Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; 131(1): 73-81, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37424284

RESUMO

The branched-chain amino acid (BCAA) is a group of essential amino acids that are involved in maintaining the energy balance of a human being as well as the homoeostasis of GABAergic, glutamatergic, serotonergic and dopaminergic systems. Disruption of these systems has been associated with the pathophysiology of autism while low levels of these amino acids have been discovered in patients with autism. A pilot open-label, prospective, follow-up study of the use of BCAA in children with autistic behaviour was carried out. Fifty-five children between the ages of 6 and 18 participated in the study from May 2015 to May 2018. We used a carbohydrate-free BCAA-powdered mixture containing 45·5 g of leucine, 30 g of isoleucine and 24·5 g of valine in a daily dose of 0·4 g/kg of body weight which was administered every morning. Following the initiation of BCAA administration, children were submitted to a monthly psychological examination. Beyond the 4-week mark, BCAA were given to thirty-two people (58·18 %). Six of them (10·9 %) discontinued after 4-10 weeks owing to lack of improvement. The remaining twenty-six children (47·27 %) who took BCAA for longer than 10 weeks displayed improved social behaviour and interactions, as well as improvements in their speech, cooperation, stereotypy and, principally, their hyperactivity. There were no adverse reactions reported during the course of the treatment. Although these data are preliminary, there is some evidence that BCAA could be used as adjunctive treatment to conventional therapeutic methods for the management of autism.


Assuntos
Aminoácidos de Cadeia Ramificada , Transtorno Autístico , Criança , Humanos , Adolescente , Transtorno Autístico/tratamento farmacológico , Projetos Piloto , Seguimentos , Estudos Prospectivos , Leucina
2.
Am J Med Genet A ; 191(12): 2843-2849, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565517

RESUMO

Mitochondrial myopathy is a severe metabolic myopathy related to nuclear or mitochondrial DNA dysfunction. We present a rare case of mitochondrial myopathy, presented with multiple episodes of proximal muscle weakness, lactic acidosis, and severe rhabdomyolysis (CPK 319,990 U/L, lactic acid 22.31 mmol/L, and GFR 3.82 mL/min/1.73m2 ). She was hospitalized in the pediatric intensive care unit due to acute kidney injury, elevated blood pressure, and deterioration of respiratory and cardiac function. Investigation for inherited metabolic disorders showed elevated levels of ammonia, lactic acid to pyruvic acid ratio, and urine ketone bodies. Exome sequencing detected a homozygous pathogenic variant in FDX2 (ENST00000541276:p.Met4Leu/c.10A > T) and a heterozygous variant of uncertain significance in MSTO1 (ENST00000538143:p.Leu137Pro/c.410 T > C). After Sanger sequencing, the p.Met4Leu pathogenic variant in FDX2 (ENST00000541276:p.Met4Leu/c.10A > T) was identified in a heterozygous state in both her parents and sister. Recently, pathogenic variants in the FDX2 gene have been associated with mitochondrial myopathy, lactic acidosis, optic atrophy, and leukoencephalopathy. Only four reports of FDX2-related rhabdomyolysis have been described before, but none of the previous patients had hyperammonemia. This is a rare case of severe mitochondrial myopathy in a pediatric patient related to a pathogenic FDX2 variant, suggesting the need for genetic analysis of the FDX2 gene in cases of suspicion of mitochondrial myopathies.


Assuntos
Acidose Láctica , Miopatias Mitocondriais , Doenças Musculares , Rabdomiólise , Humanos , Feminino , Criança , Acidose Láctica/diagnóstico , Acidose Láctica/genética , Ferredoxinas/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/complicações , Rabdomiólise/diagnóstico , Rabdomiólise/genética , Miopatias Mitocondriais/genética , Mutação , Ácido Láctico , Proteínas do Citoesqueleto/genética , Proteínas de Ciclo Celular/genética
3.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062582

RESUMO

Recent years have witnessed the proliferation of social robots in various domains including special education. However, specialized tools to assess their effect on human behavior, as well as to holistically design social robot applications, are often missing. In response, this work presents novel tools for analysis of human behavior data regarding robot-assisted special education. The objectives include, first, an understanding of human behavior in response to an array of robot actions and, second, an improved intervention design based on suitable mathematical instruments. To achieve these objectives, Lattice Computing (LC) models in conjunction with machine learning techniques have been employed to construct a representation of a child's behavioral state. Using data collected during real-world robot-assisted interventions with children diagnosed with Autism Spectrum Disorder (ASD) and the aforementioned behavioral state representation, time series of behavioral states were constructed. The paper then investigates the causal relationship between specific robot actions and the observed child behavioral states in order to determine how the different interaction modalities of the social robot affected the child's behavior.


Assuntos
Transtorno do Espectro Autista , Robótica , Transtorno do Espectro Autista/diagnóstico , Criança , Análise de Dados , Humanos , Aprendizado de Máquina , Interação Social
4.
J Inherit Metab Dis ; 44(1): 178-192, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200442

RESUMO

Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided.


Assuntos
Arginina/administração & dosagem , Suplementos Nutricionais , Epilepsia/dietoterapia , Epilepsia/diagnóstico , Aldeído Desidrogenase/deficiência , Consenso , Epilepsia/tratamento farmacológico , Humanos , Cooperação Internacional , Lisina/deficiência , Piridoxina/uso terapêutico
5.
Am J Kidney Dis ; 74(4): 510-522, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31103331

RESUMO

RATIONALE & OBJECTIVE: Lecithin-cholesterol acyltransferase (LCAT) catalyzes the maturation of high-density lipoprotein. Homozygosity for loss-of-function mutations causes familial LCAT deficiency (FLD), characterized by corneal opacities, anemia, and renal involvement. This study sought to characterize kidney biopsy findings and clinical outcomes in a family with FLD. STUDY DESIGN: Prospective observational study. SETTING & PARTICIPANTS: 2 (related) index patients with clinically apparent FLD were initially identified. 110 of 122 family members who consented to genetic analysis were also studied. PREDICTORS: Demographic and laboratory parameters (including lipid profiles and LCAT activity) and full sequence analysis of the LCAT gene. Kidney histologic examination was performed with samples from 6 participants. OUTCOMES: Cardiovascular and renal events during a median follow-up of 12 years. Estimation of annual rate of decline in glomerular filtration rate. ANALYTICAL APPROACH: Analysis of variance, linear regression analysis, and Fine-Gray competing-risk survival analysis. RESULTS: 9 homozygous, 57 heterozygous, and 44 unaffected family members were identified. In all affected individuals, full sequence analysis of the LCAT gene revealed a mutation (c.820C>T) predicted to cause a proline to serine substitution at amino acid 274 (P274S). Homozygosity caused a complete loss of LCAT activity. Kidney biopsy findings demonstrated lipid deposition causing glomerular basement membrane thickening, mesangial expansion, and "foam-cell" infiltration of kidney tissue. Tubular atrophy, glomerular sclerosis, and complement fixation were associated with worse kidney outcomes. Estimated glomerular filtration rate deteriorated among homozygous family members at an average annual rate of 3.56 mL/min/1.73 m2. The incidence of cardiovascular and renal complications was higher among homozygous family members compared with heterozygous and unaffected members. Mild thrombocytopenia was a common finding among homozygous participants. LIMITATIONS: The presence of cardiovascular disease was mainly based on medical history. CONCLUSIONS: The P274S LCAT mutation was found to cause FLD with renal involvement. Tubular atrophy, glomerular sclerosis, and complement fixation were associated with a worse renal prognosis.


Assuntos
Nefropatias/diagnóstico , Nefropatias/genética , Deficiência da Lecitina Colesterol Aciltransferase/diagnóstico , Deficiência da Lecitina Colesterol Aciltransferase/genética , Mutação/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
6.
Diagnostics (Basel) ; 14(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611595

RESUMO

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy. Despite high cure rates, several questions remain regarding predisposition, response to treatment, and prognosis of the disease. The role of intermediary metabolism in the individualized mechanistic pathways of the disease is unclear. We have hypothesized that children with any (sub)type of ALL have a distinct metabolomic fingerprint at diagnosis when compared: (i) to a control group; (ii) to children with a different (sub)type of ALL; (iii) to the end of the induction treatment. MATERIALS AND METHODS: In this prospective case-control study (NCT03035344), plasma and urinary metabolites were analyzed in 34 children with ALL before the beginning (D0) and at the end of the induction treatment (D33). Their metabolic fingerprint was defined by targeted analysis of 106 metabolites and compared to that of an equal number of matched controls. Multivariate and univariate statistical analyses were performed using SIMCAP and scripts under the R programming language. RESULTS: Metabolomic analysis showed distinct changes in patients with ALL compared to controls on both D0 and D33. The metabolomic fingerprint within the patient group differed significantly between common B-ALL and pre-B ALL and between D0 and D33, reflecting the effect of treatment. We have further identified the major components of this metabolic dysregulation, indicating shifts in fatty acid synthesis, transfer and oxidation, in amino acid and glycerophospholipid metabolism, and in the glutaminolysis/TCA cycle. CONCLUSIONS: The disease type and time point-specific metabolic alterations observed in pediatric ALL are of particular interest as they may offer potential for the discovery of new prognostic biomarkers and therapeutic targets.

8.
Expert Rev Mol Diagn ; 23(1): 85-103, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36714946

RESUMO

OBJECTIVES: Genetics of epilepsy are highly heterogeneous and complex. Lesions detected involve genes encoding various types of channels, transcription factors, and other proteins implicated in numerous cellular processes, such as synaptogenesis. Consequently, a wide spectrum of clinical presentations and overlapping phenotypes hinders differential diagnosis and highlights the need for molecular investigations toward delineation of underlying mechanisms and final diagnosis. Characterization of defects may also contribute valuable data on genetic landscapes and networks implicated in epileptogenesis. METHODS: This study reports on genetic findings from exome sequencing (ES) data of 107 patients with variable types of seizures, with or without additional symptoms, in the context of neurodevelopmental disorders. RESULTS: Multidisciplinary evaluation of ES, including ancillary detection of copy number variants (CNVs) with the ExomeDepth tool, supported a definite diagnosis in 59.8% of the patients, reflecting one of the highest diagnostic yields in epilepsy. CONCLUSION: Emerging advances of next-generation technologies and 'in silico' analysis tools offer the possibility to simultaneously detect several types of variations. Wide assessment of variable findings, specifically those found to be novel and least expected, reflects the ever-evolving genetic landscape of seizure development, potentially beneficial for increased opportunities for trial recruitment and enrollment, and optimized, even personalized, medical management.


Assuntos
Epilepsia , Exoma , Humanos , Exoma/genética , Epilepsia/diagnóstico , Epilepsia/genética , Fenótipo , Variações do Número de Cópias de DNA , Genômica
9.
Am J Hum Genet ; 85(1): 76-86, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19576565

RESUMO

Alpha-dystroglycanopathies such as Walker Warburg syndrome represent an important subgroup of the muscular dystrophies that have been related to defective O-mannosylation of alpha-dystroglycan. In many patients, the underlying genetic etiology remains unsolved. Isolated muscular dystrophy has not been described in the congenital disorders of glycosylation (CDG) caused by N-linked protein glycosylation defects. Here, we present a genetic N-glycosylation disorder with muscular dystrophy in the group of CDG type I. Extensive biochemical investigations revealed a strongly reduced dolichol-phosphate-mannose (Dol-P-Man) synthase activity. Sequencing of the three DPM subunits and complementation of DPM3-deficient CHO2.38 cells showed a pathogenic p.L85S missense mutation in the strongly conserved coiled-coil domain of DPM3 that tethers catalytic DPM1 to the ER membrane. Cotransfection experiments in CHO cells showed a reduced binding capacity of DPM3(L85S) for DPM1. Investigation of the four Dol-P-Man-dependent glycosylation pathways in the ER revealed strongly reduced O-mannosylation of alpha-dystroglycan in a muscle biopsy, thereby explaining the clinical phenotype of muscular dystrophy. This mild Dol-P-Man biosynthesis defect due to DPM3 mutations is a cause for alpha-dystroglycanopathy, thereby bridging the congenital disorders of glycosylation with the dystroglycanopathies.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Manosiltransferases/genética , Proteínas de Membrana/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distroglicanas/metabolismo , Feminino , Glicosilação , Humanos
10.
Cureus ; 14(2): e22409, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35371793

RESUMO

The nature of autism spectrum disorders (ASDs) presents significant challenges, especially with regard to comorbidities and drug treatments. Parents and caregivers are often hesitant towards psychotropic medications, mainly due to the fear of side effects. Problems arise when comorbid symptomatology reaches extreme levels, leading to functional decline in the patients. We discuss the case of a 13-year-old girl diagnosed with autism disorder who presented with a long history of social, interpersonal, and academic challenges. The patient was hospitalized with the complaint of a persistent, non-painful, and unpleasant sensation in the perineal area that eventually resulted in repetitive and compulsive behaviors. Robot-enhanced relaxation training was introduced to support the patient since she declined to undergo any form of talk therapy. The aim of the intervention was to prevent the irritation from escalating and promote self-regulation skills. The results, based on parent reporting, indicated that the patient acquired relaxation skills, experienced some positive effects on emotional regulation, and showed a decrease in the duration of her disruptive behaviors upon completing the relaxation training. This case report provides evidence that robot-assisted relaxation training may be effective in dealing with ASD-related behavioral disturbances and comorbid anxiety.

11.
Curr Nutr Rep ; 11(2): 102-116, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35303283

RESUMO

PURPOSE OF REVIEW: Drug-resistant epilepsy represents around one-quarter of epilepsies worldwide. Although ketogenic diets (KD) have been used for refractory epilepsy since 1921, the past 15 years have witnessed an explosion of KD use in the management of epilepsy. We aimed to review evidence from randomized controlled trials (RCTs) regarding the efficacy and safety of KD in drug-resistant epilepsy in children and adolescents. RECENT FINDINGS: A literature search was performed in the Pubmed, Cohrane, Scopus, ClinicalTrials.gov, and Google Scholar databases. Predefined criteria were implemented regarding data extraction and study quality. Data were extracted from 14 RCTs in 1114 children and adolescents aged from 6 months to 18 years. Primary outcome was seizure reduction after the intervention. In 6 out of the 14 studies, there was a statistical significant seizure reduction by > 50% in the KD-treated group compared with the control group over a follow-up of 3-4 months. Secondary outcomes were adverse events, seizure severity, quality of life, and behavior. Gastrointestinal symptoms were the most frequent adverse events. Serious adverse events were rare. We conclude that the KD is an effective treatment for drug-resistant epilepsy in children and adolescents. Accordingly, RCTs investigating long-term impact, cognitive and behavioral effects, and cost-effectiveness are much anticipated.


Assuntos
Dieta Cetogênica , Epilepsia Resistente a Medicamentos , Epilepsia , Adolescente , Criança , Dieta Cetogênica/efeitos adversos , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia/tratamento farmacológico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Convulsões
12.
Cureus ; 14(8): e27603, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36059366

RESUMO

A high-fat and low-carbohydrate diet was administered as a complementary and alternative therapy to a 54-year-old man suffering from non-small-cell lung cancer (NSCLC) with brain metastasis. Three months after the cessation of chemotherapy and radiotherapy, a ketogenic diet (KD) was initiated. This approach was an attempt to stabilize the disease progression after chemotherapy and radiotherapy. Computed tomography following radiation and chemotherapy showed a reduction in the right frontal lobe lesion from 5.5 cm × 6.2 cm to 4 cm × 2.7 cm, while the mass in the upper-right lung lobe reduced from 6.0 cm × 3.0 cm to 2.0 × 1.8 cm. Two years after KD initiation and without any other therapeutic intervention, the right frontal lobe lesion calcified and decreased in size to 1.9 cm × 1.0 cm, while the size of the lung mass further decreased to 1.7 cm × 1.0 cm. The size of the brain and lung lesion remained stable after nine years of KD therapy. However, dyslipidemia developed after this time which led to the discontinuation of the diet. No tumor relapse or health issues occurred for two years after the discontinuation of the diet. This case report indicates that the inclusion of ketogenic metabolic therapy following radiation and chemotherapy is associated with better clinical and survival outcomes for our patient with metastatic NSCLC.

13.
Maturitas ; 163: 46-61, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714419

RESUMO

OBJECTIVE: The aim of the present systematic review was to assess the efficacy of ketogenic therapy in Parkinson's disease (PD), using all available data from randomized controlled trials (RCTs) on humans and animal studies with PD models. DESIGN: Systematic review of in vivo studies. METHODS: Studies related to the research question were identified through searches in PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, clinicaltrials.gov and the gray literature, from inception until November 2021. Rayyan was employed to screen and identify all studies fulfilling the inclusion criteria. Cochrane's revised Risk of Bias 2.0 and SYRCLE tools evaluated bias in RCTs and animal studies, respectively. An effect direction plot was developed to synthesize the evidence of the RCTs. RESULTS: Twelve studies were identified and included in the qualitative synthesis (4 RCTs and 8 animal trials). Interventions included ketogenic diets (KDs), supplementation with medium-chain triglyceride (MCT) oil, caprylic acid administration and ketone ester drinks. The animal research used zebrafish and rodents, and PD was toxin-induced. Based on the available RCTs, ketogenic therapy does not improve motor coordination and functioning, cognitive impairment, anthropometrics, blood lipids and glycemic control, exercise performance or voice disorders in patients with PD. The evidence is scattered and heterogenous, with single trials assessing different outcomes; thus, a synthesis of the evidence cannot be conclusive regarding the efficacy of ketogenic therapy. On the other hand, animal studies tend to demonstrate more promising results, with marked improvements in locomotor activity, dopaminergic activity, redox status, and inflammatory markers. CONCLUSIONS: Although animal studies indicate promising results, research on the effect of ketogenic therapy in PD is still in its infancy, with RCTs conducted on humans being heterogeneous and lacking PD-specific outcomes. More studies are required to recommend or refute the use of ketogenic therapy in PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/terapia
14.
Children (Basel) ; 9(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36010046

RESUMO

(1) Background: There has been significant recent interest in the potential role of social robots (SRs) in special education. Specific Learning Disorders (SpLDs) have a high prevalence in the student population, and early intervention with personalized special educational programs is crucial for optimal academic achievement. (2) Methods: We designed an intense special education intervention for children in the third and fourth years of elementary school with a diagnosis of a SpLD. Following confirmation of eligibility and informed consent, the participants were prospectively and randomly allocated to two groups: (a) the SR group, for which the intervention was delivered by the humanoid robot NAO with the assistance of a special education teacher and (b) the control group, for which the intervention was delivered by the special educator. All participants underwent pre- and post-intervention evaluation for outcome measures. (3) Results: 40 children (NAO = 19, control = 21, similar baseline characteristics) were included. Pre- and post-intervention evaluation showed comparable improvements in both groups in cognition skills (decoding, phonological awareness and reading comprehension), while between-group changes favored the NAO group only for some phonological awareness exercises. In total, no significant changes were found in any of the groups regarding the emotional/behavioral secondary outcomes. (4) Conclusion: NAO was efficient as a tutor for a human-supported intervention when compared to the gold-standard intervention for elementary school students with SpLDs.

15.
Brain ; 133(Pt 3): 655-70, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20129935

RESUMO

Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/genética , Adolescente , Adulto , Idade de Início , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/terapia , Criança , Pré-Escolar , Dieta Cetogênica , Discinesias/diagnóstico , Discinesias/genética , Discinesias/terapia , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/terapia , Feminino , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/terapia , Masculino , Mutação , Fenótipo , Estudos Retrospectivos , Síndrome , Adulto Jovem
16.
J Pediatr Endocrinol Metab ; 34(1): 127-130, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33185574

RESUMO

OBJECTIVES: Phenylalanine hydroxylase deficiency is an autosomal recessive inborn error of phenylalanine metabolism. WHAT IS NEW?: Εven in cases with negative newborn screening for inborn errors of metabolism, the possibility of a metabolic disorder including PKU should be considered in any child presenting symptoms of developmental disorders. Late diagnosed PKU patients require a more specialized and individualized management than if they were early treatment cases. CASE PRESENTATION: We discuss a case of a child with typical autistic symptomatology, in whom years later a diagnosis of phenylketonuria was set, even neonatal screening was negative. Τhe patient was placed on a phenylalanine-restricted diet. After a period of clinical improvement, severe behavioral problems with aggressiveness and anxiety were presented. Less restrictive diet ameliorated the symptomatology. CONCLUSION: This case highlights the major medical importance of adequate newborn screening policy, in order to avoid missed diagnosed cases. PKU may be presented as autism spectrum disorder. Dietary management needs individualized attentive monitoring.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Diagnóstico Tardio/estatística & dados numéricos , Fenilcetonúrias/diagnóstico , Pré-Escolar , Diagnóstico Diferencial , Humanos , Masculino , Prognóstico
17.
Children (Basel) ; 8(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498758

RESUMO

Parental feeding practices and mealtime routine significantly influence a child's eating behavior. The aim of this study was to investigate the mealtime environment in healthy children and children with gastrointestinal diseases. We conducted a cross-sectional case-control study among 787 healthy, typically developing children and 141 children with gastrointestinal diseases, aged two to seven years. Parents were asked to provide data on demographics and describe their mealtime environment by answering to 24 closed-ended questions. It was found that the majority of the children had the same number of meals every day and at the same hour. Parents of both groups exerted considerable control on the child's food intake by deciding both when and what their child eats. Almost one third of the parents also decided how much their child eats. The two groups differed significantly in nine of the 24 questions. The study showed that both groups provided structured and consistent mealtime environments. However, a significant proportion of children did not control how much they eat which might impede their ability to self-regulate eating. The presence of a gastrointestinal disease was found to be associated with reduced child autonomy, hampered hunger cues and frequent use of distractions during meals.

18.
JIMD Rep ; 60(1): 3-9, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258135

RESUMO

Mutations in the FOLR1 gene, encoding for the folate alpha receptor (FRa), represent a rare recessive genetic cause of cerebral folate deficiency (CFD), a potentially reversible neurometabolic condition. Patients typically present with developmental delay, seizures, abnormal movements, and delayed myelination. We hereby expand the phenotypic and genotypic spectrum of the disease with the report of the first two Greek siblings that were found compound heterozygous for one known FOLR1 gene mutation (p.Cys65Trp) and a mutation (p.Trp143Arg) that has not yet been reported in the literature (class 3 variant according to ASHG classification). A distinguishing feature of the older sibling is the manifestation of drug-resistant epileptic spasms beyond infancy. These had a relatively good response to a ketogenic diet, as an additional treatment to topiramate and valproate. A further clinical improvement was observed when folinic acid was combined with the above treatment. While a response to folinic acid is well established in the disorder, the efficacy of its combination with the ketogenic diet needs further evaluation, but we suggest considering it early in the course of drug resistant epilepsy in the setting of CFD. The younger sibling was diagnosed and treated with folinic acid at an early-symptomatic stage. Both patients had moderately low age-related CSF 5-methyltetrahydrofolate levels at diagnosis with the older sibling (that was already treated at base line collection) averaging 19 nmol/L (normal range: 44-122 nmol/L) and the younger one 49 nmol/L (normal range 63-122 nmol/L). These levels were restored to normal limits after folinic supplementation.

19.
Pediatr Neurol ; 123: 43-49, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34399109

RESUMO

BACKGROUND: The neurodevelopmental impairment in tuberous sclerosis complex (TSC) has a multifactorial origin. Various factors have been proposed as predictors of neurological outcome such as tuber load, seizure onset, and TSC2 mutation. Cerebellar lesions have been associated with worse neuroradiological phenotype, but their contribution is not well understood. METHODS: A partly retrospective and partly prospective pediatric cohort study was conducted at three hospitals in Greece between 2015 and 2020. Patients aged ≤ 18 years with a confirmed TSC daignosis were included and underwent brain imaging, a semistructured interview (authorized Greek version of the tuberous sclerosis-associated neuropsychiatric disorders, or TAND, checklist), and intellectual ability assessment. RESULTS: The study populations consisted of 45 patients with TSC (22 females, 23 males; mean age 9.53 years). Twenty patients (44.4%) had cerebellar lesions. Cerebellar involvement was the most powerful predictor of tuber load (P = 0.03). Cerebellar lesions were associated with giant cell astrocytomas (SEGAs) (P = 0.01) and severe neurological outcome (P = 0.01). Even though in the univariate analysis early seizure onset, tuber load, and cerebellar involvement were associated with intellectual impairment and neurological severity, none of them was an independent predictor of cognitive outcome and neurological severity. CONCLUSIONS: Cerebellar lesions are common among individuals with TSC. Cerebellar involvement correlates with supratentorial derangement and the development of SEGAs, which is suggestive of a more severe clinical and neuroradiological phenotype. Cerebellar involvement and early seizure onset were not independent predictors of either neurological severity or intellectual disability or neurobehavioral outcome; their role in TSC clinical phenotype should be further investigated.


Assuntos
Doenças Cerebelares , Córtex Cerebral , Epilepsia , Deficiência Intelectual , Esclerose Tuberosa , Adolescente , Fatores Etários , Doenças Cerebelares/diagnóstico , Doenças Cerebelares/patologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Epilepsia/diagnóstico , Epilepsia/etiologia , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/etiologia , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/patologia , Esclerose Tuberosa/fisiopatologia
20.
Epilepsy Behav Rep ; 16: 100477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568804

RESUMO

We describe a cohort of 10 unrelated Greek patients (4 females, 6 males; median age 6.5 years, range 2-18 years) with heterogeneous epilepsy syndromes with a genetic basis. In these patients, causative genetic variants, including two novel ones, were identified in 9 known epilepsy-related genes through whole exome sequencing. A patient with glycine encephalopathy was a compound heterozygote for the p.Arg222Cys and the p.Ser77Leu AMT variant. A patient affected with Lafora disease carried the homozygous p.Arg171His EPM2A variant. A de novo heterozygous variant in the GABRG2 gene (p.Pro282Thr) was found in one patient and a pathogenic variant in the GRIN2B gene (p.Gly820Val) in another patient. Infantile-onset lactic acidosis with seizures was associated with the p.Arg446Ter PDHX gene variant in one patient. In two additional epilepsy patients, the p.Ala1662Val and the novel non-sense p.Phe1330Ter SCN1A gene variants were found. Finally, in 3 patients we observed a novel heterozygous missense variant in SCN2A (p.Ala1874Thr), a heterozygous splice site variant in SLC2A1 (c.517-2A>G), as a cause of Glut1 deficiency syndrome, and a pathogenic variant in STXBP1 (p.Arg292Leu), respectively. In half of our cases (patients with variants in the GRIN2B, SCN1A, SCN2A and SLC2A1 genes), a genetic cause with potential management implications was identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA