Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 480, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578387

RESUMO

Fragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, including autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct disorder caused by the premutation in the FMR1 gene. FXTAS is associated with elevated levels of FMR1 mRNA, leading to neurodegenerative manifestations such as tremors and ataxia.Mounting evidence suggests a link between both syndromes and mitochondrial dysfunction (MDF). In this minireview, we critically examine the intricate relationship between FXS, FXTAS, and MDF, focusing on potential therapeutic avenues to counteract or mitigate their adverse effects. Specifically, we explore the role of mitochondrial cofactors and antioxidants, with a particular emphasis on alpha-lipoic acid (ALA), carnitine (CARN) and Coenzyme Q10 (CoQ10). Findings from this review will contribute to a deeper understanding of these disorders and foster novel therapeutic strategies to enhance patient outcomes.


Assuntos
Síndrome do Cromossomo X Frágil , Doenças Mitocondriais , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Tremor/tratamento farmacológico , Tremor/genética , Antioxidantes/uso terapêutico , Ataxia/tratamento farmacológico , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339019

RESUMO

The advent of immune checkpoint inhibitors (ICIs) has represented a breakthrough in the treatment of many cancers, although a high number of patients fail to respond to ICIs, which is partially due to the ability of tumor cells to evade immune system surveillance. Non-coding microRNAs (miRNAs) have been shown to modulate the immune evasion of tumor cells, and there is thus growing interest in elucidating whether these miRNAs could be targetable or proposed as novel biomarkers for prognosis and treatment response to ICIs. We therefore performed an extensive literature analysis to evaluate the clinical utility of miRNAs with a confirmed direct relationship with treatment response to ICIs. As a result of this systematic review, we have stratified the miRNA landscape into (i) miRNAs whose levels directly modulate response to ICIs, (ii) miRNAs whose expression is modulated by ICIs, and (iii) miRNAs that directly elicit toxic effects or participate in immune-related adverse events (irAEs) caused by ICIs.


Assuntos
Inibidores de Checkpoint Imunológico , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biomarcadores Tumorais/genética
3.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201283

RESUMO

Biological age, reflecting the cumulative damage in the body over a lifespan, is a dynamic measure more indicative of individual health than chronological age. Accelerated aging, when biological age surpasses chronological age, is implicated in poorer clinical outcomes, especially for breast cancer (BC) survivors undergoing treatments. This preliminary study investigates the impact of a 16-week online supervised physical activity (PA) intervention on biological age in post-surgery female BC patients. Telomere length was measured using qPCR, and the ELOVL2-based epigenetic clock was assessed via DNA methylation pyrosequencing of the ELOVL2 promoter region. Telomere length remained unchanged, but the ELOVL2 epigenetic clock indicated a significant decrease in biological age in the PA group, suggesting the potential of PA interventions to reverse accelerated aging processes in BC survivors. The exercise group showed improved cardiovascular fitness, highlighting PA's health impact. Finally, the reduction in biological age, as measured by the ELOVL2 epigenetic clock, was significantly associated with improvements in cardiovascular fitness and handgrip strength, supporting improved recovery. Epigenetic clocks can potentially assess health status and recovery progress in BC patients, identifying at-risk individuals in clinical practice. This study provides potential and valuable insights into how PA benefits BC survivors' health, supporting the immediate benefits of a 16-week exercise intervention in mitigating accelerated aging. The findings could suggest a holistic approach to improving the health and recovery of post-surgery BC patients.


Assuntos
Envelhecimento , Neoplasias da Mama , Metilação de DNA , Epigênese Genética , Exercício Físico , Elongases de Ácidos Graxos , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Pessoa de Meia-Idade , Envelhecimento/genética , Elongases de Ácidos Graxos/genética , Idoso , Adulto , Regiões Promotoras Genéticas , Telômero/genética
4.
J Transl Med ; 21(1): 344, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221624

RESUMO

BACKGROUND: As leading contributors to worldwide morbidity and mortality, sepsis and septic shock are considered a major global health concern. Proactive biomarker identification in patients with sepsis suspicion at any time remains a daunting challenge for hospitals. Despite great progress in the understanding of clinical and molecular aspects of sepsis, its definition, diagnosis, and treatment remain challenging, highlighting a need for new biomarkers with potential to improve critically ill patient management. In this study we validate a quantitative mass spectrometry method to measure circulating histone levels in plasma samples for the diagnosis and prognosis of sepsis and septic shock patients. METHODS: We used the mass spectrometry technique of multiple reaction monitoring to quantify circulating histones H2B and H3 in plasma from a monocenter cohort of critically ill patients admitted to an Intensive Care Unit (ICU) and evaluated its performance for the diagnosis and prognosis of sepsis and septic shock (SS). RESULTS: Our results highlight the potential of our test for early diagnosis of sepsis and SS. H2B levels above 121.40 ng/mL (IQR 446.70) were indicative of SS. The value of blood circulating histones to identify a subset of SS patients in a more severe stage with associated organ failure was also tested, revealing circulating levels of histones H2B above 435.61 ng/ml (IQR 2407.10) and H3 above 300.61 ng/ml (IQR 912.77) in septic shock patients with organ failure requiring invasive organ support therapies. Importantly, we found levels of H2B and H3 above 400.44 ng/mL (IQR 1335.54) and 258.25 (IQR 470.44), respectively in those patients who debut with disseminated intravascular coagulation (DIC). Finally, a receiver operating characteristic curve (ROC curve) demonstrated the prognostic value of circulating histone H3 to predict fatal outcomes and found for histone H3 an area under the curve (AUC) of 0.720 (CI 0.546-0.895) p < 0.016 on a positive test cut-off point at 486.84 ng/mL, showing a sensitivity of 66.7% and specificity of 73.9%. CONCLUSIONS: Circulating histones analyzed by MS can be used to diagnose SS and identify patients at high risk of suffering DIC and fatal outcome.


Assuntos
Sepse , Choque Séptico , Humanos , Histonas , Estado Terminal , Prognóstico , Diagnóstico Precoce , Espectrometria de Massas
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674605

RESUMO

Lafora disease is a rare, fatal form of progressive myoclonus epilepsy characterized by continuous neurodegeneration with epileptic seizures, characterized by the intracellular accumulation of aberrant polyglucosan granules called Lafora bodies. Several works have provided numerous evidence of molecular and cellular alterations in neural tissue from experimental mouse models deficient in either laforin or malin, two proteins related to the disease. Oxidative stress, alterations in proteostasis, and deregulation of inflammatory signals are some of the molecular alterations underlying this condition in both KO animal models. Lafora bodies appear early in the animal's life, but many of the aforementioned molecular aberrant processes and the consequent neurological symptoms ensue only as animals age. Here, using small RNA-seq and quantitative PCR on brain extracts from laforin and malin KO male mice of different ages, we show that two different microRNA species, miR-155 and miR-146a, are overexpressed in an age-dependent manner. We also observed altered expression of putative target genes for each of the microRNAs studied in brain extracts. These results open the path for a detailed dissection of the molecular consequences of laforin and malin deficiency in brain tissue, as well as the potential role of miR-155 and miR-146a as specific biomarkers of disease progression in LD.


Assuntos
Doença de Lafora , MicroRNAs , Camundongos , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Estresse Oxidativo/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Ann Hematol ; 101(9): 1971-1986, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35869170

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired hematologic disorder characterized by complement-mediated hemolysis. C5 inhibitors (eculizumab/ravulizumab) control intravascular hemolysis but do not prevent residual extravascular hemolysis. The newly approved complement inhibitor, pegcetacoplan, inhibits C3, upstream of C5, and has the potential to improve control of complement-mediated hemolysis. The PADDOCK and PALOMINO clinical trials assessed the safety and efficacy of pegcetacoplan in complement inhibitor-naïve adults (≥ 18 years) diagnosed with PNH. Patients in PADDOCK (phase 1b open-label, pilot trial) received daily subcutaneous pegcetacoplan (cohort 1: 180 mg up to day 28 [n = 3]; cohort 2: 270-360 mg up to day 365 [n = 20]). PALOMINO (phase 2a, open-label trial) used the same dosing protocol as PADDOCK cohort 2 (n = 4). Primary endpoints in both trials were mean change from baseline in hemoglobin, lactate dehydrogenase, haptoglobin, and the number and severity of treatment-emergent adverse events. Mean baseline hemoglobin levels were below the lower limit of normal in both trials (PADDOCK: 8.38 g/dL; PALOMINO: 7.73 g/dL; normal range: 11.90-18.00 g/dL), increased to within normal range by day 85, and were sustained through day 365 (PADDOCK: 12.14 g/dL; PALOMINO: 13.00 g/dL). In PADDOCK, 3 serious adverse events (SAE) led to study drug discontinuation, 1 of which was deemed likely related to pegcetacoplan and 1 SAE, not deemed related to study drug, led to death. No SAE led to discontinuation/death in PALOMINO. Pegcetacoplan was generally well tolerated and improved hematological parameters by controlling hemolysis, while also improving other clinical PNH indicators in both trials. These trials were registered at www.clinicaltrials.gov (NCT02588833 and NCT03593200).


Assuntos
Inativadores do Complemento , Hemoglobinúria Paroxística , Peptídeos Cíclicos , Adulto , Biomarcadores , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Inativadores do Complemento/efeitos adversos , Hemoglobinas , Hemoglobinúria Paroxística/tratamento farmacológico , Hemólise , Humanos , Peptídeos Cíclicos/efeitos adversos
7.
Cell Mol Life Sci ; 78(23): 7491-7503, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718826

RESUMO

Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.


Assuntos
Antioxidantes/farmacologia , Melaninas/metabolismo , Melanócitos/citologia , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/complicações , Nutrientes/farmacologia , Retinose Pigmentar/prevenção & controle , Animais , Humanos , Melanócitos/metabolismo , Mitocôndrias/metabolismo , Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
8.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613805

RESUMO

Sepsis carries a substantial risk of morbidity and mortality in newborns, especially preterm-born neonates. Endothelial glycocalyx (eGC) is a carbohydrate-rich layer lining the vascular endothelium, with important vascular barrier function and cell adhesion properties, serving also as a mechano-sensor for blood flow. eGC shedding is recognized as a fundamental pathophysiological process generating microvascular dysfunction, which in turn contributes to multiple organ failure and death in sepsis. Although the disruption of eGC and its consequences have been investigated intensively in the adult population, its composition, development, and potential mechanisms of action are still poorly studied during the neonatal period, and more specifically, in neonatal sepsis. Further knowledge on this topic may provide a better understanding of the molecular mechanisms that guide the sepsis pathology during the neonatal period, and would increase the usefulness of endothelial glycocalyx dysfunction as a diagnostic and prognostic biomarker. We reviewed several components of the eGC that help to deeply understand the mechanisms involved in the eGC disruption during the neonatal period. In addition, we evaluated the potential of eGC components as biomarkers and future targets to develop therapeutic strategies for neonatal sepsis.


Assuntos
Sepse Neonatal , Sepse , Recém-Nascido , Adulto , Humanos , Glicocálix/metabolismo , Endotélio Vascular/metabolismo , Sepse/metabolismo , Biomarcadores/metabolismo
9.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555526

RESUMO

Chronic gut inflammation in Crohn's disease (CD) is associated with an increase in oxidative stress and an imbalance of antioxidant enzymes. We have previously shown that catalase (CAT) activity is permanently inhibited by CD. The purpose of the study was to determine whether there is any relationship between the single nucleotide polymorphisms (SNPs) in the CAT enzyme and the potential risk of CD associated with high levels of oxidative stress. Additionally, we used protein and regulation analyses to determine what causes long-term CAT inhibition in peripheral white mononuclear cells (PWMCs) in both active and inactive CD. We first used a retrospective cohort of 598 patients with CD and 625 age-matched healthy controls (ENEIDA registry) for the genotype analysis. A second human cohort was used to study the functional and regulatory mechanisms of CAT in CD. We isolated PWMCs from CD patients at the onset of the disease (naïve CD patients). In the genotype-association SNP analysis, the CAT SNPs rs1001179, rs475043, and rs525938 showed a significant association with CD (p < 0.001). Smoking CD patients with the CAT SNP rs475043 A/G genotype had significantly more often penetrating disease (p = 0.009). The gene expression and protein levels of CAT were permanently reduced in the active and inactive CD patients. The inhibition of CAT activity in the PWMCs of the CD patients was related to a low concentration of CAT protein caused by the downregulation of CAT-gene transcription. Our study suggests an association between CAT SNPs and the risk of CD that may explain permanent CAT inhibition in CD patients together with low CAT gene and protein expression.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/metabolismo , Catalase/genética , Catalase/metabolismo , Estudos Retrospectivos , Antioxidantes/metabolismo , Genótipo , Inflamação/complicações , Variação Genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Estudos de Casos e Controles
10.
Neurobiol Dis ; 148: 105162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171227

RESUMO

Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron­sulfur clusters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mitochondrial function and biogenesis, fatty acid storage, energy metabolism, and antioxidant defence. It has been previously shown that the PPARγ/PPARγ coactivator 1 alpha (PGC-1α) pathway is dysregulated when there is frataxin deficiency, thus contributing to FRDA pathogenesis and supporting the PPARγ pathway as a potential therapeutic target. Here we assess whether MIN-102 (INN: leriglitazone), a novel brain penetrant and orally bioavailable PPARγ agonist with an improved profile for central nervous system (CNS) diseases, rescues phenotypic features in cellular and animal models of FRDA. In frataxin-deficient dorsal root ganglia (DRG) neurons, leriglitazone increased frataxin protein levels, reduced neurite degeneration and α-fodrin cleavage mediated by calpain and caspase 3, and increased survival. Leriglitazone also restored mitochondrial membrane potential and partially reversed decreased levels of mitochondrial Na+/Ca2+ exchanger (NCLX), resulting in an improvement of mitochondrial functions and calcium homeostasis. In frataxin-deficient primary neonatal cardiomyocytes, leriglitazone prevented lipid droplet accumulation without increases in frataxin levels. Furthermore, leriglitazone improved motor function deficit in YG8sR mice, a FRDA mouse model. In agreement with the role of PPARγ in mitochondrial biogenesis, leriglitazone significantly increased markers of mitochondrial biogenesis in FRDA patient cells. Overall, these results suggest that targeting the PPARγ pathway by leriglitazone may provide an efficacious therapy for FRDA increasing the mitochondrial function and biogenesis that could increase frataxin levels in compromised frataxin-deficient DRG neurons. Alternately, leriglitazone improved the energy metabolism by increasing the fatty acid ß-oxidation in frataxin-deficient cardiomyocytes without elevation of frataxin levels. This could be linked to a lack of significant mitochondrial biogenesis and cardiac hypertrophy. The results reinforced the different tissue requirement in FRDA and the pleiotropic effects of leriglitazone that could be a promising therapy for FRDA.


Assuntos
Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/efeitos dos fármacos , Gotículas Lipídicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ataxia de Friedreich/patologia , Ataxia de Friedreich/fisiopatologia , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neuritos/efeitos dos fármacos , Neuritos/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Frataxina
11.
Inflamm Res ; 70(2): 159-170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33346851

RESUMO

BACKGROUND: The mitochondrial cofactors α-lipoic acid (ALA), coenzyme Q10 (CoQ10) and carnitine (CARN) play distinct and complementary roles in mitochondrial functioning, along with strong antioxidant actions. Also termed mitochondrial nutrients (MNs), these cofactors have demonstrated specific protective actions in a number of chronic disorders, as assessed in a well-established body of literature. METHODS: Using PubMed, the authors searched for articles containing information on the utilization of MNs in inflammatory disorders as assessed from in vitro and animal studies, and in clinical trials, in terms of exerting anti-inflammatory actions. RESULTS: The retrieved literature provided evidence relating acute pathologic conditions, such as sepsis and pneumonia, with a number of redox endpoints of biological and clinical relevance. Among these findings, both ALA and CARN were effective in counteracting inflammation-associated redox biomarkers, while CoQ10 showed decreased levels in proinflammatory conditions. MN-associated antioxidant actions were applied in a number of acute disorders, mostly using one MN. The body of literature assessing the safety and the complementary roles of MNs taken together suggests an adjuvant role of MN combinations in counteracting oxidative stress in sepsis and other acute disorders, including COVID-19-associated pneumonia. CONCLUSIONS: The present state of art in the use of individual MNs in acute disorders suggests planning adjuvant therapy trials utilizing MN combinations aimed at counteracting proinflammatory conditions, as in the case of pneumonia and the COVID-19 pandemic.


Assuntos
Anti-Inflamatórios/uso terapêutico , Tratamento Farmacológico da COVID-19 , Carnitina/uso terapêutico , SARS-CoV-2 , Sepse/tratamento farmacológico , Ácido Tióctico/uso terapêutico , Ubiquinona/análogos & derivados , Doença Aguda , Animais , Quimioterapia Adjuvante , Humanos , Mitocôndrias/metabolismo , Ubiquinona/uso terapêutico
12.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576097

RESUMO

Sepsis management remains one of the most important challenges in modern clinical practice. Rapid progression from sepsis to septic shock is practically unpredictable, hence the critical need for sepsis biomarkers that can help clinicians in the management of patients to reduce the probability of a fatal outcome. Circulating nucleoproteins released during the inflammatory response to infection, including neutrophil extracellular traps, nucleosomes, and histones, and nuclear proteins like HMGB1, have been proposed as markers of disease progression since they are related to inflammation, oxidative stress, endothelial damage, and impairment of the coagulation response, among other pathological features. The aim of this work was to evaluate the actual potential for decision making/outcome prediction of the most commonly proposed chromatin-related biomarkers (i.e., nucleosomes, citrullinated H3, and HMGB1). To do this, we compared different ELISA measuring methods for quantifying plasma nucleoproteins in a cohort of critically ill patients diagnosed with sepsis or septic shock compared to nonseptic patients admitted to the intensive care unit (ICU), as well as to healthy subjects. Our results show that all studied biomarkers can be used to monitor sepsis progression, although they vary in their effectiveness to separate sepsis and septic shock patients. Our data suggest that HMGB1/citrullinated H3 determination in plasma is potentially the most promising clinical tool for the monitoring and stratification of septic patients.


Assuntos
Biomarcadores/metabolismo , Cromatina/metabolismo , Choque Séptico/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Citrulina/metabolismo , Estudos de Coortes , Feminino , Proteína HMGB1/metabolismo , Histonas/metabolismo , Humanos , Imunoensaio , Masculino , Camundongos , Pessoa de Meia-Idade , Nucleoproteínas/sangue , Projetos Piloto
13.
Mol Med ; 26(1): 94, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032520

RESUMO

BACKGROUND: Neonatal sepsis remains an important cause of morbidity and mortality. The ability to quickly and accurately diagnose neonatal sepsis based on clinical assessments and laboratory blood tests remains difficult, where haemoculture is the gold standard for detecting bacterial sepsis in blood culture. It is also very difficult to study because neonatal samples are lacking. METHODS: Forty-eight newborns suspected of sepsis admitted to the Neonatology Department of the Mother-Child Specialized Hospital of Tlemcen. From each newborn, a minimum of 1-2 ml of blood was drawn by standard sterile procedures for blood culture. The miRNA-23b level in haemoculture was evaluated by RT-qPCR. RESULTS: miR-23b levels increased in premature and full-term newborns in early onset sepsis (p < 0.001 and p < 0.005 respectively), but lowered in late onset sepsis in full-term neonates (p < 0.05) compared to the respective negative controls. miR-23b levels also increased in late sepsis in the negative versus early sepsis negative controls (p < 0.05). miR-23b levels significantly lowered in the newborns who died from both sepsis types (p < 0.0001 and p < 0.05 respectively). In early sepsis, miR-23b and death strongly and negatively correlated (correlation coefficient = - 0.96, p = 0.0019). In late sepsis, miRNA-23b and number of survivors (correlation coefficient = 0.70, p = 0.506) positively correlated. CONCLUSIONS: Lowering miR-23b levels is an important factor that favours sepsis development, which would confirm their vital protective role, and strongly suggest that they act as a good marker in molecular diagnosis and patient monitoring.


Assuntos
Biomarcadores , Sepse Neonatal/diagnóstico , Sepse Neonatal/etiologia , Fatores Etários , Idade de Início , Hemocultura , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Recém-Nascido , MicroRNAs/sangue , MicroRNAs/genética , Sepse Neonatal/sangue , Sepse Neonatal/epidemiologia , Vigilância em Saúde Pública , Avaliação de Sintomas
14.
Crit Care Med ; 48(12): 1841-1844, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32826431

RESUMO

Great efforts are being made worldwide to identify the specific clinical characteristics of infected critically ill patients that mediate the associated pathogenesis, including vascular dysfunction, thrombosis, dysregulated inflammation, and respiratory complications. Recently, coronavirus disease 2019 has been closely related to sepsis, which suggests that most deaths in ICUs in infected patients are produced by viral sepsis. Understanding the physiopathology of the disease that lead to sepsis after severe acute respiratory syndrome coronavirus 2 infection is a current clinical need to improve intensive care-applied therapies applied to critically ill patients. Although the whole representative data characterizing the immune and inflammatory status in coronavirus disease 2019 patients are not completely known, it is clear that hyperinflammation and coagulopathy contribute to disease severity. Here, we present some common features shared by severe coronavirus disease 2019 patients and sepsis and describe proposed anti-inflammatory therapies for coronavirus disease 2019 which have been previously evaluated in sepsis.


Assuntos
COVID-19/imunologia , Cuidados Críticos/métodos , Síndrome do Desconforto Respiratório/imunologia , Sepse/imunologia , Anti-Inflamatórios/uso terapêutico , Transtornos da Coagulação Sanguínea/prevenção & controle , COVID-19/complicações , Citocinas/antagonistas & inibidores , Glucocorticoides/uso terapêutico , Humanos , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2 , Sepse/etiologia , Sepse/terapia , Trombose
15.
Ophthalmology ; 127(2): 186-195, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31474439

RESUMO

PURPOSE: Geographic atrophy (GA), a late stage of age-related macular degeneration (AMD), is a major cause of blindness. Even while central visual acuity remains relatively well preserved, GA often causes considerable compromise of visual function and quality of life. No treatment currently exists. We evaluated the safety and efficacy of pegcetacoplan, a complement C3 inhibitor, for treatment of GA. DESIGN: Prospective, multicenter, randomized, sham-controlled phase 2 study. PARTICIPANTS: Two hundred forty-six patients with GA. METHODS: Patients with GA were assigned randomly in a 2:2:1:1 ratio to receive intravitreal injections of 15 mg pegcetacoplan monthly or every other month (EOM) or sham intravitreal injections monthly or EOM for 12 months with follow-up at months 15 and 18. Area and growth of GA were measured using fundus autofluorescence imaging. MAIN OUTCOME MEASURES: The primary efficacy end point was mean change in square root GA lesion area from baseline to month 12. Secondary outcome measures included mean change from baseline in GA lesion area without the square root transformation, distance of GA lesion from the fovea, best-corrected visual acuity (BCVA), low-luminance BCVA, and low-luminance visual acuity deficit. The primary safety end point was the number and severity of treatment-emergent adverse events. RESULTS: In patients receiving pegcetacoplan monthly or EOM, the GA growth rate was reduced by 29% (95% confidence interval [CI], 9-49; P = 0.008) and 20% (95% CI, 0-40; P = 0.067) compared with the sham treatment group. Post hoc analysis showed that the effect was greater in the second 6 months of treatment, with observed reductions of 45% (P = 0.0004) and 33% (P = 0.009) for pegcetacoplan monthly and EOM, respectively. Two cases of culture-positive endophthalmitis and 1 case of culture-negative endophthalmitis occurred in the pegcetacoplan monthly group. New-onset investigator-determined exudative AMD was reported more frequently in pegcetacoplan-treated eyes (18/86 eyes [20.9%] and 7/79 eyes [8.9%] in monthly and EOM groups, respectively) than in sham-treated eyes (1/81 eyes [1.2%]). CONCLUSIONS: Local C3 inhibition with pegcetacoplan resulted in statistically significant reductions in the growth of GA compared with sham treatment. Phase 3 studies will define the efficacy and safety profile further.


Assuntos
Complemento C3/antagonistas & inibidores , Inativadores do Complemento/uso terapêutico , Atrofia Geográfica/tratamento farmacológico , Degeneração Macular/complicações , Idoso , Idoso de 80 Anos ou mais , Feminino , Angiofluoresceinografia , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/etiologia , Humanos , Injeções Intravítreas , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia
16.
Adv Exp Med Biol ; 1229: 273-285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32285418

RESUMO

Coronary artery disease (CAD) is the leading death cause worldwide. Non-coding RNA (ncRNA) are key regulators of genetic expression and thus can affect directly or indirectly the development and progression of different diseases. ncRNA can be classified in several types depending on the length or structure, as long non-coding RNA (lncRNA), microRNA (miRNA) and circularRNA (circRNA), among others. These types of RNA are present within cells or in circulation, and for this reason they have been used as biomarkers of different diseases, therefore revolutionizing precision medicine. Recent research studied the capability of circulating ncRNA to inform about CAD presence and predict the outcome of the disease. In this chapter we present a list of the miRNA, lncRNA and circRNA which are potential biomarkers of CAD.


Assuntos
Doença da Artéria Coronariana , RNA não Traduzido , Biomarcadores , Humanos , MicroRNAs , RNA Circular , RNA Longo não Codificante
17.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992778

RESUMO

A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential-and distinct-roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly relied on the use of only one MN to ARD-affected patients as, e.g., in the case of CoQ10 in CVD, or of ALA in T2D, possibly with the addition of other antioxidants. Only a few clinical and pre-clinical studies reported on the administration of two MNs, with beneficial outcomes, while no available studies reported on the combined administration of three MNs. Based on the literature also from pre-clinical studies, the present review is to recommend the design of clinical trials based on combinations of the three MNs.


Assuntos
Envelhecimento , Antioxidantes , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Mitocôndrias/metabolismo , Doenças Neurodegenerativas , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Carnitina/farmacologia , Carnitina/uso terapêutico , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
18.
J Sci Food Agric ; 100(12): 4531-4539, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32406515

RESUMO

BACKGROUND: Bushfires are becoming an increasing issue for the wine sector due to grape and vine losses and smoke taint in wine. Smoke affects vine physiology and the smoke's volatile phenols are absorbed by plants and berries, contaminating the wine. Our hypothesis was that, for the first time, unmanned aerial vehicle (UAV)-based visible images can be used to study the physiology of smoke-affected vines and to assess compromised vines. RESULTS: Procanico vines were exposed to two smoke treatments, a week apart. Gas exchanges and leaf biochemical traits were measured in the short term (30 min after smoke exposure) and in the long term (24 h after smoke exposure). Canopy damage was assessed with conventional vegetation indices (VIs) and by an innovative index derived by UAV-based visible images, the Canopy Area Health Index (CAHI). Gas exchange showed a reduction after the first smoke exposure, but the vines recovered within 24 h. The second smoke exposure led to an irreversible reduction in functional parameters. The VIs exhibited significant differences and CAHI presented a damage gradient related to bushfire nearby. CONCLUSION: The vineyard damage assessment by UAV-based visible images may represent a tool to study the physiological activity of smoke-affected vines and to quantify the loss of destroyed or damaged vines. © 2020 Society of Chemical Industry.


Assuntos
Frutas/efeitos dos fármacos , Tecnologia de Sensoriamento Remoto/métodos , Fumaça/efeitos adversos , Vitis/efeitos dos fármacos , Poluentes Atmosféricos , Incêndios , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/efeitos da radiação , Fenóis/efeitos adversos , Tecnologia de Sensoriamento Remoto/instrumentação , Raios Ultravioleta , Vitis/química , Vitis/crescimento & desenvolvimento , Vitis/efeitos da radiação , Vinho/análise
19.
Molecules ; 24(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731437

RESUMO

A catalyst-free heterocyclization reaction of α-chloroglycinates with thiobenzamides or thioureas leading to 2,4-disubstituted-5-acylamino-1,3-thiazoles has been developed. The methodology provides straightforward access to valuable building blocks for pharmaceutically relevant compounds.


Assuntos
Ciclização , Estrutura Molecular , Tiazóis/síntese química , Catálise , Tiazóis/química
20.
J Cell Mol Med ; 21(8): 1584-1592, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28244682

RESUMO

Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 µg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 µg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 µmol/l) and tempol (100 µmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Epoprostenol/agonistas , Histonas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Tromboxano A2/antagonistas & inibidores , Celecoxib/farmacologia , Óxidos N-Cíclicos/farmacologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Epoprostenol/biossíntese , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/genética , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Marcadores de Spin , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo , Tromboxano A2/biossíntese , Tromboxano-A Sintase/genética , Tromboxano-A Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA