Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 90(1): 282-298, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34414607

RESUMO

Disruptor of telomeric silencing 1-like (DOT1L) is the only non-SET domain histone lysine methyltransferase (KMT) and writer of H3K79 methylation on nucleosomes marked by H2B ubiquitination. DOT1L has elicited significant attention because of its interaction or fusion with members of the AF protein family in blood cell biology and leukemogenic transformation. Here, our goal was to extend previous structural information by performing a robust molecular dynamic study of DOT1L and its leukemogenic partners combined with mutational analysis. We show that statically and dynamically, D161, G163, E186, and F223 make frequent time-dependent interactions with SAM, while additional residues T139, K187, and N241 interact with SAM only under dynamics. Dynamics models reveal DOT1L, SAM, and H4 moving as one and show that more than twice the number of DOT1L residues interacts with these partners, relative to the static structure. Mutational analyses indicate that six of these residues are intolerant to substitution. We describe the dynamic behavior of DOT1L interacting with AF10 and AF9. Studies on the dynamics of a heterotrimeric complex of DOT1L1-AF10 illuminated describe coordinated motions that impact the relative position of the DOT1L HMT domain to the nucleosome. The molecular motions of the DOT1L-AF9 complex are less extensive and highly dynamic, resembling a swivel-like mechanics. Through molecular dynamics and mutational analysis, we extend the knowledge previous provided by static measurements. These results are important to consider when describing the biochemical properties of DOT1L, under normal and in disease conditions, as well as for the development of novel therapeutic agents.


Assuntos
Carcinogênese , Histona-Lisina N-Metiltransferase , Leucemia/metabolismo , Carcinogênese/química , Carcinogênese/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Simulação de Dinâmica Molecular , Nucleossomos/química , Nucleossomos/metabolismo , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
2.
Gastroenterology ; 160(3): 889-905.e10, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058867

RESUMO

BACKGROUND & AIMS: Transforming growth factor ß (TGFß) upregulates cholangiocyte-derived signals that activate myofibroblasts and promote fibrosis. Using epigenomic and transcriptomic approaches, we sought to distinguish the epigenetic activation mechanisms downstream of TGFß that mediate transcription of fibrogenic signals. METHODS: Chromatin immunoprecipitation (ChIP)-seq and RNA-seq were performed to assess histone modifications and transcriptional changes following TGFß stimulation. Histone modifications and acetyltransferase occupancy were confirmed using ChIP assays. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) was used to investigate changes in chromatin accessibility. Cholangiocyte cell lines and primary cholangiocytes were used for in vitro studies. Mdr2-/- and 3,5-diethoxycarboncyl-1,4-dihydrocollidine (DDC)-fed mice were used as animal models. RESULTS: TGFß stimulation caused widespread changes in histone 3 lysine 27 acetylation (H3K27ac), and was associated with global TGFß-mediated transcription. In contrast, H3K9ac was gained in a smaller group of chromatin sites and was associated with fibrosis pathways. These pathways included overexpression of hepatic stellate cell (HSC) activators such as fibronectin 1 (FN1) and SERPINE1. The promoters of these genes showed H3K9ac enrichment following TGFß. Of the acetyltransferases responsible for H3K9ac, cholangiocytes predominantly express Lysine Acetyltransferases 2A (KAT2A). Small interfering RNA knockdown of KAT2A or H3K9ac inhibition prevented the TGFß-mediated increase in FN1 and SERPINE1. SMAD3 ChIP-seq and ATAC-seq suggested that TGFß-mediated H3K9ac occurs through SMAD signaling, which was confirmed using colocalization and genetic knockdown studies. Pharmacologic inhibition or cholangiocyte-selective deletion of Kat2a was protective in mouse models of biliary fibrosis. CONCLUSIONS: Cholangiocyte expression of HSC-activating signals occurs through SMAD-dependent, KAT2A-mediated, H3K9ac, and can be targeted to prevent biliary fibrosis.


Assuntos
Ductos Biliares/patologia , Epigênese Genética/genética , Histonas/metabolismo , Cirrose Hepática Biliar/genética , Fator de Crescimento Transformador beta/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Acetilação/efeitos dos fármacos , Animais , Ductos Biliares/citologia , Ductos Biliares/efeitos dos fármacos , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Epigenômica , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Cirrose Hepática Biliar/induzido quimicamente , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/patologia , Camundongos , Camundongos Knockout , Miofibroblastos/patologia , Cultura Primária de Células , Piridinas/administração & dosagem , Piridinas/toxicidade , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
3.
J Hepatol ; 73(5): 1144-1154, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32389810

RESUMO

BACKGROUND & AIMS: Autophagy plays a crucial role in hepatic homeostasis and its deregulation has been associated with chronic liver disease. However, the effect of autophagy on the release of fibrogenic extracellular vesicles (EVs) by platelet-derived growth factor (PDGF)-stimulated hepatic stellate cells (HSCs) remains unknown. Herein, we aimed to elucidate the role of autophagy, specifically relating to fibrogenic EV release, in fibrosis. METHODS: In vitro experiments were conducted in primary human and murine HSCs as well as LX2 cells. Small EVs were purified by differential ultracentrifugation. Carbon tetrachloride (CCl4) or bile duct ligation (BDL) were used to induce fibrosis in our mouse model. Liver lysates from patients with cirrhosis or healthy controls were compared by RNA sequencing. RESULTS: In vitro, PDGF and its downstream molecule SHP2 (Src homology 2-containing protein tyrosine phosphatase 2) inhibited autophagy and increased HSC-derived EV release. We used this PDGF/SHP2 model to further investigate how autophagy affects fibrogenic EV release. RNA sequencing identified an mTOR (mammalian target of rapamycin) signaling molecule that was regulated by SHP2 and PDGF. Disruption of mTOR signaling abolished PDGF-dependent EV release. Activation of mTOR signaling induced the release of multivesicular body-derived exosomes (by inhibiting autophagy) and microvesicles (by activating ROCK1 signaling). These mTOR-dependent EVs promoted in vitro HSC migration. To assess the importance of this mechanism in vivo, SHP2 was selectively deleted in HSCs, which attenuated CCl4- or BDL-induced liver fibrosis. Furthermore, in the CCl4 model, mice receiving circulating EVs derived from mice with HSC-specific Shp2 deletion had less fibrosis than mice receiving EVs from control mice. Correspondingly, SHP2 was upregulated in patients with liver cirrhosis. CONCLUSION: These results demonstrate that autophagy in HSCs attenuates liver fibrosis by inhibiting the release of fibrogenic EVs. LAY SUMMARY: During liver fibrosis and cirrhosis, activated hepatic stellate cells (HSCs) are the key cell type responsible for fibrotic tissue deposition. Recently, we demonstrated that activated HSCs release nano-sized vesicles enriched with fibrogenic proteins. In the current study, we unveil the mechanism by which these fibrogenic vesicles are released, moving a step closer to the long-term goal of therapeutically targeting this process.


Assuntos
Vesículas Extracelulares/metabolismo , Células Estreladas do Fígado , Cirrose Hepática , Fígado , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia , Células Cultivadas , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Análise de Sequência de RNA/métodos , Quinases Associadas a rho/metabolismo
4.
J Hepatol ; 73(1): 149-160, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32087348

RESUMO

BACKGROUND & AIMS: Steatohepatitis drives fibrogenesis in alcohol-related liver disease. Recent studies have suggested that hepatic stellate cells (HSCs) may regulate the parenchymal cell injury and inflammation that precedes liver fibrosis, although the mechanism remains incompletely defined. Neuropilin-1 (NRP-1) and synectin are membrane proteins implicated in HSC activation. In this study, we disrupted NRP-1 and synectin as models to evaluate the role of HSC activation on the development of steatohepatitis in response to alcohol feeding in mice. METHODS: Mice with HSC-selective deletion of NRP (ColCre/Nrp1loxP) or synectin (ColCre/synectinloxP) vs. paired Nrp1loxP or synectinloxP mice were fed a control diet or the chronic/binge alcohol feeding model. Several markers of steatosis and inflammation were evaluated. RESULTS: ColCre/Nrp1loxP mice showed less fibrosis, as expected, but also less inflammation and steatosis, with lower hepatic triglyceride content. Similar results were observed in the synectin model. Hepatocytes treated with supernatant of HSCs from ColCre/Nrp1loxP mice compared to supernatant from Nrp1loxP mice were protected against ethanol-induced lipid droplet formation. An adipokine and inflammatory protein array from the supernatant of HSCs with NRP-1 knockdown showed a significant reduction in Igfbp3 (a major insulin-like growth factor-binding protein with multiple metabolic functions) and an increase in SerpinA12 (a serine-protease inhibitor) secretion compared to wild-type HSCs. Recombinant Igfbp3 induced lipid droplets, triglyceride accumulation, and lipogenic genes in hepatocytes in vitro, while SerpinA12 was protective against ethanol-induced steatosis. Finally, Igfbp3 was increased, and SerpinA12 was decreased in serum and liver tissue from patients with alcoholic hepatitis. CONCLUSION: Selective deletion of NRP-1 from HSCs attenuates alcohol-induced steatohepatitis through regulation of Igfbp3 and SerpinA12 signaling. LAY SUMMARY: Hepatic stellate cells are known for their role in fibrosis (scarring of the liver). In this study, we describe their role in the modulation of fat deposition and inflammation in the liver, which occurs secondary to alcohol damage.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fígado Gorduroso Alcoólico , Células Estreladas do Fígado/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neuropilina-1/metabolismo , Serpinas/metabolismo , Animais , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/complicações , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Fibrose/etiologia , Fibrose/imunologia , Inflamação/metabolismo , Camundongos , Inibidores de Serina Proteinase/metabolismo , Transdução de Sinais
5.
Hepatology ; 70(5): 1674-1689, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31070797

RESUMO

During biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor ß (TGF-ß). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-ß signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription. We performed RNA sequencing in cholangiocytes with or without TGF-ß. Ingenuity pathway analysis identified "HSC Activation" as the highly up-regulated pathway, including overexpression of fibronectin 1 (FN), connective tissue growth factor, and other genes. Bioinformatics identified enhancer of zeste homologue 2 (EZH2) as an epigenetic regulator of the cholangiocyte TGF-ß response. EZH2 overexpression suppressed TGF-ß-induced FN protein in vitro, suggesting FN as a direct target of EZH2-based repression. Chromatin immunoprecipitation assays identified an FN promoter element in which EZH2-mediated tri-methylation of lysine 27 on histone 3 is diminished by TGF-ß. TGF-ß also caused a 50% reduction in EZH2 protein levels. Proteasome inhibition rescued EZH2 protein and led to reduced FN production. Immunoprecipitation followed by mass spectrometry identified ubiquitin protein ligase E3 component N-recognin 4 in complex with EZH2, which was validated by western blotting in vitro. Ubiquitin mutation studies suggested K63-based ubiquitin linkage and chain elongation on EZH2 in response to TGF-ß. A deletion mutant of EZH2, lacking its N-terminal domain, abrogates both TGF-ß-stimulated EZH2 degradation and FN release. In vivo, cholangiocyte-selective knockout of EZH2 exacerbates bile duct ligation-induced fibrosis whereas MDR2-/- mice are protected from fibrosis by the proteasome inhibitor bortezomib. Conclusion: TGF-ß regulates proteasomal degradation of EZH2 through N-terminal, K63-linked ubiquitination in cholangiocytes and activates transcription of a fibrogenic gene program that supports biliary fibrosis.


Assuntos
Doenças dos Ductos Biliares/metabolismo , Ductos Biliares/citologia , Ductos Biliares/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Epiteliais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Animais , Células Cultivadas , Feminino , Fibrose , Humanos , Masculino , Camundongos
6.
Am J Pathol ; 187(1): 134-145, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27840081

RESUMO

Dynamin-2 (Dyn2) is implicated in endocytosis of receptor tyrosine kinases, which contribute to hepatic stellate cell (HSC) activation and liver fibrosis. A point mutation converting lysine 44 of Dyn2 to alanine (Dyn2K44A) disrupts its GTPase activity. We hypothesized that Dyn2K44A expression in HSCs would decrease HSC activation and fibrogenesis in vivo by disrupting receptor tyrosine kinase endocytosis and signaling. Dyn2K44Afl/fl mice were crossed with Collagen1-Cre (Col1Cre) mice to generate offspring with HSC selective expression of Dyn2K44A (Col1Cre/Dyn2K44Afl/fl). Contrary to our hypothesis, Col1Cre/Dyn2K44Afl/fl mice showed increased hepatic fibrosis in response to liver injury. To elucidate mechanisms, we conducted in vitro experiments with HSCs infected with adenoviral vectors encoding LacZ, Dyn2K44A, or Dyn2WT. HSC-expressing Dyn2K44A displayed increased mRNA and protein levels of sphingosine kinase-1 (SK1), an enzyme previously implicated in the pathogenesis of fibrosis. To study the functional effects of Dyn2K44A regulation of SK1, we examined effects of AKT signaling and migration in HSCs. Dyn2K44A promoted both AKT phosphorylation and HSC migration in an SK1-dependent manner. Genetic disruption of Dyn2 GTPase activity selectively in HSC enhances fibrogenesis, driven at least in part through up-regulation of the SK1 pathway and cell migration in HSCs.


Assuntos
Movimento Celular/efeitos dos fármacos , Dinamina II/metabolismo , Células Estreladas do Fígado/enzimologia , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Animais , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Tetracloreto de Carbono , Colágeno Tipo I/metabolismo , Células Estreladas do Fígado/patologia , Ligadura , Camundongos , Proteínas Mutantes/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/farmacologia , Regulação para Cima/efeitos dos fármacos
7.
Semin Liver Dis ; 37(1): 17-27, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28201845

RESUMO

Despite decades of basic research, biliary diseases remain prevalent, highly morbid, and notoriously difficult to treat. We have, however, dramatically increased our understanding of biliary developmental biology, cholangiocyte pathophysiology, and the endogenous mechanisms of biliary regeneration and repair. All of this complex and rapidly evolving knowledge coincides with an explosion of new technological advances in the area of regenerative medicine. New breakthroughs such as induced pluripotent stem cells and organoid culture are increasingly being applied to the biliary system; it is only a matter of time until new regenerative therapeutics for the cholangiopathies are unveiled. In this review, the authors integrate what is known about biliary development, regeneration, and repair, and link these conceptual advances to the technological breakthroughs that are collectively driving the emergence of a new global field in biliary regenerative medicine.


Assuntos
Doenças Biliares/terapia , Sistema Biliar/fisiologia , Regeneração , Animais , Sistema Biliar/metabolismo , Doenças Biliares/fisiopatologia , Humanos , Fígado/metabolismo , Fígado/fisiologia , Medicina Regenerativa/tendências , Células-Tronco/citologia
8.
Lab Invest ; 97(11): 1385-1396, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892096

RESUMO

Primary sclerosing cholangitis (PSC) is an incurable, fibroinflammatory biliary disease for which there is no effective pharmacotherapy. We recently reported cholangiocyte senescence as an important phenotype in PSC while others showed that portal macrophages accumulate in PSC. Unfortunately, our ability to explore cholangiocyte senescence and macrophage accumulation has been hampered by limited in vitro models. Thus, our aim was to develop and characterize a three-dimensional (3D) model of normal and diseased bile ducts (cholangioids) starting with normal human cholangiocytes (NHC), senescent NHC (NHC-sen), and cholangiocytes from PSC patients. In 3D culture, NHCs formed spheroids of ~5000 cells with a central lumen of ~150 µm. By confocal microscopy and western blot, cholangioids retained expression of cholangiocyte proteins (cytokeratin 7/19) and markers of epithelial polarity (secretin receptor and GM130). Cholangioids are functionally active, and upon secretin stimulation, luminal size increased by ~80%. Cholangioids exposed to hydrogen peroxide exhibited cellular senescence and the senescence-associated secretory phenotype (SASP; increased IL-6, p21, SA-ß-Gal, yH2A.x and p16 expression). Furthermore, cholangioids derived from NHC-sen or PSC patients were smaller and had slower growth than the controls. When co-cultured with THP-1 macrophages, the number of macrophages associated with NHC-sen or PSC cholangioids was five- to seven-fold greater compared to co-culture with non-senescent NHC. We observed that NHC-sen and PSC cholangioids release greater number of extracellular vesicles (EVs) compared to controls. Moreover, conditioned media from NHC-sen cholangioids resulted in an ~2-fold increase in macrophage migration. In summary, we developed a method to generate normal and diseased cholangioids, characterized them morphologically and functionally, showed that they can be induced to senescence and SASP, and demonstrated both EV release and macrophage attraction. This novel model mimics several features of PSC, and thus will be useful for studying the pathogenesis of PSC and potentially identifying new therapeutic targets.


Assuntos
Ductos Biliares/patologia , Colangite Esclerosante/patologia , Esferoides Celulares/patologia , Autoantígenos/metabolismo , Ductos Biliares/efeitos dos fármacos , Ductos Biliares/metabolismo , Ductos Biliares/ultraestrutura , Biomarcadores/metabolismo , Linhagem Celular , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Colangite Esclerosante/imunologia , Colangite Esclerosante/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Vesículas Extracelulares/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Queratina-19/metabolismo , Queratina-7/metabolismo , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/patologia , Corpos Multivesiculares/ultraestrutura , Oxidantes/toxicidade , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestrutura
9.
J Biol Chem ; 290(52): 30684-96, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26534962

RESUMO

Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.


Assuntos
Exossomos/metabolismo , Células Estreladas do Fígado/citologia , Cirrose Hepática/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Movimento Celular , Células Estreladas do Fígado/metabolismo , Humanos , Integrinas/genética , Integrinas/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
10.
Hepatology ; 61(2): 648-59, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25142214

RESUMO

UNLABELLED: Chronic passive hepatic congestion (congestive hepatopathy) leads to hepatic fibrosis; however, the mechanisms involved in this process are not well understood. We developed a murine experimental model of congestive hepatopathy through partial ligation of the inferior vena cava (pIVCL). C57BL/6 and transgenic mice overexpressing tissue factor pathway inhibitor (SM22α-TFPI) were subjected to pIVCL or sham. Liver and blood samples were collected and analyzed in immunohistochemical, morphometric, real-time polymerase chain reaction, and western blot assays. Hepatic fibrosis and portal pressure were significantly increased after pIVCL concurrent with hepatic stellate cell (HSC) activation. Liver stiffness, as assessed by magnetic resonance elastography, correlated with portal pressure and preceded fibrosis in our model. Hepatic sinusoidal thrombosis as evidenced by fibrin deposition was demonstrated both in mice after pIVCL as well as in humans with congestive hepatopathy. Warfarin treatment and TFPI overexpression both had a protective effect on fibrosis development and HSC activation after pIVCL. In vitro studies show that congestion stimulates HSC fibronectin (FN) fibril assembly through direct effects of thrombi as well as by virtue of mechanical strain. Pretreatment with either Mab13 or Cytochalasin-D, to inhibit ß-integrin or actin polymerization, respectively, significantly reduced fibrin and stretch-induced FN fibril assembly. CONCLUSION: Chronic hepatic congestion leads to sinusoidal thrombosis and strain, which in turn promote hepatic fibrosis. These studies mechanistically link congestive hepatopathy to hepatic fibrosis.


Assuntos
Actinas/metabolismo , Fibrina/metabolismo , Hiperemia/complicações , Cirrose Hepática/etiologia , Trombose/complicações , Adulto , Idoso , Animais , Anticoagulantes , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibronectinas/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Ligadura , Circulação Hepática , Cirrose Hepática/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Veia Cava Inferior , Adulto Jovem
11.
J Biol Chem ; 289(22): 15798-809, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24759103

RESUMO

Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição Sp/metabolismo , Animais , Cromatina/metabolismo , Células Endoteliais/citologia , Epigênese Genética/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fígado/citologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fatores de Transcrição Sp/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Ativação Transcricional/fisiologia
12.
BMC Dev Biol ; 15: 23, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26021315

RESUMO

BACKGROUND: HP1γ, a well-known regulator of gene expression, has been recently identified to be a target of Aurora A, a mitotic kinase which is important for both gametogenesis and embryogenesis. The purpose of this study was to define whether the Aurora A-HP1γ pathway supports cell division of gametes and/or early embryos, using western blot, immunofluorescence, immunohistochemistry, electron microscopy, shRNA-based knockdown, site-directed mutagenesis, and Affymetrix-based genome-wide expression profiles. RESULTS: We find that the form of HP1γ phosphorylated by Aurora A, P-Ser83 HP1γ, is a passenger protein, which localizes to the spermatozoa centriole and axoneme. In addition, disruption in this pathway causes centrosomal abnormalities and aberrations in cell division. Expression profiling of male germ cell lines demonstrates that HP1γ phosphorylation is critical for the regulation of mitosis-associated gene expression networks. In female gametes, we observe that P-Ser83-HP1γ is not present in meiotic centrosomes of M2 oocytes, but after syngamy, it becomes detectable during cleavage divisions, coinciding with early embryonic genome activation. CONCLUSIONS: These results support the idea that phosphorylation of HP1γ by Aurora A plays a role in the regulation of gene expression and mitotic cell division in cells from the sperm lineage and in early embryos. Combined, this data is relevant to better understanding the function of HP1γ in reproductive biology.


Assuntos
Aurora Quinase A/metabolismo , Linhagem da Célula , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Espermatozoides/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Mitose , Fosforilação , Espermatogênese , Espermatozoides/citologia
13.
Lab Invest ; 95(6): 684-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25867762

RESUMO

Cholangiocytes are the target of a heterogeneous group of liver diseases known as the cholangiopathies. An evolving understanding of the mechanisms driving biliary development provides the theoretical underpinnings for rational development of induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs). Therefore, the aims of this study were to develop an approach to generate iDCs and to fully characterize the cells in vitro and in vivo. Human iPSC lines were generated by forced expression of the Yamanaka pluripotency factors. We then pursued a stepwise differentiation strategy toward iDCs, using precise temporal exposure to key biliary morphogens, and we characterized the cells, using a variety of morphologic, molecular, cell biologic, functional, and in vivo approaches. Morphology shows a stepwise phenotypic change toward an epithelial monolayer. Molecular analysis during differentiation shows appropriate enrichment in markers of iPSC, definitive endoderm, hepatic specification, hepatic progenitors, and ultimately cholangiocytes. Immunostaining, western blotting, and flow cytometry demonstrate enrichment of multiple functionally relevant biliary proteins. RNA sequencing reveals that the transcriptome moves progressively toward that of human cholangiocytes. iDCs generate intracellular calcium signaling in response to ATP, form intact primary cilia, and self-assemble into duct-like structures in three-dimensional culture. In vivo, the cells engraft within mouse liver, following retrograde intrabiliary infusion. In summary, we have developed a novel approach to generate mature cholangiocytes from iPSCs. In addition to providing a model of biliary differentiation, iDCs represent a platform for in vitro disease modeling, pharmacologic testing, and individualized, cell-based, regenerative therapies for the cholangiopathies.


Assuntos
Ductos Biliares/citologia , Células Epiteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Ductos Biliares/química , Ductos Biliares/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Engenharia Celular , Linhagem Celular , Células Epiteliais/química , Células Epiteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/química , Fígado/citologia , Fígado/metabolismo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
14.
Front Genet ; 15: 1412767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948355

RESUMO

Introduction: The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that Ehmt2 inactivation in the mouse pancreas alters growth and immune gene expression networks, antagonizing Kras-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of Ehmt2 in maintaining a transcriptional landscape that protects organs from inflammation. Methods: Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from Ehmt2 conditional knockout animals (Ehmt2 fl/fl ) targeted to the exocrine pancreatic epithelial cells (Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the Ehmt2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. Results and discussion: The Ehmt2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional Ehmt2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific Ehmt2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the Ehmt2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.

15.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38529489

RESUMO

The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that EHMT2 inactivation alters growth and immune gene expression networks, antagonizing KRAS-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of EHMT2 in maintaining a transcriptional landscape that protects organs from inflammation. Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from EHMT2 conditional knockout animals ( EHMT2 fl/fl ) targeted to the exocrine pancreatic epithelial cells ( Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the EHMT2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. The EHMT2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional EHMT2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific EHMT2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the EHMT2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.

16.
Am J Physiol Gastrointest Liver Physiol ; 305(11): G838-48, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24091596

RESUMO

Hepatic stellate cells (HSC) and liver endothelial cells (LEC) migrate to sites of injury and perpetuate alcohol-induced liver injury. High-mobility group box 1 (HMGB1) is a protein released from the nucleus of injured cells that has been implicated as a proinflammatory mediator. We hypothesized that HMGB1 may be released from ethanol-stimulated liver parenchymal cells and contribute to HSC and LEC recruitment. Ethanol stimulation of rat hepatocytes and HepG2 cells resulted in translocation of HMGB1 from the nucleus as assessed by Western blot. HMGB1 protein levels were increased in the supernatant of ethanol-treated hepatocytes compared with vehicle-treated cells. Migration of both HSC and LEC was increased in response to conditioned medium for ethanol-stimulated hepatocytes (CMEtOH) compared with vehicle-stimulated hepatocytes (CMVEH) (P < 0.05). However, the effect of CMEtOH on migration was almost entirely reversed by treatment with HMGB1-neutralizing antibody or when HepG2 cells were pretransfected with HMGB1-siRNA compared with control siRNA-transfected HepG2 cells (P < 0.05). Recombinant HMGB1 (100 ng/ml) also stimulated migration of HSC and LEC compared with vehicle stimulation (P < 0.05 for both HSC and LEC). HMGB1 stimulation of HSC increased the phosphorylation of Src and Erk and HMGB1-induced HSC migration was blocked by the Src inhibitor PP2 and the Erk inhibitor U0126. Hepatocytes release HMGB1 in response to ethanol with subsequent recruitment of HSC and LEC. This pathway has implications for HSC and LEC recruitment to sites of ethanol-induced liver injury.


Assuntos
Células Endoteliais/metabolismo , Etanol/farmacologia , Proteína HMGB1/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Animais , Butadienos/farmacologia , Movimento Celular , Células Endoteliais/efeitos dos fármacos , Etanol/toxicidade , Células Hep G2 , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias Alcoólicas/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas/farmacologia , Fosforilação , Cultura Primária de Células , Transporte Proteico , Pirimidinas/farmacologia , Ratos , Quinases da Família src/antagonistas & inibidores
17.
Biosci Rep ; 43(10)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37782747

RESUMO

Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis. Here, we immunopurified each of these proteins and used mass spectrometry to define their associated non-histone proteins, individually and at two different phases of the cell cycle, namely G1/S and G2/M. Our findings identify novel binding proteins for these writers and readers, as well as corroborate known interactors, to show the formation of distinct protein complex networks in a cell cycle phase-specific manner. Furthermore, there is an organizational switch between cell cycle phases for interactions among specific writer-reader pairs. Through a multi-tiered bioinformatics-based approach, we reveal that many interacting proteins exhibit histone mimicry, based on an H3K9-like linear motif. Gene ontology analyses, pathway enrichment, and network reconstruction inferred that these comprehensive EHMT and CBX-associated interacting protein networks participate in various functions, including transcription, DNA repair, splicing, and membrane disassembly. Combined, our data reveals novel complexes that provide insight into key functions of cell cycle-associated epigenomic processes that are highly relevant for better understanding these chromatin-modifying proteins during cell cycle and carcinogenesis.


Assuntos
Histonas , Lisina , Humanos , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Ciclo Celular , Divisão Celular , Carcinogênese , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
18.
Comput Struct Biotechnol J ; 20: 2200-2211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615018

RESUMO

The histone demethylase KDM6A has recently elicited significant attention because its mutations are associated with a rare congenital disorder (Kabuki syndrome) and various types of human cancers. However, distinguishing KDM6A mutations that are deleterious to the enzyme and their underlying mechanisms of dysfunction remain to be fully understood. Here, we report the results from a multi-tiered approach evaluating the impact of 197 KDM6A somatic mutations using information derived from combining conventional genomics data with computational biophysics. This comprehensive approach incorporates multiple scores derived from alterations in protein sequence, structure, and molecular dynamics. Using this method, we classify the KDM6A mutations into 136 damaging variants (69.0%), 32 tolerated variants (16.2%), and 29 variants of uncertain significance (VUS, 14.7%), which is a significant improvement from the previous classification based on the conventional tools (over 40% VUS). We further classify the damaging variants into 15 structural variants (SV), 88 dynamic variants (DV), and 33 structural and dynamic variants (SDV). Comparison with variant scoring methods used in current clinical diagnosis guidelines demonstrates that our approach provides a more comprehensive evaluation of damaging potential and reveals mechanisms of dysfunction. Thus, these results should be taken into consideration for clinical assessment of the damaging potential of each mutation, as they provide hypotheses for experimental validation and critical information for the development of mutant-specific drugs to fight diseases caused by KDM6A dysfunctions.

19.
Hepatol Commun ; 6(2): 345-360, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34519176

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic fibroinflammatory disease of the biliary tract characterized by cellular senescence and periportal fibrogenesis. Specific disease features that are cell intrinsic and either genetically or epigenetically mediated remain unclear due in part to a lack of appropriate, patient-specific, in vitro models. Recently, our group developed systems to create induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs) and biliary epithelial organoids (cholangioids). We use these models to investigate whether PSC cholangiocytes are intrinsically predisposed to cellular senescence. Skin fibroblasts from healthy controls and subjects with PSC were reprogrammed to pluripotency, differentiated to cholangiocytes, and subsequently grown in three-dimensional matrigel-based culture to induce formation of cholangioids. RNA sequencing (RNA-seq) on iDCs showed significant differences in gene expression patterns, including enrichment of pathways associated with cell cycle, senescence, and hepatic fibrosis, that correlate with PSC. These pathways also overlapped with RNA-seq analysis on isolated cholangiocytes from subjects with PSC. Exome sequencing on the subjects with PSC revealed genetic variants of unknown significance in the genes identified in these pathways. Three-dimensional culture revealed smaller size, lack of a central lumen, and increased cellular senescence in PSC-derived cholangioids. Congruent with this, PSC-derived iDCs showed increased secretion of the extracellular matrix molecule fibronectin as well as the inflammatory cytokines interleukin-6, and chemokine (C-C motif) ligand 2. Conditioned media (CM) from PSC-derived iDCs more potently activated hepatic stellate cells compared to control CM. Conclusion: We demonstrated efficient generation of iDCs and cholangioids from patients with PSC that show disease-specific features. PSC cholangiocytes are intrinsically predisposed to cellular senescence. These features are unmasked following biliary differentiation of pluripotent stem cells and have functional consequences in epithelial organoids.


Assuntos
Diferenciação Celular , Senescência Celular , Colangite Esclerosante/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Adulto , Idoso , Células Cultivadas , Colangite Esclerosante/metabolismo , Meios de Cultivo Condicionados , Citocinas/metabolismo , Feminino , Fibroblastos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Sequência de RNA , Pele/citologia
20.
Orphanet J Rare Dis ; 16(1): 66, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546721

RESUMO

BACKGROUND: Kabuki syndrome is a genetic disorder that affects several body systems and presents with variations in symptoms and severity. The syndrome is named for a common phenotype of faces resembling stage makeup used in a Japanese traditional theatrical art named kabuki. The most frequent cause of this syndrome is mutations in the H3K4 family of histone methyltransferases while a smaller percentage results from genetic alterations affecting the histone demethylase, KDM6A. Because of the rare presentation of the latter form of the disease, little is known about how missense changes in the KDM6A protein sequence impact protein function. RESULTS: In this study, we use molecular mechanic and molecular dynamic simulations to enhance the annotation and mechanistic interpretation of the potential impact of eleven KDM6A missense variants found in Kabuki syndrome patients. These variants (N910S, D980V, S1025G, C1153R, C1153Y, P1195L, L1200F, Q1212R, Q1248R, R1255W, and R1351Q) are predicted to be pathogenic, likely pathogenic or of uncertain significance by sequence-based analysis. Here, we demonstrate, for the first time, that although Kabuki syndrome missense variants are found outside the functionally critical regions, they could affect overall function by significantly disrupting global and local conformation (C1153R, C1153Y, P1195L, L1200F, Q1212R, Q1248R, R1255W and R1351Q), chemical environment (C1153R, C1153Y, P1195L, L1200F, Q1212R, Q1248R, R1255W and R1351Q), and/or molecular dynamics of the catalytic domain (all variants). In addition, our approaches predict that many mutations, in particular C1153R, could allosterically disrupt the key enzymatic interactions of KDM6A. CONCLUSIONS: Our study demonstrates that the KDM6A Kabuki syndrome variants may impair histone demethylase function through various mechanisms that include altered protein integrity, local environment, molecular interactions and protein dynamics. Molecular dynamics simulations of the wild type and the variants are critical to gain a better understanding of molecular dysfunction. This type of comprehensive structure- and MD-based analyses should help develop improved impact scoring systems to interpret the damaging effects of variants in this protein and other related proteins as well as provide detailed mechanistic insight that is not currently predictable from sequence alone.


Assuntos
Doenças Hematológicas , Histona Desmetilases/genética , Doenças Vestibulares , Anormalidades Múltiplas , Face/anormalidades , Doenças Hematológicas/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Doenças Vestibulares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA