Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
New Phytol ; 243(3): 1172-1189, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853429

RESUMO

IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Doenças das Plantas , Plantas Geneticamente Modificadas , Potexvirus , Arabidopsis/virologia , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Potexvirus/fisiologia , Regulação da Expressão Gênica de Plantas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Mutação/genética , Tunicamicina/farmacologia , Proteínas de Membrana , Proteínas Quinases
2.
Plant J ; 103(3): 1233-1245, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32390256

RESUMO

Pathogens and other adverse environmental conditions can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones. The inositol-requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA that produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. This study shows that the Plantago asiatica mosaic virus (PlAMV) triple gene block 3 (TGB3) and the Turnip mosaic virus (TuMV) 6K2 proteins activate alternative transcription pathways involving the bZIP17, bZIP28, BAG7, NAC089 and NAC103 factors in Arabidopsis thaliana. Using the corresponding knockout mutant lines, we show that bZIP17, bZIP60, BAG7 and NAC089 are factors in reducing PlAMV infection, whereas bZIP28 and bZIP60 are factors in reducing TuMV infection. We propose a model in which bZIP60 and bZIP17 synergistically induce genes restricting PlAMV infection, while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding TuMV-green fluorescent protein (GFP) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.


Assuntos
Arabidopsis/virologia , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Doenças das Plantas/virologia , Potexvirus/metabolismo , Potyvirus/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , Resposta a Proteínas não Dobradas
3.
Mol Plant Microbe Interact ; 33(10): 1209-1221, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32815767

RESUMO

Rose rosette virus (RRV) is a negative-sense RNA virus with a seven-segmented genome that is enclosed by a double membrane. We constructed an unconventional minireplicon system encoding the antigenomic (ag)RNA1 (encoding the viral RNA-dependent RNA polymerase [RdRp]), agRNA3 (encoding the nucleocapsid protein [N]), and a modified agRNA5 containing the coding sequence for the iLOV protein in place of the P5 open reading frame (R5-iLOV). iLOV expression from the R5-iLOV template was amplified by activities of the RdRp and N proteins in Nicotiana benthamiana leaves. A mutation was introduced into the RdRp catalytic domain and iLOV expression was eliminated, indicating RNA1-encoded polymerase activity drives iLOV expression from the R5-iLOV template. Fluorescence from the replicon was highest at 3 days postinoculation (dpi) and declined at 7 and 13 dpi. Addition of the tomato bushy stunt virus (TBSV) P19 silencing-suppressor protein prolonged expression until 7 dpi. A full-length infectious clone system was constructed of seven binary plasmids encoding each of the seven genome segments. Agro-delivery of constructs encoding RRV RNAs 1 through 4 or RNAs 1 through 7 to N. benthamiana plants produced systemic infection. Finally, agro-delivery of the full-length RRV infectious clone including all segments produced systemic infection within 60 dpi. This advance opens new opportunities for studying RRV infection biology.


Assuntos
Nicotiana/virologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Genética Reversa , Tombusvirus/genética , Doenças das Plantas/virologia , Tombusvirus/patogenicidade
4.
Plant Cell Physiol ; 60(1): 139-151, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295886

RESUMO

The presence of lipids within starch granules is specific to cereal endosperm starches. These starch lipids are composed of lysophospholipids, especially lysophosphatidylcholine (LysoPC) and free fatty acids that strongly impact the assembly and properties of cereal starches. However, the molecular mechanisms associated with this specific lipid routing have never been investigated. In this study, matrix-assisted laser desorption ionization mass spectrometry imaging revealed decreasing gradients in starch LysoPC concentrations from the periphery to the center of developing maize endosperms. This spatiotemporal deposition of starch LysoPC was similar to that previously observed for endoplasmic reticulum (ER)-synthesized storage proteins, i.e. zeins, suggesting that LysoPC might originate in the ER, as already reported for chloroplasts. Furthermore, a decrease of the palmitate concentration of amyloplast galactolipids was observed during endosperm development, correlated with the preferential trapping of palmitoyl-LysoPC by starch carbohydrates, suggesting a link between LysoPC and galactolipid synthesis. Using microarray, the homologous genes of the Arabidopsis ER-chloroplast lipid trafficking and galactolipid synthesis pathways were also expressed in maize endosperm. These strong similarities suggest that the encoded enzymes and transporters are adapted to managing the differences between chloroplast and amyloplast lipid homeostasis. Altogether, our results led us to propose a model where ER-amyloplast lipid trafficking directs the LysoPC towards one of two routes, the first towards the stroma and starch granules and the other towards galactolipid synthesis.


Assuntos
Retículo Endoplasmático/metabolismo , Endosperma/metabolismo , Galactolipídeos/biossíntese , Regulação da Expressão Gênica de Plantas , Lisofosfatidilcolinas/metabolismo , Plastídeos/metabolismo , Amido/metabolismo , Zea mays/metabolismo , Transporte Biológico , Cloroplastos/metabolismo , Galactolipídeos/química , Modelos Biológicos , Ácido Palmítico/química , Ácido Palmítico/metabolismo
5.
Arch Virol ; 162(7): 1855-1865, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28251380

RESUMO

The long distance movement of potyviruses is a poorly understood step of the viral cycle. Only factors inhibiting this process, referred to as "Restricted TEV Movement" (RTM), have been identified in Arabidopsis thaliana. On the virus side, the potyvirus coat protein (CP) displays determinants required for long-distance movement and for RTM-based resistance breaking. However, the potyvirus CP was previously shown not to interact with the RTM proteins. We undertook the identification of Arabidopsis factors which directly interact with either the RTM proteins or the CP of lettuce mosaic virus (LMV). An Arabidopsis cDNA library generated from companion cells was screened with LMV CP and RTM proteins using the yeast two-hybrid system. Fourteen interacting proteins were identified. Two of them were shown to interact with CP and the RTM proteins suggesting that a multiprotein complex could be formed between the RTM proteins and virions or viral ribonucleoprotein complexes. Co-localization experiments in Nicotiana benthamiana showed that most of the viral and cellular protein pairs co-localized at the periphery of chloroplasts which suggests a putative role for plastids in this process.


Assuntos
Arabidopsis/virologia , Proteínas do Capsídeo/fisiologia , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Microscopia Confocal , Floema/metabolismo , Floema/virologia , Doenças das Plantas/virologia , Epiderme Vegetal/citologia , Proteínas de Plantas/genética , Transporte Proteico , Nicotiana/fisiologia , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido
6.
Plant Signal Behav ; 15(11): 1807723, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799639

RESUMO

Plant potexvirus and potyvirus infection can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones, especially the BiP chaperones which contribute to pro-survival functions when plants are subjected to infection. The inositol requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA which produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. Recent data also identified the IRE1-independent UPR pathways led by bZIP28 and bZIP17 contribute to potexvirus and potyvirus infection. These three bZIP pathways recognize cis-regulatory elements in the BiP promoters to enhance gene expression. BiP is part of a negative feedback loop that regulates the activities of the ER stress transducers IRE1, bZIP28, and bZIP17 to block their activation. We discuss a model in which bZIP60 and bZIP17 synergistically induce BiP and other genes restricting Plantago asiatica mosaic virus (PlAMV; a potexvirus) infection while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding Turnip mosiac virus (TuMV, a potyvirus) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.


Assuntos
Potexvirus/patogenicidade , Potyvirus/patogenicidade , Resposta a Proteínas não Dobradas/fisiologia , Arabidopsis/metabolismo , Arabidopsis/virologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta a Proteínas não Dobradas/genética
7.
Sci Rep ; 10(1): 11327, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647371

RESUMO

The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified three BiP homologs in the Solanum tuberosum (potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed that StBiP1 and StBiP2 grouped with AtBiP2, whereas StBiP3 grouped with AtBiP3. While the protein sequences and folding structures are highly similar, these StBiPs are distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and Arabidopsis BiP1 and BiP2 promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereas BiP3 promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture of BiP promoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.


Assuntos
Proteínas de Transporte/genética , Chaperonas Moleculares/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Solanum tuberosum/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Conformação Proteica , Estresse Fisiológico
8.
Front Plant Sci ; 8: 557, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28450877

RESUMO

Major nutritional and agronomical issues relating to maize (Zea mays) grains depend on the vitreousness/hardness of its endosperm. To identify the corresponding molecular and cellular mechanisms, most studies have been conducted on opaque/floury mutants, and recently on Quality Protein Maize, a reversion of an opaque2 mutation by modifier genes. These mutant lines are far from conventional maize crops. Therefore, a dent and a flint inbred line were chosen for analysis of the transcriptome, amino acid, and sugar metabolites of developing central and peripheral endosperm that is, the forthcoming floury and vitreous regions of mature seeds, respectively. The results suggested that the formation of endosperm vitreousness is clearly associated with significant differences in the responses of the endosperm to hypoxia and endoplasmic reticulum stress. This occurs through a coordinated regulation of energy metabolism and storage protein (i.e., zein) biosynthesis during the grain-filling period. Indeed, genes involved in the glycolysis and tricarboxylic acid cycle are up-regulated in the periphery, while genes involved in alanine, sorbitol, and fermentative metabolisms are up-regulated in the endosperm center. This spatial metabolic regulation allows the production of ATP needed for the significant zein synthesis that occurs at the endosperm periphery; this finding agrees with the zein-decreasing gradient previously observed from the sub-aleurone layer to the endosperm center. The massive synthesis of proteins transiting through endoplasmic reticulum elicits the unfolded protein responses, as indicated by the splicing of bZip60 transcription factor. This splicing is relatively higher at the center of the endosperm than at its periphery. The biological responses associated with this developmental stress, which control the starch/protein balance, leading ultimately to the formation of the vitreous and floury regions of mature endosperm, are discussed.

9.
J Agric Food Chem ; 63(13): 3551-8, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25794198

RESUMO

Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.


Assuntos
Amilose/análise , Endosperma/química , Lipídeos/análise , Lipídeos/química , Amido/análise , Zea mays/química , Amilose/metabolismo , Carbono/metabolismo , Endosperma/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos não Esterificados/análise , Lisofosfatidilcolinas/metabolismo , Nitrogênio/metabolismo , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA