Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Evol Biol ; 34(3): 525-536, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314358

RESUMO

Both sex allocation and sexual conflict can be modulated by spatial structure. However, how the interplay between the type of dispersal and the scale of competition simultaneously affects these traits in sub-divided populations is rarely considered. We investigated sex allocation and sexual conflict evolution in meta-populations of the spider mite Tetranychus urticae evolving under budding (pairing females from the same patch) or random (pairing females from different patches) dispersal and either local (fixed sampling from each subpopulation) or global (sampling as a function of subpopulation productivity) competition. Females evolving under budding dispersal produced less female-biased offspring sex ratios than those from the random dispersal selection regimes, contradicting theoretical predictions. In contrast, the scale of competition did not strongly affect sex allocation. Offspring sex ratio and female fecundity were unaffected by the number of mates, but female fecundity was highest when their mates evolved under budding dispersal, suggesting these males inflict less harm than those evolving under random dispersal. This work highlights that population structure can impact the evolution of sex allocation and sexual conflict. Moreover, selection on either trait may reciprocally affect the evolution of the other, for example via effects on fecundity.


Assuntos
Distribuição Animal , Evolução Biológica , Seleção Genética , Razão de Masculinidade , Tetranychidae/genética , Animais , Feminino , Fertilidade , Masculino , Caracteres Sexuais
2.
Ecology ; 96(1): 284-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236913

RESUMO

Dispersal can have positive and negative effects on metapopulation stability and persistence. One prediction is that high levels of dispersal synchronize density fluctuations between subpopulations. However, little is still known about how biotic and abiotic factors combine to modify the effects of dispersal rate on synchrony and metapopulation dynamics. In a fully factorial experimental design, we investigated the combined effects of (1) dispersal, (2) parasite infection, and (3) synchrony in temperature fluctuations on subpopulation synchrony, metapopulation instability, and minimum population size, in laboratory metapopulations of the ciliate Paramecium caudatum. Metapopulations, comprising two subpopulations linked by high or low levels of dispersal, were exposed to daily fluctuations in temperature between permissive (23 degrees C) and restrictive (5 degrees C) conditions. Infected metapopulations started the experiment with one subpopulation uninfected, while the other was infected at a prevalence of 5% with the bacterial parasite Holospora undulata. The temperature synchrony treatment involved subpopulations within a metapopulation following the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Population size was tracked over the 56-day experiment. We found that subpopulation density fluctuations were synchronized by high dispersal in infected metapopulations, and by synchronous temperatures in all metapopulations. Subpopulation synchrony was positively correlated with metapopulation instability and minimum metapopulation size, highlighting the multiple consequences of our treatments for metapopulation dynamics. Our results illustrate how parasites can generate dispersal-driven synchrony in non-cycling, declining populations. This "biotic forcing" via a natural enemy added to the temperature-dependent environmental forcing. We therefore conclude that predictions of metapopulation persistence in natural populations require simultaneous investigation of multiple ecological and epidemiological factors.


Assuntos
Holosporaceae/fisiologia , Interações Hospedeiro-Patógeno , Paramecium caudatum/patogenicidade , Dinâmica Populacional , Temperatura
3.
J Anim Ecol ; 84(2): 498-508, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25311642

RESUMO

Co-infections may modify parasite transmission opportunities directly as a consequence of interactions in the within-host environment, but also indirectly through changes in host life history. Furthermore, host and parasite traits are sensitive to the abiotic environment with variable consequences for parasite transmission in co-infections. We investigate how co-infection of the mosquito Aedes aegypti with two microsporidian parasites (Vavraia culicis and Edhazardia aedis) at two levels of larval food availability affects parasite transmission directly, and indirectly through effects on host traits. In a laboratory infection experiment, we compared how co-infection, at low and high larval food availability, affected the probability of infection, within-host growth and the transmission potential of each parasite, compared to single infections. Horizontal transmission was deemed possible for both parasites when infected hosts died harbouring horizontally transmitting spores. Vertical transmission was judged possible for E. aedis when infected females emerged as adults. We also compared the total input number of spores used to seed infections with output number, in single and co-infections for each parasite. The effects of co-infection on parasite fitness were complex, especially for V. culicis. In low larval food conditions, co-infection increased the chances of mosquitoes dying as larvae or pupae, thus increasing opportunities for V. culicis' horizontal transmission. However, co-infection reduced larval longevity and hence time available for V. culicis spore production. Overall, there was a negative net effect of co-infection on V. culicis, whereby the number of spores produced was less than the number used to seed infection. Co-infections also negatively affected horizontal transmission of the more virulent parasite, E. aedis, through reduced longevity of pre-adult hosts. However, its potential transmission suffered less relative to V. culicis. Our results show that co-infection can negatively affect parasite transmission opportunities, both directly as well as indirectly via effects on host life history. We also find that transmission is contingent on the combined effect of the abiotic environment.


Assuntos
Aedes/crescimento & desenvolvimento , Aedes/microbiologia , Microsporídios/fisiologia , Aedes/parasitologia , Animais , Feminino , Interações Hospedeiro-Patógeno , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/parasitologia , Masculino , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , Pupa/parasitologia
4.
J Anim Ecol ; 84(3): 723-733, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25382389

RESUMO

Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density or trait mediated. We studied a tri-trophic food chain comprised of (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum) and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling and analyses of host (Paramecium) morphology and behaviour. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. A mixture of density-mediated and trait-mediated indirect effects of parasitism on non-host species creates rich and complex possibilities for effects of parasites in food webs that should be included in assessments of possible impacts of parasite eradication or introduction.


Assuntos
Cilióforos/fisiologia , Cadeia Alimentar , Holosporaceae/fisiologia , Paramecium caudatum/fisiologia , Serratia/fisiologia , Animais , Comportamento Animal , Interações Hospedeiro-Patógeno , Paramecium caudatum/microbiologia , Dinâmica Populacional , Comportamento Predatório
5.
Trends Ecol Evol ; 39(7): 666-676, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38637209

RESUMO

Dispersal evolution modifies diverse spatial processes, such as range expansions or biological invasions of single species, but we are currently lacking a realistic vision for metacommunities. Focusing on antagonistic species interactions, we review existing theory of dispersal evolution between natural enemies, and explain how this might be relevant for classic themes in host-parasite evolutionary ecology, namely virulence evolution or local adaptation. Specifically, we highlight the importance of considering the simultaneous (co)evolution of dispersal and interaction traits. Linking such multi-trait evolution with reciprocal demographic and epidemiological feedbacks might change basic predictions about coevolutionary processes and spatial dynamics of interacting species. Future challenges concern the integration of system-specific disease ecology or spatial modifiers, such as spatial network structure or environmental heterogeneity.


Assuntos
Evolução Biológica , Interações Hospedeiro-Parasita , Animais , Distribuição Animal , Dinâmica Populacional , Ecossistema
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230139, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913066

RESUMO

One of the fundamental aims of ecological, epidemiological and evolutionary studies of host-parasite interactions is to unravel which factors affect parasite virulence. Theory predicts that virulence and transmission are correlated by a trade-off, as too much virulence is expected to hamper transmission owing to excessive host damage. Coinfections may affect each of these traits and/or their correlation. Here, we used inbred lines of the spider mite Tetranychus urticae to test how coinfection with T. evansi impacted virulence-transmission relationships at different conspecific densities. The presence of T. evansi on a shared host did not change the relationship between virulence (leaf damage) and the number of transmitting stages (i.e. adult daughters). The relationship between these traits was hump-shaped across densities, both in single and coinfections, which corresponds to a trade-off. Moreover, transmission to adjacent hosts increased in coinfection, but only at low T. urticae densities. Finally, we tested whether virulence and the number of daughters were correlated with measures of transmission to adjacent hosts, in single and coinfections at different conspecific densities. Traits were mostly independent, meaning that interspecific competitors may increase transmission without affecting virulence. Thus, coinfections may impact epidemiology and parasite trait evolution, but not necessarily the virulence-transmission trade-off.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Coinfecção , Interações Hospedeiro-Parasita , Tetranychidae , Animais , Virulência , Tetranychidae/fisiologia , Coinfecção/parasitologia , Coinfecção/transmissão , Feminino
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230142, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913061

RESUMO

Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution-increased trait dimensionality of biodiverse meta-systems-and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more 'diffuse' evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Evolução Biológica , Animais , Ecossistema
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230127, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913065

RESUMO

Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Animais , Ecossistema , Vertebrados/fisiologia
9.
Proc Biol Sci ; 280(1769): 20131747, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23966645

RESUMO

Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host-parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5 °C) and permissive (23 °C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise.


Assuntos
Meio Ambiente , Holosporaceae/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/fisiologia , Processos Estocásticos , Temperatura , Fatores de Tempo
10.
R Soc Open Sci ; 10(6): 230525, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325599

RESUMO

Many parasites can interfere with their host's defences to maximize their fitness. Here, we investigated if there is heritable variation in the spider mite Tetranychus evansi for traits associated with how they interact with their host plant. We also determined if this variation correlates with mite fecundity. Tetranychus evansi can interfere with jasmonate (JA) defences which are the main determinant of anti-herbivore immunity in plants. We investigated (i) variation in fecundity in the presence and absence of JA defences, making use of a wild-type tomato cultivar and a JA-deficient mutant (defenseless-1), and (ii) variation in the induction of JA defences, in four T. evansi field populations and 59 inbred lines created from an outbred population originating from controlled crosses of the four field populations. We observed a strong positive genetic correlation between fecundity in the presence (on wild-type) and the absence of JA defences (on defenseless-1). However, fecundity did not correlate with the magnitude of induced JA defences in wild-type plants. Our results suggest that the performance of the specialist T. evansi is not related to their ability to manipulate plant defences, either because all lines can adequately reduce levels of defences, or because they are resistant to them.

11.
Evol Lett ; 7(1): 58-66, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37065437

RESUMO

Virulence is expected to be linked to parasite fitness via transmission. However, it is not clear whether this relationship is genetically determined, nor if it differs when transmission occurs continuously during, or only at the end of, the infection period. Here, we used inbred lines of the macroparasitic spider mite Tetranychus urticae to disentangle genetic vs. nongenetic correlations among traits, while varying parasite density and opportunities for transmission. A positive genetic correlation between virulence and the number of transmitting stages produced was found under continuous transmission. However, if transmission occurred only at the end of the infection period, this genetic correlation disappeared. Instead, we observed a negative relationship between virulence and the number of transmitting stages, driven by density dependence. Thus, within-host density dependence caused by reduced opportunities for transmission may hamper selection for higher virulence, providing a novel explanation as to why limited host availability leads to lower virulence.

12.
Ecol Lett ; 15(3): 186-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22221658

RESUMO

Epidemiology in host meta-populations depends on parasite ability to disperse between, establish and persist in distinct sub-populations of hosts. We studied the genetic factors determining the short-term establishment, and long-term maintenance, of pathogens introduced by infected hosts (i.e. carriers) into recipient populations. We used experimental populations of the freshwater ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Parasite short-term spread (approximately one horizontal transmission cycle) was affected mainly by carrier genotype, and its interactions with parasite and recipient genotypes. By contrast, parasite longer term spread (2-3 horizontal transmission cycles) was mostly determined by parasite isolate. Importantly, measures of parasite short-term success (reproductive number, R) were not good predictors for longer term prevalence, probably because of the specific interactions between host and parasite genotypes. Analogous to variation in vectorial capacity and super-spreader occurrence, two crucial components of epidemiology, we show that carrier genotype can also affect disease spread within meta-populations.


Assuntos
Holosporaceae/patogenicidade , Interações Hospedeiro-Patógeno/genética , Paramecium caudatum/genética , Paramecium caudatum/microbiologia , Infecções Bacterianas/transmissão , Água Doce/parasitologia , Genótipo
13.
Proc Biol Sci ; 278(1723): 3412-20, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21450730

RESUMO

The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host-parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range.


Assuntos
Meio Ambiente , Holosporaceae/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/fisiologia , Temperatura , Análise de Variância , Animais , Genótipo , Modelos Estatísticos , Paramecium caudatum/genética , Dinâmica Populacional , Fatores de Tempo
14.
Biol Lett ; 7(3): 327-9, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20961885

RESUMO

Parasitic infection can modify host mobility and consequently their dispersal capacity. We experimentally investigated this idea using the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. We compared the short-distance dispersal of infected and uninfected populations in interconnected microcosms. Infection reduced the proportion of hosts dispersing, with levels differing among host clones. Host populations with higher densities showed lower dispersal, possibly owing to social aggregation behaviour. Parasite isolates that depleted host populations most had the lowest impact on host dispersal. Parasite-induced modification of dispersal may have consequences for the spatial distribution of disease, host and parasite genetic population structure, and coevolution.


Assuntos
Holosporaceae/fisiologia , Interações Hospedeiro-Parasita , Paramecium caudatum/microbiologia , Dinâmica Populacional
15.
Viruses ; 11(3)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866521

RESUMO

Viral metagenomics and high throughput sequence mining have revealed unexpected diversity, and the potential presence, of parvoviruses in animals from all phyla. Among arthropods, this diversity highlights the poor knowledge that we have regarding the evolutionary history of densoviruses. The aim of this study was to explore densovirus diversity in a small arthropod pest belonging to Acari, the two-spotted spider mite Tetranychus urticae, while using viral metagenomics based on virus-enrichment. Here, we present the viromes obtained from T. urticae laboratory populations made of contigs that are attributed to nine new potential viral species, including the complete sequence of a novel densovirus. The genome of this densovirus has an ambisens genomic organization and an unusually compact size with particularly small non-structural proteins and a predicted major capsid protein that lacks the typical PLA2 motif that is common to all ambidensoviruses described so far. In addition, we showed that this new densovirus had a wide prevalence across populations of mite species tested and a genomic diversity that likely correlates with the host phylogeny. In particular, we observed a low densovirus genomic diversity between the laboratory and natural populations, which suggests that virus within-species evolution is probably slower than initially thought. Lastly, we showed that this novel densovirus can be inoculated to the host plant following feeding by infected mites, and circulate through the plant vascular system. These findings offer new insights into densovirus prevalence, evolution, and ecology.


Assuntos
Densovirus/genética , Densovirus/isolamento & purificação , Variação Genética , Microbiota , Tetranychidae/virologia , Animais , Proteínas do Capsídeo/genética , Feminino , Genoma Viral , Metagenômica , Filogenia , Plantas/virologia , Prevalência , Proteínas não Estruturais Virais/genética
16.
Nat Commun ; 9(1): 4869, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451829

RESUMO

Facilitation occurs when one species positively impacts the fitness of another, and has predominantly been studied in free-living species like plants. Facilitation can also occur among symbiont (mutualistic or parasitic) species or strains, but equivalent studies are scarce. To advance an integrated view of the effect of facilitation on symbiont ecology and evolution, we review empirical evidence and their underlying mechanisms, explore the factors favouring its emergence, and discuss its consequences for virulence and transmission. We argue that the facilitation concept can improve understanding of the evolutionary forces shaping symbiont communities and their effects on hosts.


Assuntos
Evolução Biológica , Simbiose/fisiologia , Animais , Bactérias/crescimento & desenvolvimento , Ecossistema , Fungos/fisiologia , Humanos , Parasitos/fisiologia , Plantas/microbiologia , Plantas/parasitologia , Plantas/virologia , Vírus/crescimento & desenvolvimento
17.
Evolution ; 61(4): 796-803, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17439612

RESUMO

A substantial body of theory indicates that parasites may mould the population genetic structure of their hosts, but few empirical studies have directly linked parasitism to genetic dynamics. We used molecular markers (allozymes) to investigate genotype frequency changes in a natural population of the crustacean Daphnia magna in relation to an epidemic of the bacterial pathogen Pasteuria ramosa. The population experienced a severe epidemic during the study period in which parasite prevalence reached 100% of the adult portion of the population. The parasite epidemic was associated with genetic change in the host population. Clonal diversity was observed to decrease as parasite prevalence increased in the population, and tests for differences in the clonal composition of the population before, during, and after the epidemic indicated that significant change had occurred. A laboratory infection experiment showed that the genotypes which were more common following the peak of the parasite epidemic were also the most resistant to parasite infection. Thus, this study provides an illustration of parasite-mediated selection in the wild.


Assuntos
Bactérias , Daphnia/genética , Daphnia/microbiologia , Variação Genética , Genética Populacional , Animais , Genótipo , Isoenzimas , Escócia
18.
Trends Ecol Evol ; 31(2): 158-170, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26753782

RESUMO

Competitive interactions shape the evolution of organisms. However, often it is not clear whether competition is the driving force behind the patterns observed. The recent use of experimental evolution in competitive environments can help establish such causality. Unfortunately, this literature is scattered, as competition for food, mates, and hosts are subject areas that belong to different research fields. Here, we group these bodies of literature, extract common processes and patterns concerning the role of competition in shaping evolutionary trajectories, and suggest perspectives stemming from an integrative view of competition across these research fields. This review reinstates the power of experimental evolution in addressing the evolutionary consequences of competition, but highlights potential pitfalls in the design of such experiments.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Comportamento Competitivo/fisiologia , Alimentos , Preferência de Acasalamento Animal/fisiologia , Animais
19.
Am Nat ; 166(3): 301-16, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16224686

RESUMO

Sex ratio theory allows unparalleled opportunities for testing how well animal behavior can be predicted by evolutionary theory. For example, Hamilton's theory of local mate competition (LMC) is well understood and can explain variation in sex allocation across numerous species. This allows more specific predictions to be developed and tested. Here we extend LMC theory to a situation that will be common in a range of species: asymmetrical LMC. Asymmetrical LMC occurs when females lay eggs on a patch asynchronously and male offspring do not disperse, leading to relatively weaker LMC for males emerging from later broods. Varying levels of LMC then lead to varying optimal sex ratios for females, depending on when and where they oviposit. We confirm the assumptions of our theory using the wasp Nasonia vitripennis and then test our predictions. We show that females adjust their offspring sex ratios in the directions predicted, laying different sex ratios on different hosts within a patch. Specifically, there was a less female-biased sex ratio when ovipositing on an unparasitized host if another host on the patch had previously been parasitized and a less female-biased sex ratio on parasitized hosts if females also oviposited on an unparasitized host.


Assuntos
Comportamento Competitivo/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Razão de Masculinidade , Comportamento Sexual Animal/fisiologia , Vespas/fisiologia , Animais , Tamanho da Ninhada , Dípteros/parasitologia , Feminino , Masculino , Modelos Biológicos , Oviposição , Pupa/parasitologia
20.
Proc Biol Sci ; 272(1562): 511-7, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15799947

RESUMO

Malaria and other haemosporin parasites must undergo a round of sexual reproduction in their insect vector in order to produce stages that can be transmitted to vertebrate hosts. Consequently, it is crucial that parasites produce the sex ratio (proportion of male sexual stages) that will maximize the number of fertilization and thus, transmission to new vertebrate hosts. There is some evidence to show that, consistent with evolutionary theory, the sex ratios of malaria parasites are negatively correlated to their inbreeding rate. However, recent theory has shown that when fertilization success is compromised, parasites should respond by increasing their investment in sexual stages or by producing a less female biased ration than predicted by their inbreeding rate alone. Here, we show that two species of rodent malaria, Plasmodium chabaudi and Plasmodium vinckei petteri, adopt different strategies in response to host anaemia, a factor though to compromise transmission success: P. chabaudi increases investment in sexual stages, whereas P. vinckei produces a less female biased sex ratio. We suggest that these different transmission strategies may be due to marked differences in host cell preference.


Assuntos
Anemia/veterinária , Endogamia , Malária/veterinária , Camundongos , Plasmodium/fisiologia , Doenças dos Roedores/parasitologia , Razão de Masculinidade , Anemia/parasitologia , Animais , Eritropoetina/farmacologia , Feminino , Fertilidade/fisiologia , Malária/transmissão , Masculino , Camundongos Endogâmicos , Plasmodium/efeitos dos fármacos , Plasmodium/genética , Doenças dos Roedores/transmissão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA