Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589572

RESUMO

MOTIVATION: The importance and rate of development of genome-scale metabolic models have been growing for the last few years, increasing the demand for software solutions that automate several steps of this process. However, since TRIAGE's release, software development for the automatic integration of transport reactions into models has stalled. RESULTS: Here, we present the Transport Systems Tracker (TranSyT). Unlike other transport systems annotation software, TranSyT does not rely on manual curation to expand its internal database, which is derived from highly curated records retrieved from the Transporters Classification Database and complemented with information from other data sources. TranSyT compiles information regarding transporter families and proteins, and derives reactions into its internal database, making it available for rapid annotation of complete genomes. All transport reactions have GPR associations and can be exported with identifiers from four different metabolite databases. TranSyT is currently available as a plugin for merlin v4.0 and an app for KBase. AVAILABILITY AND IMPLEMENTATION: TranSyT web service: https://transyt.bio.di.uminho.pt/; GitHub for the tool: https://github.com/BioSystemsUM/transyt; GitHub with examples and instructions to run TranSyT: https://github.com/ecunha1996/transyt_paper.


Assuntos
Software , Bases de Dados Factuais
2.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857575

RESUMO

Microbial genome annotation is the process of identifying structural and functional elements in DNA sequences and subsequently attaching biological information to those elements. DRAM is a tool developed to annotate bacterial, archaeal, and viral genomes derived from pure cultures or metagenomes. DRAM goes beyond traditional annotation tools by distilling multiple gene annotations to genome level summaries of functional potential. Despite these benefits, a downside of DRAM is the requirement of large computational resources, which limits its accessibility. Further, it did not integrate with downstream metabolic modeling tools that require genome annotation. To alleviate these constraints, DRAM and the viral counterpart, DRAM-v, are now available and integrated with the freely accessible KBase cyberinfrastructure. With kb_DRAM users can generate DRAM annotations and functional summaries from microbial or viral genomes in a point-and-click interface, as well as generate genome-scale metabolic models from DRAM annotations. AVAILABILITY AND IMPLEMENTATION: For kb_DRAM users, the kb_DRAM apps on KBase can be found in the catalog at https://narrative.kbase.us/#catalog/modules/kb_DRAM. For kb_DRAM users, a tutorial workflow with all documentation is available at https://narrative.kbase.us/narrative/129480. For kb_DRAM developers, software is available at https://github.com/shafferm/kb_DRAM.


Assuntos
Bactérias , Software , Anotação de Sequência Molecular , Bactérias/genética , Archaea/genética , Metabolômica
3.
Nucleic Acids Res ; 49(D1): D575-D588, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32986834

RESUMO

For over 10 years, ModelSEED has been a primary resource for the construction of draft genome-scale metabolic models based on annotated microbial or plant genomes. Now being released, the biochemistry database serves as the foundation of biochemical data underlying ModelSEED and KBase. The biochemistry database embodies several properties that, taken together, distinguish it from other published biochemistry resources by: (i) including compartmentalization, transport reactions, charged molecules and proton balancing on reactions; (ii) being extensible by the user community, with all data stored in GitHub; and (iii) design as a biochemical 'Rosetta Stone' to facilitate comparison and integration of annotations from many different tools and databases. The database was constructed by combining chemical data from many resources, applying standard transformations, identifying redundancies and computing thermodynamic properties. The ModelSEED biochemistry is continually tested using flux balance analysis to ensure the biochemical network is modeling-ready and capable of simulating diverse phenotypes. Ontologies can be designed to aid in comparing and reconciling metabolic reconstructions that differ in how they represent various metabolic pathways. ModelSEED now includes 33,978 compounds and 36,645 reactions, available as a set of extensible files on GitHub, and available to search at https://modelseed.org/biochem and KBase.


Assuntos
Bactérias/metabolismo , Bases de Dados Factuais , Fungos/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Plantas/metabolismo , Bactérias/genética , Genoma Bacteriano , Termodinâmica
4.
Biochem Soc Trans ; 48(5): 1889-1903, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940659

RESUMO

The current survey aims to describe the main methodologies for extending the reconstruction and analysis of genome-scale metabolic models and phenotype simulation with Flux Balance Analysis mathematical frameworks, via the integration of Transcriptional Regulatory Networks and/or gene expression data. Although the surveyed methods are aimed at improving phenotype simulations obtained from these models, the perspective of reconstructing integrated genome-scale models of metabolism and gene expression for diverse prokaryotes is still an open challenge.


Assuntos
Redes Reguladoras de Genes , Genoma , Transcrição Gênica , Algoritmos , Teorema de Bayes , Fenômenos Bioquímicos , Biomassa , Catálise , Gráficos por Computador , Simulação por Computador , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Modelos Teóricos , Fenótipo , Engenharia de Proteínas/métodos , Biologia de Sistemas
5.
Biochem Soc Trans ; 46(4): 931-936, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30065105

RESUMO

In the era of next-generation sequencing and ubiquitous assembly and binning of metagenomes, new putative genome sequences are being produced from isolate and microbiome samples at ever-increasing rates. Genome-scale metabolic models have enormous utility for supporting the analysis and predictive characterization of these genomes based on sequence data. As a result, tools for rapid automated reconstruction of metabolic models are becoming critically important for supporting the analysis of new genome sequences. Many tools and algorithms have now emerged to support rapid model reconstruction and analysis. Here, we are comparing and contrasting the capabilities and output of a variety of these tools, including ModelSEED, Raven Toolbox, PathwayTools, SuBliMinal Toolbox and merlin.


Assuntos
Metagenoma , Modelos Biológicos , Automação , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Redes e Vias Metabólicas , Microbiota , Design de Software
7.
Brief Bioinform ; 15(4): 592-611, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23422247

RESUMO

Advances in sequencing technology are resulting in the rapid emergence of large numbers of complete genome sequences. High-throughput annotation and metabolic modeling of these genomes is now a reality. The high-throughput reconstruction and analysis of genome-scale transcriptional regulatory networks represent the next frontier in microbial bioinformatics. The fruition of this next frontier will depend on the integration of numerous data sources relating to mechanisms, components and behavior of the transcriptional regulatory machinery, as well as the integration of the regulatory machinery into genome-scale cellular models. Here, we review existing repositories for different types of transcriptional regulatory data, including expression data, transcription factor data and binding site locations and we explore how these data are being used for the reconstruction of new regulatory networks. From template network-based methods to de novo reverse engineering from expression data, we discuss how regulatory networks can be reconstructed and integrated with metabolic models to improve model predictions and performance. We also explore the impact these integrated models can have in simulating phenotypes, optimizing the production of compounds of interest or paving the way to a whole-cell model.


Assuntos
Redes Reguladoras de Genes , Genoma Bacteriano , Metabolismo , Modelos Biológicos , Transcrição Gênica , Bactérias/classificação , Bactérias/genética , Bases de Dados Genéticas , Filogenia
8.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502915

RESUMO

Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). This resource profiled the identity, distribution, function, and expression of thousands of microbial genomes across rivers covering 90% of United States watersheds. Specifically, GROWdb encompasses 1,469 microbial species from 27 phyla, including novel lineages from 10 families and 128 genera, and defines the core river microbiome for the first time at genome level. GROWdb analyses coupled to extensive geospatial information revealed local and regional drivers of microbial community structuring, while also presenting a myriad of foundational hypotheses about ecosystem function. Building upon the previously conceived River Continuum Concept 1 , we layer on microbial functional trait expression, which suggests the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures 2, 3 so that it can be widely accessed across disciplines for watershed predictive modeling and microbiome-based management practices.

9.
Methods Mol Biol ; 2349: 291-320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34719000

RESUMO

The DOE Systems Biology Knowledgebase (KBase) platform offers a range of powerful tools for the reconstruction, refinement, and analysis of genome-scale metabolic models built from microbial isolate genomes. In this chapter, we describe and demonstrate these tools in action with an analysis of isoprene production in the Bacillus subtilis DSM genome. Two different methods are applied to build initial metabolic models for the DSM genome, then the models are gapfilled in three different growth conditions. Next, flux balance analysis (FBA) and flux variability analysis (FVA) techniques are applied to both study the growth of these models in minimal media and classify reactions within each model based on essentiality and functionality. The models are applied with the FBA method to predict essential genes, which are then compared to an updated list of essential genes obtained for B. subtilis 168, a very similar strain to the DSM isolate. The models are also applied to simulate Biolog growth conditions, and these results are compared with Biolog data collected for B. subtilis 168. Finally, the DSM metabolic models are applied to explore the pathways and genes responsible for producing isoprene in this strain. These studies demonstrate the accuracy and utility of models generated from the KBase pipelines, as well as exploring the tools available for analyzing these models.


Assuntos
Genes Essenciais , Biologia de Sistemas , Bacillus subtilis/genética , Genoma Microbiano , Bases de Conhecimento , Redes e Vias Metabólicas/genética , Modelos Biológicos
10.
Nat Biotechnol ; 39(4): 499-509, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33169036

RESUMO

The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.


Assuntos
Archaea/genética , Bactérias/genética , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , Vírus/genética , Microbiologia do Ar , Animais , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Catálogos como Assunto , Ecossistema , Humanos , Filogenia , Microbiologia do Solo , Vírus/isolamento & purificação , Microbiologia da Água
11.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816982

RESUMO

Here, we report the draft genome sequence of Arthrobacter sp. strain ATCC 49987, consisting of three contigs with a total length of 4.4 Mbp. Based on the genome sequence, we suggest reclassification of Arthrobacter sp. strain ATCC 49987 as Pseudarthrobacter sp. strain ATCC 49987.

12.
Microbiol Resour Announc ; 9(38)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943555

RESUMO

We present here the draft genome sequence of a pyridine-degrading bacterium, Micrococcus luteus ATCC 49442, which was reclassified as Pseudarthrobacter sp. strain ATCC 49442 based on its draft genome sequence. Its genome length is 4.98 Mbp, with 64.81% GC content.

14.
Microbiol Resour Announc ; 8(25)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221646

RESUMO

We report here the 4.9-Mb genome sequence of a quinoline-degrading bacterium, Rhodococcus sp. strain ATCC 49988. The draft genome data will enable the identification of genes and future genetic modification to enhance traits relevant to heteroaromatic compound degradation.

15.
Plant Sci ; 273: 61-70, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29907310

RESUMO

The vast diversity of plant natural products is a powerful indication of the biosynthetic capacity of plant metabolism. Synthetic biology seeks to capitalize on this ability by understanding and reconfiguring the biosynthetic pathways that generate this diversity to produce novel products with improved efficiency. Here we review the algorithms and databases that presently support the design and manipulation of metabolic pathways in plants, starting from metabolic models of native biosynthetic pathways, progressing to novel combinations of known reactions, and finally proposing new reactions that may be carried out by existing enzymes. We show how these tools are useful for proposing new pathways as well as identifying side reactions that may affect engineering goals.


Assuntos
Produtos Biológicos/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Plantas/metabolismo , Biologia Sintética , Algoritmos , Produtos Biológicos/química , Informática , Modelos Estatísticos , Plantas/química , Plantas/genética
16.
Methods Mol Biol ; 1716: 111-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29222751

RESUMO

Genome-scale metabolic models (GEMs) generated from automated reconstruction pipelines often lack accuracy due to the need for extensive gapfilling and the inference of periphery metabolic pathways based on lower-confidence annotations. The central carbon pathways and electron transport chains are among the most well-understood regions of microbial metabolism, and these pathways contribute significantly toward defining cellular behavior and growth conditions. Thus, it is often useful to construct a simplified core metabolic model (CMM) that is comprised of only the high-confidence central pathways. In this chapter, we discuss methods for producing core metabolic models (CMM) based on genome annotations. With its reduced scope compared to GEMs, CMM reconstruction focuses on accurate representation of the central metabolic pathways related to energy biosynthesis and accurate energy yield predictions. We demonstrate the reconstruction and analysis of CMMs using the DOE Systems Biology Knowledgebase (KBase). The complete workflow is available at http://kbase.us/core-models/.


Assuntos
Redes e Vias Metabólicas , Biologia de Sistemas/métodos , Carbono/metabolismo , Genoma Microbiano , Modelos Biológicos , Anotação de Sequência Molecular , Fluxo de Trabalho
17.
Front Microbiol ; 7: 275, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047450

RESUMO

We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same "ON" and "OFF" gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental conditions, gaining insights into novel biology.

18.
Front Microbiol ; 7: 1819, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933038

RESUMO

Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. An important step toward meeting the challenge of understanding gene function and regulation is the identification of sets of genes that are always co-expressed. These gene sets, Atomic Regulons (ARs), represent fundamental units of function within a cell and could be used to associate genes of unknown function with cellular processes and to enable rational genetic engineering of cellular systems. Here, we describe an approach for inferring ARs that leverages large-scale expression data sets, gene context, and functional relationships among genes. We computed ARs for Escherichia coli based on 907 gene expression experiments and compared our results with gene clusters produced by two prevalent data-driven methods: Hierarchical clustering and k-means clustering. We compared ARs and purely data-driven gene clusters to the curated set of regulatory interactions for E. coli found in RegulonDB, showing that ARs are more consistent with gold standard regulons than are data-driven gene clusters. We further examined the consistency of ARs and data-driven gene clusters in the context of gene interactions predicted by Context Likelihood of Relatedness (CLR) analysis, finding that the ARs show better agreement with CLR predicted interactions. We determined the impact of increasing amounts of expression data on AR construction and find that while more data improve ARs, it is not necessary to use the full set of gene expression experiments available for E. coli to produce high quality ARs. In order to explore the conservation of co-regulated gene sets across different organisms, we computed ARs for Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus, each of which represents increasing degrees of phylogenetic distance from E. coli. Comparison of the organism-specific ARs showed that the consistency of AR gene membership correlates with phylogenetic distance, but there is clear variability in the regulatory networks of closely related organisms. As large scale expression data sets become increasingly common for model and non-model organisms, comparative analyses of atomic regulons will provide valuable insights into fundamental regulatory modules used across the bacterial domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA