate ligands. We report that engagement of the ACR D6 by its ligands activates a ß-arrestin1-dependent, G protein-independent signaling pathway that results in the phosphorylation of the actin-binding protein cofilin through the Rac1-p21-activated kinase 1 (PAK1)-LIM kinase 1 (LIMK1) cascade. This signaling pathway is required for the increased abundance of D6 protein at the cell surface and for its chemokine-scavenging activity. We conclude that D6 is a signaling receptor that exerts its regulatory function on chemokine-mediated responses in inflammation and immunity through a distinct signaling pathway.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Arrestinas/metabolismo , Receptores CCR10/metabolismo , Transdução de Sinais/fisiologia , Fatores de Despolimerização de Actina/genética , Animais , Arrestinas/genética , Células CHO , Cricetinae , Cricetulus , Humanos , Quinases Lim/genética , Quinases Lim/metabolismo , Receptores CCR10/genética , beta-Arrestinas , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Receptor D6 de Quimiocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA