Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 174: 156458, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38071842

RESUMO

PURPOSE: The maternal immune system is implicated in adverse pregnancy outcomes. Manipulation of maternal immune response by probiotics holds potential to reduce pregnancy complications. The MicrobeMom2 study investigates the impact of probiotic supplementation on maternal immune responses to pathogen associated molecular patterns (PAMPs) in peripheral blood mononuclear cells (PBMCs) during pregnancy. METHODS: This double-blinded randomised-controlled trial involved oral supplementation of Bifidobacterium longum subsp. longum 1714® (B. longum 1714; daily ingestion of a minimum of 1x109 colony forming units) or placebo from 16 to 20-weeks' gestation until delivery in healthy pregnant women. The primary outcome was a change in IL-10 production, after stimulation with Lipopolysaccharide (LPS) or anti-CD3/28/2, in PBMCs isolated from blood samples taken at baseline (11-15 weeks' gestation) and late pregnancy (28-32 weeks' gestation) after 48 h incubation. 68 subjects were needed (34ineachgroup) for 80 % power at an alpha significance of 0.05 to detect differences in IL10. RESULTS: 72 women (mean ± SD age 33.17 ± 4.53 years and median (25th, 75th centile) body mass index 24.93 (21.93, 27.57 kg/m2)) were recruited with primary outcome data. Using LPS, late pregnancy fold change in IL-10 in PBMCs after 48 h incubation was median (25th, 75th centile) 88.45 (4.88, 488.78) in the intervention, 24.18 (6.36, 141.17) in the control group, p = 0.183. Using anti-CD3/28/2, values were 189.69 (425.96, 866.57),148.74 (31.67, 887.03) in intervention and control groups, respectively, p = 0.506. No significant differences were observed between the two groups. CONCLUSION: Maternal antenatal supplementation with B. longum 1714 did not alter cytokine production by maternal PBMCs in response to PAMPs or anti-CD3/28/2. TRIAL REGISTRATION NUMBER: ISRCTN registry ISRCTN43013285.


Assuntos
Citocinas , Interleucina-10 , Humanos , Feminino , Gravidez , Adulto , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , Moléculas com Motivos Associados a Patógenos , Método Duplo-Cego , Bifidobacterium
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612702

RESUMO

Cystic fibrosis (CF) is an inherited genetic disorder which manifests primarily in airway disease. Recent advances in molecular technologies have unearthed the diverse polymicrobial nature of the CF airway. Numerous studies have characterised the genus-level composition of this airway community using targeted 16S rDNA sequencing. Here, we employed whole-genome shotgun metagenomics to provide a more comprehensive understanding of the early CF airway microbiome. We collected 48 sputum samples from 11 adolescents and children with CF over a 12-month period and performed shotgun metagenomics on the Illumina NextSeq platform. We carried out functional and taxonomic analysis of the lung microbiome at the species and strain levels. Correlations between microbial diversity measures and independent demographic and clinical variables were performed. Shotgun metagenomics detected a greater diversity of bacteria than culture-based methods. A large proportion of the top 25 most-dominant species were anaerobes. Samples dominated by Staphylococcus aureus and Prevotella melaninogenica had significantly higher microbiome diversity, while no CF pathogen was associated with reduced microbial diversity. There was a diverse resistome present in all samples in this study, with 57.8% agreement between shotgun metagenomics and culture-based methods for detection of resistance. Pathogenic sequence types (STs) of S. aureus, Pseudomonas aeruginosa, Haemophilus influenzae and Stenotrophomonas maltophilia were observed to persist in young CF patients, while STs of S. aureus were both persistent and shared between patients. This study provides new insight into the temporal changes in strain level composition of the microbiome and the landscape of the resistome in young people with CF. Shotgun metagenomics could provide a very useful one-stop assay for detecting pathogens, emergence of resistance and conversion to persistent colonisation in early CF disease.


Assuntos
Fibrose Cística , Microbiota , Criança , Humanos , Adolescente , Staphylococcus aureus , Bioensaio , DNA Ribossômico , Microbiota/genética
3.
Gut ; 72(3): 451-459, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36171082

RESUMO

OBJECTIVES: Persistent bowel dysfunction following gastroenteritis (postinfectious (PI)-BD) is well recognised, but the associated changes in microbiota remain unclear. Our aim was to define these changes after gastroenteritis caused by a single organism, Campylobacter jejuni, examining the dynamic changes in the microbiota and the impact of antibiotics. DESIGN: A single-centre cohort study of 155 patients infected with Campylobacter jejuni. Features of the initial illness as well as current bowel symptoms and the intestinal microbiota composition were recorded soon after infection (visit 1, <40 days) as well as 40-60 days and >80 days later (visits 2 and 3). Microbiota were assessed using 16S rRNA sequencing. RESULTS: PI-BD was found in 22 of the 99 patients who completed the trial. The cases reported significantly looser stools, with more somatic and gastrointestinal symptoms. Microbiota were assessed in 22 cases who had significantly lower diversity and altered microbiota composition compared with the 44 age-matched and sex-matched controls. Moreover 60 days after infection, cases showed a significantly lower abundance of 23 taxa including phylum Firmicutes, particularly in the order Clostridiales and the family Ruminoccocaceae, increased Proteobacteria abundance and increased levels of Fusobacteria and Gammaproteobacteria. The microbiota changes were linked with diet; higher fibre consumption being associated with lower levels of Gammaproteobacteria. CONCLUSION: The microbiota of PI-BD patients appeared more disturbed by the initial infection compared with the microbiota of those who recovered. The prebiotic effect of high fibre diets may inhibit some of the disturbances seen in PI-BD. TRIAL REGISTRATION NUMBER: NCT02040922.


Assuntos
Infecções por Campylobacter , Campylobacter , Enterite , Gastroenterite , Síndrome do Intestino Irritável , Microbiota , Humanos , Estudos de Coortes , RNA Ribossômico 16S/genética
4.
Appl Environ Microbiol ; 89(1): e0152222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541780

RESUMO

In order to survey noroviruses in our environment, it is essential that both wet-lab and computational methods are fit for purpose. Using a simulated sequencing data set, denoising-based (DADA2, Deblur and USEARCH-UNOISE3) and clustering-based pipelines (VSEARCH and FROGS) were compared with respect to their ability to represent composition and sequence information. Open source classifiers (Ribosomal Database Project [RDP], BLASTn, IDTAXA, QIIME2 naive Bayes, and SINTAX) were trained using three different databases: a custom database, the NoroNet database, and the Human calicivirus database. Each classifier and database combination was compared from the perspective of their classification accuracy. VSEARCH provides a robust option for analyzing viral amplicons based on composition analysis; however, all pipelines could return OTUs with high similarity to the expected sequences. Importantly, pipeline choice could lead to more false positives (DADA2) or underclassification (FROGS), a key aspect when considering pipeline application for source attribution. Classification was more strongly impacted by the classifier than the database, although disagreement increased with norovirus GII.4 capsid variant designation. We recommend the use of the RDP classifier in conjunction with VSEARCH; however, maintenance of the underlying database is essential for optimal use. IMPORTANCE In benchmarking bioinformatic pipelines for analyzing high-throughput sequencing (HTS) data sets, we provide method standardization for bioinformatics broadly and specifically for norovirus in situations for which no officially endorsed methods exist at present. This study provides recommendations for the appropriate analysis and classification of norovirus amplicon HTS data and will be widely applicable during outbreak investigations.


Assuntos
Norovirus , Humanos , Norovirus/genética , Teorema de Bayes , Benchmarking , Bases de Dados Factuais , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Appl Environ Microbiol ; 89(5): e0216522, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37071010

RESUMO

Norovirus is a highly diverse RNA virus often implicated in foodborne outbreaks, particularly those associated with shellfish. Shellfish are filter feeders, and when harvested in bays exposed to wastewater overflow or storm overflows, they can harbor various pathogens, including human-pathogenic viruses. The application of Sanger or amplicon-based high-throughput sequencing (HTS) technologies to identify human pathogens in shellfish faces two main challenges: (i) distinguishing multiple genotypes/variants in a single sample and (ii) low concentrations of norovirus RNA. Here, we assessed the performance of a novel norovirus capsid amplicon HTS method. We generated a panel of spiked oysters containing various norovirus concentrations with different genotypic compositions. Several DNA polymerases and reverse transcriptases (RTs) were compared, and performance was evaluated based on (i) the number of reads passing quality filters per sample, (ii) the number of correct genotypes identified, and (iii) the sequence identity of outputs compared to Sanger-derived sequences. A combination of the reverse transcriptase LunaScript and the DNA polymerase AmpliTaq Gold provided the best results. The method was then employed, and compared with Sanger sequencing, to characterize norovirus populations in naturally contaminated oysters. IMPORTANCE While foodborne outbreaks account for approximately 14% of norovirus cases (L. Verhoef, J. Hewitt, L. Barclay, S. Ahmed, R. Lake, A. J. Hall, B. Lopman, A. Kroneman, H. Vennema, J. Vinjé, and M. Koopmans, Emerg Infect Dis 21:592-599, 2015), we do not have standardized high-throughput sequencing methods for genotypic characterization in foodstuffs. Here, we present an optimized amplicon high-throughput sequencing method for the genotypic characterization of norovirus in oysters. This method can accurately detect and characterize norovirus at concentrations found in oysters grown in production areas impacted by human wastewater discharges. It will permit the investigation of norovirus genetic diversity in complex matrices and contribute to ongoing surveillance of norovirus in the environment.


Assuntos
Norovirus , Ostreidae , Vírus , Animais , Humanos , Norovirus/genética , Águas Residuárias , Vírus/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral/genética , Genótipo
6.
Crit Rev Microbiol ; 49(6): 764-785, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36369718

RESUMO

The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.


Assuntos
Microbioma Gastrointestinal , Humanos , Homeostase , Sistema Imunitário , Regeneração
7.
Crit Rev Microbiol ; 49(6): 693-725, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36287644

RESUMO

High-throughput DNA sequencing-based approaches continue to revolutionise our understanding of microbial ecosystems, including those associated with fermented foods. Metagenomic and metatranscriptomic approaches are state-of-the-art biological profiling methods and are employed to investigate a wide variety of characteristics of microbial communities, such as taxonomic membership, gene content and the range and level at which these genes are expressed. Individual groups and consortia of researchers are utilising these approaches to produce increasingly large and complex datasets, representing vast populations of microorganisms. There is a corresponding requirement for the development and application of appropriate bioinformatic tools and pipelines to interpret this data. This review critically analyses the tools and pipelines that have been used or that could be applied to the analysis of metagenomic and metatranscriptomic data from fermented foods. In addition, we critically analyse a number of studies of fermented foods in which these tools have previously been applied, to highlight the insights that these approaches can provide.


Assuntos
Alimentos Fermentados , Microbiota , Microbiota/genética , Metagenoma , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
8.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36695436

RESUMO

Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25-43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1-24, the truncation at position 31 is predicted to change the structure within aa 15-31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.


Assuntos
Bacteriocinas , Lactococcus lactis , Bacteriocinas/genética , Bacteriocinas/farmacologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Antibacterianos/metabolismo
9.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768196

RESUMO

Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Neoplasias , Camundongos , Animais , Vitamina D/metabolismo , Inflamação/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Colo/patologia , Dieta Hiperlipídica/efeitos adversos , Bactérias , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/efeitos adversos , Neoplasias/metabolismo
10.
Compr Rev Food Sci Food Saf ; 22(5): 3602-3619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37458296

RESUMO

Cleaning-in-place (CIP) is the most commonly used cleaning and sanitation system for processing lines, equipment, and storage facilities such as milk silos in the global dairy processing industry. CIP employs thermal treatments and nonbiodegradable chemicals (acids and alkalis), requiring appropriate neutralization before disposal, resulting in sustainability challenges. In addition, biofilms are a major source of contamination and spoilage in dairy industries, and it is believed that current chemical CIP protocols do not entirely destroy biofilms. Use of enzymes as effective agents for CIP and as a more sustainable alternative to chemicals and thermal treatments is gaining interest. Enzymes offer several advantages when used for CIP, such as reduced water usage (less rinsing), lower operating temperatures resulting in energy savings, shorter cleaning times, and lower costs for wastewater treatment. Additionally, they are typically derived from natural sources, are easy to neutralize, and do not produce hazardous waste products. However, even with such advantages, enzymes for CIP within the dairy processing industry remain focused mainly on membrane cleaning. Greater adoption of enzyme-based CIP for cheese industries is projected pending a greater knowledge relating to cost, control of the process (inactivation kinetics), reusability of enzyme solutions, and the potential for residual activity, including possible effects on the subsequent product batches. Such studies are essential for the cheese industry to move toward more energy-efficient and sustainable cleaning solutions.


Assuntos
Queijo , Animais , Leite , Biofilmes , Temperatura
11.
Compr Rev Food Sci Food Saf ; 22(2): 1082-1103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36636774

RESUMO

Microbiome science as an interdisciplinary research field has evolved rapidly over the past two decades, becoming a popular topic not only in the scientific community and among the general public, but also in the food industry due to the growing demand for microbiome-based technologies that provide added-value solutions. Microbiome research has expanded in the context of food systems, strongly driven by methodological advances in different -omics fields that leverage our understanding of microbial diversity and function. However, managing and integrating different complex -omics layers are still challenging. Within the Coordinated Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), a project supported by the European Commission, the workshop "Metagenomics, Metaproteomics and Metabolomics: the need for data integration in microbiome research" gathered 70 participants from different microbiome research fields relevant to food systems, to discuss challenges in microbiome research and to promote a switch from microbiome-based descriptive studies to functional studies, elucidating the biology and interactive roles of microbiomes in food systems. A combination of technologies is proposed. This will reduce the biases resulting from each individual technology and result in a more comprehensive view of the biological system as a whole. Although combinations of different datasets are still rare, advanced bioinformatics tools and artificial intelligence approaches can contribute to understanding, prediction, and management of the microbiome, thereby providing the basis for the improvement of food quality and safety.


Assuntos
Inteligência Artificial , Microbiota , Humanos , Multiômica , Metabolômica/métodos , Metagenômica/métodos
12.
Crit Rev Microbiol ; 48(4): 463-488, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34591726

RESUMO

The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Dieta , Interações entre Hospedeiro e Microrganismos , Humanos , Dispositivos Lab-On-A-Chip
13.
Ann Nutr Metab ; 78(3): 177-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35306495

RESUMO

INTRODUCTION: Metabolic or inflammatory markers may predict adverse outcomes in women with obesity. We sought to describe metabolic-obesity phenotypes of women using novel staging tools and investigate relationships with inflammation. METHODS: In a cross-sectional study, we collected fasting blood samples from sixty-four females with body mass index (BMI) ≥28 kg/m2. Participants were classified as metabolically healthy or metabolically unhealthy obesity (MUO) using the cardiometabolic disease staging system (CMDS) and Edmonton obesity staging system (EOSS). Data were analyzed using independent sample t tests, Pearson's correlations, and multiple logistic regression. RESULTS: Mean (SD) age was 40.2 (9.3) years with median (IQR) BMI 31.8 (30.3-35.7) kg/m2. The prevalence of MUO was 46.9% and 81.3% using CMDS and EOSS criteria, respectively. Women with raised CMDS scores had higher C3 (1.34 [0.20] vs. 1.18 [0.15], p = 0.001) and C-reactive protein (CRP) (2.89 [1.31-7.61] vs. 1.39 [0.74-3.60], p = 0.034). C3 correlated with insulin (r = 0.52), hemoglobin A1c (r = 0.37), and C-peptide (r = 0.58), all p < 0.05. C3 above the median (>1.23 g/L) increased odds of raised CMDS score, when controlled for age, BMI, ethnicity, and smoking (OR = 6.56, 95% CI: 1.63, 26.47, p = 0.008). CONCLUSION: The prevalence of MUO was lower using CMDS than EOSS. C3 and CRP may be useful clinical biomarkers of risk or treatment targets in women with obesity.


Assuntos
Doenças Cardiovasculares , Síndrome Metabólica , Biomarcadores , Índice de Massa Corporal , Proteína C-Reativa , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Feminino , Humanos , Inflamação , Obesidade/complicações , Obesidade/epidemiologia , Fenótipo , Fatores de Risco
14.
Appl Environ Microbiol ; 87(22): e0108121, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34469196

RESUMO

Cleaning of the production environment is vital to ensure the safety and quality of dairy products. Although cleaning with chlorine-based agents is widely adopted, it has been associated with detrimental effects on milk quality and safety, which has garnered increasing interest in chlorine-free cleaning. However, the influence of these methods on the milk microbiota is not well documented. This study investigated the factors that influence the raw milk microbiota, with a focus on the differences when chlorine-based and chlorine-free cleaning of milking equipment are used. Bulk tank raw milk was sampled during three sampling months (April, August, and November), from farms across Ireland selected to capture the use of different cleaning methods, i.e., exclusively chlorine-based (n = 51) and chlorine-free cleaning (n = 92) and farms that used chlorine-free agents for the bulk tank and chlorine-based cleaning agents for the rest of the equipment (n = 28). Shotgun metagenomic analysis revealed the significant influence of seasonal and geographic factors on the bulk tank milk microbiota, indicated by differences in diversity, taxonomic composition, and functional characteristics. Taxonomic and functional profiles of samples collected in November clustered separately from those of samples collected in other months. In contrast, cleaning methods only accounted for 1% of the variation in the bulk tank milk bacterial community, and samples collected from farms using chlorine-based versus chlorine-free cleaning did not differ significantly, suggesting that the chlorine-free approaches used did not negatively impact microbiological quality. This study shows the value of shotgun metagenomics in advancing our knowledge of the raw milk microbiota. IMPORTANCE The microbiota of raw milk is affected by many factors that can control or promote the introduction of undesirable microorganisms. Chlorine-based cleaning agents have been commonly used due to their effectiveness in controlling undesirable microorganisms, but they have been associated with the formation of chlorine residues that are detrimental to product quality and may impact consumer health. Chlorine-free alternatives have been recommended in some countries, but the influence of cleaning agents on the milk microbiota is unknown. Here, we investigated the influence of cleaning methods and other factors on bulk tank raw milk. Results showed that season and location had a greater influence on the milk microbiota than the cleaning agents used. Indeed, the similar microbiota compositions of raw milk from farms that used chlorine-based and those that used chlorine-free cleaning methods supports the further use of chlorine-free cleaning agents in dairy production.


Assuntos
Cloro , Geografia , Microbiota , Leite/microbiologia , Estações do Ano , Animais , Cloro/farmacologia , Indústria de Laticínios , Desinfetantes/farmacologia , Contaminação de Equipamentos/prevenção & controle , Irlanda
15.
Brain Behav Immun ; 97: 119-134, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252569

RESUMO

Autism spectrum disorder (ASD) is one of the most severe developmental disorders, affecting on average 1 in 150 children worldwide. There is a great need for more effective strategies to improve quality of life in ASD subjects. The gut microbiome has emerged as a potential therapeutic target in ASD. A novel modulator of the gut microbiome, the traditionally fermented milk drink kefir, has recently been shown to modulate the microbiota and decrease repetitive behaviour, one of the hallmarks of ASD, in mice. As such, we hypothesized that kefir could ameliorate behavioural deficits in a mouse model relevant to ASD; the BTBR T+ Itpr3tf/J mouse strain. To this end, adult mice were administered either kefir (UK4) or a milk control for three weeks as treatment lead-in, after which they were assessed for their behavioural phenotype using a battery of tests. In addition, we assessed systemic immunity by flow cytometry and the gut microbiome using shotgun metagenomic sequencing. We found that indeed kefir decreased repetitive behaviour in this mouse model. Furthermore, kefir prolonged stress-induced increases in corticosterone 60 min post-stress, which was accompanied by an ameliorated innate immune response as measured by LY6Chi monocyte levels. In addition, kefir increased the levels of anti-inflammatory Treg cells in mesenteric lymph nodes (MLNs). Kefir also increased the relative abundance of Lachnospiraceae bacterium A2, which correlated with reduced repetitive behaviour and increased Treg cells in MLNs. Functionally, kefir modulated various predicted gut microbial pathways, including the gut-brain module S-Adenosylmethionine (SAM) synthesis, as well as L-valine biosynthesis and pyruvate fermentation to isobutanol, which all correlated with repetitive behaviour. Taken together our data show that kefir modulates peripheral immunoregulation, can ameliorate specific ASD behavioural dysfunctions and modulates selective aspects of the composition and function of the gut microbiome, indicating that kefir supplementation might prove a viable strategy in improving quality of life in ASD subjects.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Kefir , Microbiota , Animais , Encéfalo , Camundongos , Qualidade de Vida
16.
Br J Nutr ; 125(2): 129-138, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32684173

RESUMO

Kefir consumption has been demonstrated to improve lipid and cholesterol metabolism; however, our previous study identified that benefits vary between different commercial and traditional kefir. Here, we investigate the ability of pitched culture kefir, that is, kefir produced by a small number of specific strains, to recapitulate health benefits of a traditional kefir, in a diet-induced obesity mouse model, and examine how microbial composition of kefir impacts these benefits. Eight-week-old female C57BL/6 mice were fed a high-fat diet (40 % energy from fat) supplemented with one of five kefir varieties (traditional, pitched, pitched with no Lactobacillus, pitched with no yeast and commercial control) at 2 ml in 20 g of food for 8 weeks prior to analysis of plasma and liver lipid profiles, and liver gene expression profiles related to lipid metabolism. Both traditional and pitched kefir lowered plasma cholesterol by about 35 % (P = 0·0005) and liver TAG by about 55 % (P = 0·0001) when compared with commercial kefir despite no difference in body weight. Furthermore, pitched kefir produced without either yeast or Lactobacillus did not lower cholesterol. The traditional and pitched kefir with the full complement of microbes were able to impart corresponding decreases in the expression of the cholesterol and lipid metabolism genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase, PPARγ and CD36 in the liver. These results demonstrate that traditional kefir organisms can successfully be utilised in a commercial process, while highlighting the importance of microbial interactions during fermentation in the ability of fermented foods to benefit host health.


Assuntos
Kefir/microbiologia , Obesidade/metabolismo , Animais , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Alimentos Fermentados/microbiologia , Lactobacillus/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/microbiologia , Leveduras/metabolismo
17.
Antonie Van Leeuwenhoek ; 114(10): 1595-1607, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34319449

RESUMO

Screening for producers of potent antimicrobial peptides, resulted in the isolation of Bacillus cereus BGNM1 with strong antimicrobial activity against Listeria monocytogenes. Genome sequence analysis revealed that BGNM1 contains the gene cluster associated with the production of the lantibiotic, thusin, previously identified in B. thuringiensis. Purification of the antimicrobial activity confirmed that strain BGMN1 produces thusin. Both thusin sensitive and resistant strains were detected among clinical isolates of Streptococcus agalactiae. Random mutagenesis of a thusin sensitive strain, S. agalactiae B782, was performed in an attempt to identify the receptor protein for thusin. Three independent thusin resistant mutants were selected and their complete genomes sequenced. Comparative sequence analysis of these mutants with the WT strain revealed that duplication of a region encoding a 79 amino acids repeat in a C-protein α-antigen was a common difference, suggesting it to be responsible for increased resistance to thusin. Since induced thusin resistant mutants showed higher level of resistance than the naturally resistant B761 strain, complete genome sequencing of strain B761 was performed to check the integrity of the C-protein α-antigen-encoding gene. This analysis revealed that this gene is deleted in B761, providing further evidence that this protein promotes interaction of the thusin with receptor.


Assuntos
Bacteriocinas , Listeria monocytogenes , Antibacterianos/farmacologia , Bacteriocinas/genética , Família Multigênica , Streptococcus agalactiae/genética
18.
J Dairy Sci ; 104(3): 2632-2640, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33358792

RESUMO

Nisin is a bacteriocin that is globally employed as a biopreservative in food systems to control gram-positive, and some gram-negative, bacteria. Here we tested the bioactivity of nisin A-producing Lactococcus lactis NZ9700 and producers of bioengineered variants thereof against representatives of the gram-negative genus Thermus, which has been associated with the pink discoloration defect in cheese. Starting with a total of 73 nisin variant-producing Lactococcus lactis, bioactivity against Thermus was assessed via agar diffusion assays, and 22 variants were found to have bioactivity greater than or equal to that of the nisin A-producing control. To determine to what extent this enhanced bioactivity was attributable to an increase in specific activity, minimum inhibitory concentrations were determined using the corresponding purified form of these 22 nisin A derivatives. From these experiments, nisin M17Q and M21F were identified as peptides with enhanced antimicrobial activity against the majority of Thermus target strains tested. In addition, several other peptide variants were found to exhibit enhanced specific activity against a subset of strains.


Assuntos
Bacteriocinas , Lactococcus lactis , Nisina , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Thermus
19.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801752

RESUMO

Bovine mastitis is a significant economic burden for dairy enterprises, responsible for premature culling, prophylactic and therapeutic antibiotic use, reduced milk production and the withholding (and thus wastage) of milk. There is a desire to identify novel antimicrobials that are expressly directed to veterinary applications, do not require a lengthy milk withholding period and that will not have a negative impact on the growth of lactic acid bacteria involved in downstream dairy fermentations. Nisin is the prototypical lantibiotic, a family of highly modified antimicrobial peptides that exhibit potent antimicrobial activity against many Gram-positive microbes, including human and animal pathogens including species of Staphylococcus and Streptococcus. Although not yet utilized in the area of human medicine, nisin is currently applied as the active agent in products designed to prevent bovine mastitis. Over the last decade, we have harnessed bioengineering strategies to boost the specific activity and target spectrum of nisin against several problematic microorganisms. Here, we screen a large bank of engineered nisin derivatives to identify novel derivatives that exhibit improved specific activity against a selection of staphylococci, including mastitis-associated strains, but have unchanged or reduced activity against dairy lactococci. Three such peptides were identified; nisin A M17Q, nisin A T2L and nisin A HTK.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Lactococcus/efeitos dos fármacos , Mastite Bovina/microbiologia , Nisina/química , Staphylococcus/efeitos dos fármacos , Animais , Bioengenharia/métodos , Bovinos , Feminino , Testes de Sensibilidade Microbiana , Leite/microbiologia , Peptídeos/química , Engenharia de Proteínas/métodos
20.
Mol Microbiol ; 111(3): 717-731, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30537404

RESUMO

The emergence and dissemination of antibiotic resistant bacteria is a major medical challenge. Lantibiotics are highly modified bacterially produced antimicrobial peptides that have attracted considerable interest as alternatives or adjuncts to existing antibiotics. Nisin, the most widely studied and commercially exploited lantibiotic, exhibits high efficacy against many pathogens. However, some clinically relevant bacteria express highly specific membrane-associated nisin resistance proteins. One notable example is the nisin resistance protein that acts by cleaving the peptide bond between ring E and the adjacent serine 29, resulting in a truncated peptide with significantly less activity. We utilised a complete bank of bioengineered nisin (nisin A) producers in which the serine 29 residue has been replaced with every alternative amino acid. The nisin A S29P derivative was found to be as active as nisin A against a variety of bacterial targets but, crucially, exhibited a 20-fold increase in specific activity against a strain expressing the nisin resistance protein. Another derivative, nisin PV, exhibited similar properties but was much less prone to oxidation. This version of nisin with enhanced resistance to specific resistance mechanisms could prove useful in the fight against antibiotic resistant pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bioengenharia/métodos , Nisina/química , Nisina/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Nisina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA