Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2318420121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621136

RESUMO

In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.


Assuntos
Linfócitos T CD4-Positivos , Ferro , Camundongos , Animais , Ferro/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Heme/metabolismo
2.
J Immunol ; 204(7): 1708-1713, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122995

RESUMO

Iron has long been established as a critical mediator of T cell development and proliferation. However, the mechanisms by which iron controls CD4 T cell activation and expansion remain poorly understood. In this study, we show that stimulation of CD4 T cells from C57BL/6 mice not only decreases total and labile iron levels but also leads to changes in the expression of iron homeostatic machinery. Additionally, restraining iron availability in vitro severely inhibited CD4 T cell proliferation and cell cycle progression. Although modulating cellular iron levels increased IL-2 production by activated T lymphocytes, CD25 expression and pSTAT5 levels were decreased, indicating that iron is necessary for IL-2R-mediated signaling. We also found that iron deprivation during T cell stimulation negatively impacts mitochondrial function, which can be reversed by iron supplementation. In all, we show that iron contributes to activation-induced T cell expansion by positively regulating IL-2R signaling and mitochondrial function.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/fisiologia , Ferro/imunologia , Mitocôndrias/imunologia , Receptores de Interleucina-2/imunologia , Animais , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
3.
Proc Natl Acad Sci U S A ; 116(15): 7439-7448, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910955

RESUMO

Cellular metabolism and signaling pathways are key regulators to determine conventional T cell fate and function, but little is understood about the role of cell metabolism for natural killer T (NKT) cell survival, proliferation, and function. We found that NKT cells operate distinct metabolic programming from CD4 T cells. NKT cells are less efficient in glucose uptake than CD4 T cells with or without activation. Gene-expression data revealed that, in NKT cells, glucose is preferentially metabolized by the pentose phosphate pathway and mitochondria, as opposed to being converted into lactate. In fact, glucose is essential for the effector functions of NKT cells and a high lactate environment is detrimental for NKT cell survival and proliferation. Increased glucose uptake and IFN-γ expression in NKT cells is inversely correlated with bacterial loads in response to bacterial infection, further supporting the significance of glucose metabolism for NKT cell function. We also found that promyelocytic leukemia zinc finger seemed to play a role in regulating NKT cells' glucose metabolism. Overall, our study reveals that NKT cells use distinct arms of glucose metabolism for their survival and function.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Mitocôndrias/metabolismo , Células T Matadoras Naturais/imunologia , Fosforilação Oxidativa , Via de Pentose Fosfato/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Glucose/genética , Glucose/imunologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Células T Matadoras Naturais/citologia , Via de Pentose Fosfato/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/imunologia
4.
PLoS Pathog ; 15(10): e1007903, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584995

RESUMO

HIV-1 gene expression is regulated by host and viral factors that interact with viral motifs and is influenced by proviral integration sites. Here, expression variation among integrants was followed for hundreds of individual proviral clones within polyclonal populations throughout successive rounds of virus and cultured cell replication, with limited findings using CD4+ cells from donor blood consistent with observations in immortalized cells. Tracking clonal behavior by proviral "zip codes" indicated that mutational inactivation during reverse transcription was rare, while clonal expansion and proviral expression states varied widely. By sorting for provirus expression using a GFP reporter in the nef open reading frame, distinct clone-specific variation in on/off proportions were observed that spanned three orders of magnitude. Tracking GFP phenotypes over time revealed that as cells divided, their progeny alternated between HIV transcriptional activity and non-activity. Despite these phenotypic oscillations, the overall GFP+ population within each clone was remarkably stable, with clones maintaining clone-specific equilibrium mixtures of GFP+ and GFP- cells. Integration sites were analyzed for correlations between genomic features and the epigenetic phenomena described here. Integrants inserted in the sense orientation of genes were more frequently found to be GFP negative than those in the antisense orientation, and clones with high GFP+ proportions were more distal to repressive H3K9me3 peaks than low GFP+ clones. Clones with low frequencies of GFP positivity appeared to expand more rapidly than clones for which most cells were GFP+, even though the tested proviruses were Vpr-. Thus, much of the increase in the GFP- population in these polyclonal pools over time reflected differential clonal expansion. Together, these results underscore the temporal and quantitative variability in HIV-1 gene expression among proviral clones that are conferred in the absence of metabolic or cell-type dependent variability, and shed light on cell-intrinsic layers of regulation that affect HIV-1 population dynamics.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Provírus/genética , Integração Viral/genética , Replicação Viral , Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/genética , Ensaios de Triagem em Larga Escala , Humanos , Células Jurkat , Transdução Genética
6.
Eur J Immunol ; 48(7): 1255-1257, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29572809

RESUMO

We show the presence of lymphoid tissue-resident PLZF+ CD45RA+ RO+ CD4 T cells in humans. They express HLA-DR, granzyme B, and perforin and are low on CCR7 like terminally differentiated effector memory (Temra) cells and are likely generated from effector T cells (Te) or from central (Tcm) or effector (Tem) memory T (Tcm) cells during immune responses. Tn, Naïve T cells.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Genótipo , Tecido Linfoide/imunologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Subpopulações de Linfócitos T/fisiologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Células Cultivadas , Granzimas/metabolismo , Antígenos HLA-DR/metabolismo , Humanos , Imunidade Celular , Memória Imunológica , Perforina/metabolismo
7.
J Immunol ; 199(10): 3478-3487, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021374

RESUMO

Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells.


Assuntos
Fígado/imunologia , Células T Matadoras Naturais/imunologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/imunologia , Animais , Apoptose , Células Cultivadas , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Estresse Oxidativo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética
8.
J Hepatol ; 67(1): 100-109, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28267623

RESUMO

BACKGROUND & AIMS: The liver is an immunologically-privileged organ. Breakdown of liver immune privilege has been reported in chronic liver disease; however, the role of adaptive immunity in liver injury is poorly defined. Nuclear factor-κB-inducing kinase (NIK) is known to regulate immune tissue development, but its role in maintaining liver homeostasis remains unknown. This study aimed to assess the role of NIK, particularly thymic NIK, in regulating liver adaptive immunity. METHODS: NIK was deleted systemically or conditionally using the Cre/loxp system. Cluster of differentiation [CD]4+ or CD8+ T cells were depleted using anti-CD4 or anti-CD8 antibody. Donor bone marrows or thymi were transferred into recipient mice. Immune cells were assessed by immunohistochemistry and flow cytometry. RESULTS: Global, but not liver-specific or hematopoietic lineage cell-specific, deletion of NIK induced fatal liver injury, inflammation, and fibrosis. Likewise, adoptive transfer of NIK-null, but not wild-type, thymi into immune-deficient mice induced liver inflammation, injury, and fibrosis in recipients. Liver inflammation was characterized by a massive expansion of T cells, particularly the CD4+ T cell subpopulation. Depletion of CD4+, but not CD8+, T cells fully protected against liver injury, inflammation, and fibrosis in NIK-null mice. NIK deficiency also resulted in inflammation in the lung, kidney, and pancreas, but to a lesser degree relative to the liver. CONCLUSIONS: Thymic NIK suppresses development of autoreactive T cells against liver antigens, and NIK deficiency in the thymus results in CD4+ T cell-orchestrated autoimmune hepatitis and liver fibrosis. Thus, thymic NIK is essential for the maintenance of liver immune privilege and liver homeostasis. LAY SUMMARY: We found that global or thymus-specific ablation of the NIK gene results in fatal autoimmune liver disease in mice. NIK-deficient mice develop liver inflammation, injury, and fibrosis. Our findings indicate that thymic NIK is essential for the maintenance of liver integrity and homeostasis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Hepatite Autoimune/etiologia , Cirrose Hepática Experimental/etiologia , Fígado/imunologia , Proteínas Serina-Treonina Quinases/fisiologia , Timo/fisiologia , Imunidade Adaptativa , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinase Induzida por NF-kappaB
9.
J Immunol ; 194(1): 223-30, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25404366

RESUMO

The mammalian target of rapamycin (mTOR) senses and incorporates different environmental cues via the two signaling complexes mTOR complex 1 (mTORC1) and mTORC2. As a result, mTOR controls cell growth and survival, and also shapes different effector functions of the cells including immune cells such as T cells. We demonstrate in this article that invariant NKT (iNKT) cell development is controlled by mTORC2 in a cell-intrinsic manner. In mice deficient in mTORC2 signaling because of the conditional deletion of the Rictor gene, iNKT cell numbers were reduced in the thymus and periphery. This is caused by decreased proliferation of stage 1 iNKT cells and poor development through subsequent stages. Functionally, iNKT cells devoid of mTORC2 signaling showed reduced number of IL-4-expressing cells, which correlated with a decrease in the transcription factor GATA-3-expressing cells. However, promyelocytic leukemia zinc-finger (PLZF), a critical transcription factor for iNKT cell development, is expressed at a similar level in mTORC2-deficient iNKT cells compared with that in the wild type iNKT cells. Furthermore, cellular localization of PLZF was not altered in the absence of mTOR2 signaling. Thus, our study reveals the PLZF-independent mechanisms of the development and function of iNKT cells regulated by mTORC2.


Assuntos
Proteínas de Transporte/imunologia , Fator de Transcrição GATA3/biossíntese , Fatores de Transcrição Kruppel-Like/biossíntese , Complexos Multiproteicos/imunologia , Células T Matadoras Naturais/citologia , Serina-Treonina Quinases TOR/imunologia , Animais , Proteínas de Transporte/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Interferon gama/biossíntese , Interleucina-17/biossíntese , Interleucina-4/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/genética , Células T Matadoras Naturais/imunologia , Proteína com Dedos de Zinco da Leucemia Promielocítica , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/genética
10.
Proc Natl Acad Sci U S A ; 110(6): 2270-5, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23341605

RESUMO

Myeloid differentiation primary response protein 88 (MyD88) is classically known as an adaptor, linking TLR and IL-1R to downstream signaling pathways in the innate immune system. In addition to its role in innate immune cells, MyD88 has been shown to play an important role in T cells. How MyD88 regulates helper T-cell differentiation remains largely unknown, however. Here we demonstrate that MyD88 is an important regulator of IL-17-producing CD4(+) T helper cells (Th17) cell proliferation. MyD88-deficient CD4(+) T cells showed a defect in Th17 cell differentiation, but not in Th1 cell or Th2 cell differentiation. The impaired IL-17 production from MyD88-deficient CD4(+) T cells is not a result of defective RAR-related orphan receptor γt (RORγt) expression. Instead, MyD88 is essential for sustaining the mammalian target of rapamycin (mTOR) activation necessary to promote Th17 cell proliferation by linking IL-1 and IL-23 signaling. MyD88-deficient CD4(+) T cells showed impaired mTOR activation and, consequently, reduced Th17 cell proliferation. Importantly, the absence of MyD88 in T cells ameliorated disease in the experimental autoimmune encephalomyelitis model. Taken together, our results demonstrate that MyD88 has a dual function in Th17 cells by delivering IL-1 signaling during the early differentiation stage and integrating IL-23 signaling to the mTOR complex to expand committed Th17 cells.


Assuntos
Interleucina-1/metabolismo , Interleucina-23/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Serina-Treonina Quinases TOR/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Imunidade Inata , Interleucina-17/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/metabolismo , Células Th17/citologia , Células Th17/metabolismo
11.
BMC Immunol ; 16: 62, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26482437

RESUMO

BACKGROUND: Invariant Natural Killer T (iNKT) cells have been implicated in lung inflammation in humans and also shown to be a key cell type in inducing allergic lung inflammation in mouse models. iNKT cells differentiate and acquire functional characteristics during development in the thymus. However, the correlation between development of iNKT cells in the thymus and role in lung inflammation remains unknown. In addition, transcriptional control of differentiation of iNKT cells into iNKT cell effector subsets in the thymus during development is also unclear. In this report we show that ß-catenin dependent mechanisms direct differentiation of iNKT2 and iNKT17 subsets but not iNKT1 cells. METHODS: To study the role for ß-catenin in lung inflammation we utilize mice with conditional deletion and enforced expression of ß-catenin in a well-established mouse model for IL-25-dependen lung inflammation. RESULTS: Specifically, we demonstrate that conditional deletion of ß-catenin permitted development of mature iNKT1 cells while impeding maturation of iNKT2 and 17 cells. A role for ß-catenin expression in promoting iNKT2 and iNKT17 subsets was confirmed when we noted that enforced transgenic expression of ß-catenin in iNKT cell precursors enhanced the frequency and number of iNKT2 and iNKT17 cells at the cost of iNKT1 cells. This effect of expression of ß-catenin in iNKT cell precursors was cell autonomous. Furthermore, iNKT2 cells acquired greater capability to produce type-2 cytokines when ß-catenin expression was enhanced. DISCUSSION: This report shows that ß-catenin deficiency resulted in a profound decrease in iNKT2 and iNKT17 subsets of iNKT cells whereas iNKT1 cells developed normally. By contrast, enforced expression of ß-catenin promoted the development of iNKT2 and iNKT17 cells. It was important to note that the majority of iNKT cells in the thymus of C57BL/6 mice were iNKT1 cells and enforced expression of ß-catenin altered the pattern to iNKT2 and iNKT17 cells suggesting that ß-catenin may be a major factor in the distinct pathways that critically direct differentiation of iNKT effector subsets. CONCLUSIONS: Thus, we demonstrate that ß-catenin expression in iNKT cell precursors promotes differentiation toward iNKT2 and iNKT17 effector subsets and supports enhanced capacity to produce type 2 and 17 cytokines which in turn augment lung inflammation in mice.


Assuntos
Diferenciação Celular , Interleucina-17/metabolismo , Células T Matadoras Naturais/imunologia , Pneumonia/imunologia , Pneumonia/patologia , beta Catenina/metabolismo , Animais , Hiper-Reatividade Brônquica/complicações , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumonia/complicações
12.
J Immunol ; 191(2): 737-44, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23776174

RESUMO

MHC class II-expressing thymocytes can efficiently mediate positive selection of CD4 T cells in mice. Thymocyte-selected CD4 (T-CD4) T cells have an innate-like phenotype similar to invariant NKT cells. To investigate the development and function of T-CD4 T cells in-depth, we cloned TCR genes from T-CD4 T cells and generated transgenic mice. Remarkably, positive selection of T-CD4 TCR transgenic (T3) thymocytes occurred more efficiently when MHC class II was expressed by thymocytes than by thymic epithelial cells. Similar to polyclonal T-CD4 T cells and also invariant NKT cells, T3 CD4 T cell development is controlled by signaling lymphocyte activation molecule/signaling lymphocyte activation molecule-associated protein signaling, and the cells expressed both IL-4 and promyelocytic leukemia zinc finger (PLZF). Surprisingly, the selected T3 CD4 T cells were heterogeneous in that only half expressed IL-4 and only half expressed PLZF. IL-4- and PLZF-expressing cells were first found at the double-positive cell stage. Thus, the expression of IL-4 and PLZF seems to be determined by an unidentified event that occurs postselection and is not solely dependent on TCR specificity or the selection process, per se. Taken together, our data show for the first time, to our knowledge, that the TCR specificity regulates but does not determine the development of innate CD4 T cells by thymocytes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-4/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/genética , Animais , Antígenos CD/metabolismo , Células da Medula Óssea , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Quimera/genética , Antígenos de Histocompatibilidade Classe II , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/imunologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Timócitos/metabolismo , Transativadores/genética
13.
Proc Natl Acad Sci U S A ; 109(40): 16264-9, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988097

RESUMO

MHC class II-expressing thymocytes and thymic epithelial cells can mediate CD4 T-cell selection resulting in functionally distinct thymocyte-selected CD4 (T-CD4) and epithelial-selected CD4 (E-CD4) T cells, respectively. However, little is known about how T-cell receptor (TCR) signaling influences the development of these two CD4 T-cell subsets. To study TCR signaling for T-CD4 T-cell development, we used a GFP reporter system of Nur77 in which GFP intensity directly correlates with TCR signaling strength. T-CD4 T cells expressed higher levels of GFP than E-CD4 T cells, suggesting that T-CD4 T cells received stronger TCR signaling than E-CD4 T cells during selection. Elimination of Ras GTPase-activating protein enhanced E-CD4 but decreased T-CD4 T-cell selection efficiency, suggesting a shift to negative selection. Conversely, the absence of IL-2-inducible T-cell kinase that causes poor E-CD4 T-cell selection due to insufficient TCR signaling improved T-CD4 T-cell generation, consistent with rescue from negative selection. Strong TCR signaling during T-CD4 T-cell development correlates with the expression of the transcription factor promyelocytic leukemia zinc finger protein. However, although modulation of the signaling strength affected the efficiency of T-CD4 T-cell development during positive and negative selection, the signaling strength is not as important for the effector function of T-CD4 T cells. These findings indicate that innate T-CD4 T cells, together with invariant natural killer T cells and γδ T cells, receive strong TCR signals during their development and that signaling requirements for the development and the effector functions are distinct.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Transplante de Medula Óssea , Epitélio/imunologia , Citometria de Fluxo , Proteínas de Fluorescência Verde , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos Knockout , Proteína com Dedos de Zinco da Leucemia Promielocítica , Proteínas Tirosina Quinases/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Timócitos/citologia , Timócitos/imunologia
14.
J Exp Med ; 204(9): 2145-57, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17724129

RESUMO

Recently, a new developmental pathway for CD4 T cells that is mediated by major histocompatibility complex class II-positive thymocytes was identified (Choi, E.Y., K.C. Jung, H.J. Park, D.H. Chung, J.S. Song, S.D. Yang, E. Simpson, and S.H. Park. 2005. Immunity. 23:387-396; Li, W., M.G. Kim, T.S. Gourley, B.P. McCarthy, D.B. Sant'angelo, and C.H. Chang. 2005. Immunity. 23:375-386). We demonstrate that thymocyte-selected CD4 (T-CD4) T cells can rapidly produce interferon gamma and interleukin (IL) 4 upon in vivo and in vitro T cell receptor stimulation. These T-CD4 T cells appear to be effector cells producing both T helper type 1 (Th1) and Th2 cytokines, and they maintain a potential to produce Th2 cytokines under Th1-skewing conditions in a signal transducer and activator of transcription 6-independent manner. The IL-4 mRNA level is high in CD4 single-positive thymocytes if they are selected on thymocytes, which is at least partly caused by enhanced histone acetylation of the IL-4 locus. However, mice that can generate T-CD4 T cells showed attenuated immune responses in an allergen-induced airway inflammation model, suggesting a protective role for T-CD4 T cells during an airway challenge. Our results imply that this thymic selection pathway plays an important role in determining the effector function of the resulting CD4 cells and in regulating immune response.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Seleção Genética , Timo/imunologia , Alérgenos , Animais , Apresentação de Antígeno/imunologia , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II , Humanos , Inflamação , Interferon gama/biossíntese , Interleucina-4/biossíntese , Interleucina-4/genética , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sistema Respiratório/patologia , Fator de Transcrição STAT6/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo
15.
J Virol ; 86(8): 4194-203, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345470

RESUMO

There is an incomplete understanding of the differences between neonatal immune responses that contribute to the increased susceptibility of neonates to some viral infections. We tested the hypothesis that neonates are more susceptible than adults to mouse adenovirus type 1 (MAV-1) respiratory infection and are impaired in the ability to generate a protective immune response against a second infection. Following intranasal infection, lung viral loads were greater in neonates than in adults during the acute phase but the virus was cleared from the lungs of neonates as efficiently as it was from adult lungs. Lung gamma interferon (IFN-γ) responses were blunted and delayed in neonates, and lung viral loads were higher in adult IFN-γ(-/-) mice than in IFN-γ(+/+) controls. However, administration of recombinant IFN-γ to neonates had no effect on lung viral loads. Recruitment of inflammatory cells to the airways was impaired in neonates. CD4 and CD8 T cell responses were similar in the lungs of neonates and adults, although a transient increase in regulatory T cells occurred only in the lungs of infected neonates. Infection of neonates led to protection against reinfection later in life that was associated with increased effector memory CD8 T cells in the lungs. We conclude that neonates are more susceptible than adults to acute MAV-1 respiratory infection but are capable of generating protective immune responses.


Assuntos
Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Adenoviridae/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/prevenção & controle , Infecções por Adenoviridae/genética , Animais , Linhagem Celular , Citocinas/biossíntese , Interferon gama/deficiência , Interferon gama/genética , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Infecções Respiratórias/genética , Linfócitos T/imunologia , Carga Viral
16.
J Immunol ; 187(1): 151-63, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21646295

RESUMO

Activation of the Ras small GTP-binding protein is necessary for normal T cell development and function. However, it is unknown which Ras GTPase-activating proteins (RasGAPs) inactivate Ras in T cells. We used a T cell-specific RASA1-deficient mouse model to investigate the role of the p120 RasGAP (RASA1) in T cells. Death of CD4(+)CD8(+) double-positive thymocytes was increased in RASA1-deficient mice. Despite this finding, on an MHC class II-restricted TCR transgenic background, evidence was obtained for increased positive selection of thymocytes associated with augmented activation of the Ras-MAPK pathway. In the periphery, RASA1 was found to be dispensable as a regulator of Ras-MAPK activation and T cell functional responses induced by full agonist peptides. However, numbers of naive T cells were substantially reduced in RASA1-deficient mice. Loss of naive T cells in the absence of RASA1 could be attributed in part to impaired responsiveness to the IL-7 prosurvival cytokine. These findings reveal an important role for RASA1 as a regulator of double-positive survival and positive selection in the thymus as well as naive T cell survival in the periphery.


Assuntos
Fase de Repouso do Ciclo Celular/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Proteína p120 Ativadora de GTPase/fisiologia , Proteínas Ativadoras de ras GTPase/fisiologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fase de Repouso do Ciclo Celular/genética , Subpopulações de Linfócitos T/metabolismo , Timo/metabolismo , Proteína p120 Ativadora de GTPase/deficiência , Proteína p120 Ativadora de GTPase/genética , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genética
17.
J Immunol ; 186(5): 2792-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21282512

RESUMO

IL-4 expression is known to be activated in CD4 T cells when they are differentiated to Th2 but not Th1 cells. However, CD4 T cells selected by MH class II-expressing thymocytes, named thymocyte-selected CD4 T cells (T-CD4 T cells), express IL-4 under both Th1 and Th2 conditions. In this study, we investigated molecular mechanisms by which IL-4 gene expression is regulated in T-CD4 T cells. We found that T-CD4 T cells express IL-4 soon after selection in the thymus. Deficiency of DNase I hypersensitive (HS) sites HS5a and HS5 at the 3'-enhancer region in the IL-4 gene decreased IL-4 production, but T-CD4 T cells were able to make IL-4 under the Th1-inducing condition. Consistent with this, IL-4 was expressed in Th1 differentiated T-CD4 T cells in the absence of recombination signal binding protein-J that interacts with HS5. When HS5 was examined separately from other endogenous regulatory elements using a reporter system, CD4 T cells that are selected by thymic epithelial cells cannot transcribe the IL-4 reporter gene with HS5 alone. However, HS5 was able to induce the expression of the IL-4 reporter gene in T-CD4 T cells. Interestingly, the Th1 differentiating signal led to deacetylation at HS5 of the IL-4 endogenous gene, whereas the Th2-inducing environment had no effect. Therefore, in T-CD4 T cells, HS5 plays an essential role during the induction phase of IL-4 expression, but the maintenance of IL-4 expression in Th1 cells requires additional regulatory elements.


Assuntos
Regiões 3' não Traduzidas/imunologia , Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica/imunologia , Interleucina-4/biossíntese , Interleucina-4/genética , Células Th1/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Desoxirribonuclease I/deficiência , Desoxirribonuclease I/genética , Genes Reporter/imunologia , Humanos , Interleucina-4/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Th1/citologia , Células Th1/metabolismo , Células Th2/citologia , Células Th2/metabolismo , Timo/citologia , Timo/imunologia , Timo/metabolismo
18.
J Immunol ; 186(10): 5749-57, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21478404

RESUMO

We have recently shown that MHC class II-dependent thymocyte-thymocyte (T-T) interaction successfully generates CD4(+) T cells (T-T CD4(+) T cells), and that T-T CD4(+) T cells expressing promyelocytic leukemia zinc finger protein (PLZF) show an innate property both in mice and humans. In this article, we report that the thymic T-T interaction is essential for the conversion of CD8(+) T cells into innate phenotype in the physiological condition. CD8(+) T cells developed in the presence of PLZF(+) CD4(+) T cells showed marked upregulation of eomesodermin (Eomes), activation/memory phenotype, and rapid production of IFN-γ on ex vivo stimulation. Their development was highly dependent on the PLZF expression in T-T CD4(+) T cells and the IL-4 secreted by PLZF(+) T-T CD4(+) T cells. The same events may take place in humans, as a substantial number of Eomes expressing innate CD8(+) T cells were found in human fetal thymi and spleens. It suggests that PLZF(+) T-T CD4(+) T cells in combination with Eomes(+) CD8(+) T cells might actively participate in the innate immune response against various pathogens, particularly in human perinatal period.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata , Fatores de Transcrição Kruppel-Like/genética , Timo/citologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Citometria de Fluxo , Humanos , Interferon gama/biossíntese , Interleucina-4/imunologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Fenótipo , Reação em Cadeia da Polimerase , Proteína com Dedos de Zinco da Leucemia Promielocítica , Proteínas com Domínio T/metabolismo , Timo/embriologia , Timo/imunologia , Timo/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(18): 8340-5, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404153

RESUMO

IL-12 and IL-23 are produced by activated antigen-presenting cells but the two induce distinct immune responses by promoting Th1 and Th17 cell differentiation, respectively. IL-23 is a heterodimeric cytokine consisting of two subunits: p40 that is shared with IL-12 and p19 unique to IL-23. In this study, we showed that the production of IL-23 but not IL-12 was negatively regulated by protein phosphatase 2A (PP2A) in dendritic cells (DC). PP2A inhibits IL-23 production by suppressing the expression of the IL-23p19 gene. Treating DC with okadaic acid that inhibits the PP2A activity or knocking down the catalytic subunit of PP2A with siRNA enhanced IL-23 but not IL-12 production. Unlike PP2A, MAP kinase phosphatase-1 or CYLD did not show an effect on IL-23 production supporting the specificity of PP2A. PP2A-mediated inhibition requires a newly made protein that is likely responsible for bringing PP2A and IKKbeta together upon LPS stimulation, which then results in the termination of IKK phosphorylation. Thus, our results uncovered an important role of the protein phosphatase in the regulation of IL-23 production and identified PP2A as a previously uncharacterized inhibitor of IL-23p19 expression in DC.


Assuntos
Células Dendríticas/imunologia , Regulação para Baixo , Subunidade p19 da Interleucina-23/imunologia , Proteína Fosfatase 2/metabolismo , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Fosfatase 1 de Especificidade Dupla/deficiência , Fosfatase 1 de Especificidade Dupla/metabolismo , Quinase I-kappa B/metabolismo , Interleucina-12/biossíntese , Interleucina-12/imunologia , Subunidade p19 da Interleucina-23/biossíntese , Subunidade p19 da Interleucina-23/genética , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/genética , RNA Interferente Pequeno/genética
20.
Immunohorizons ; 7(3): 235-242, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951874

RESUMO

The E3 ubiquitin ligase cullin 3 (Cul3) is critical for invariant NKT (iNKT) cell development, as iNKT cells lacking Cul3 accumulate in the immature developmental stages. However, the mechanisms by which Cul3 mediates iNKT cell development remain unknown. In this study, we investigated the role of Cul3 in both immature and mature thymic iNKT cells using a mouse model with a T cell-specific deletion of Cul3. We found that mature iNKT cells lacking Cul3 proliferated and died more than wild-type cells did. These cells also displayed increased glucose metabolism and autophagy. Interestingly, we found that tight regulation of iron homeostasis is critical for iNKT cell development. Without Cul3, mature iNKT cells harbored higher levels of cytosolic iron, a phenotype associated with increased cell death. Taken together, our data suggest that Cul3 promotes iNKT cell development partially through intracellular iron homeostasis.


Assuntos
Células T Matadoras Naturais , Animais , Camundongos , Diferenciação Celular/genética , Células T Matadoras Naturais/metabolismo , Camundongos Knockout , Proteínas Culina/genética , Proteínas Culina/metabolismo , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA