Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31427390

RESUMO

Germination of Bacillus spores is triggered by the binding of specific nutrients to germinant receptors (GRs) located in the spore's inner membrane. The GRs typically consist of A, B, and C subunits, encoded by tricistronic ger operons. The Bacillus licheniformis genome contains the gerA family operons gerA, ynd, and gerK In contrast to the ABC(D) organization that characterizes gerA operons of many Bacillus species, B. licheniformis genomes contain a pentacistronic ynd operon comprising the yndD, yndE3 , yndE2 , yndF1 , and yndE1 genes encoding A, B, B, C, and B GR subunits, respectively (subscripts indicate paralogs). Here we show that B. licheniformis spores can germinate in the absence of the Ynd and GerK GRs, although cooperation between all three GRs is required for optimal germination with amino acids. Spores carrying an incomplete set of Ynd B subunits demonstrated reduced germination efficiencies, while depletion of all three Ynd B subunits restored germination of the spore population to levels only slightly lower than those of wild-type spores at high germinant concentrations. This suggests that the presence of an incomplete set of Ynd B subunits exhibits a dominant negative effect on germination and that the A and C subunits of the Ynd GR are sufficient for the cooperative functionality between Ynd and GerA. In contrast to the B subunits of Ynd, the B subunit of GerA was essential for amino acid-induced germination. This study provides novel insights into the role of individual GR subunits in the cooperative interaction between GRs in triggering spore germination.IMPORTANCE Spore-forming bacteria are problematic for the food industry, as spores can survive decontamination procedures and subsequently revive in food products, with the risk of food spoilage and foodborne disease. The Ynd and GerA germination receptors (GRs) cooperate in triggering efficient germination of Bacillus licheniformis spores when nutrients are present in the surrounding environment. This study shows that the single B subunit of GerA is essential for the cooperative function between Ynd and GerA, while the three B subunits of the Ynd GR are dispensable. The ability of GRs lacking individual subunits to stimulate germination together with other GRs could explain why ger operons lacking GR subunit genes are maintained in genomes of spore-forming species.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Esporos Bacterianos/genética , Aminoácidos/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/genética , Óperon/genética
2.
Food Microbiol ; 84: 103259, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421778

RESUMO

Bacillus licheniformis is frequently associated with food spoilage due to its ability to form highly resistant endospores. The present study reveals that B. licheniformis spore peptidoglycan shares a similar structure to spores of other species of Bacillus. Two enzymatic activities associated with depolymerisation of the cortical peptidoglycan, which represents a crucial step in spore germination, were detected by muropeptide analysis. These include lytic transglycosylase and N-acetylglucosaminidase activity, with non-lytic epimerase activity also being detected. The role of various putative cortex-lytic enzymes that account for the aforementioned activity was investigated by mutational analysis. These analyses indicate that SleB is the major lysin involved in cortex depolymerisation in B. licheniformis spores, with CwlJ and SleL having lesser roles. Collectively, the results of this work indicate that B. licheniformis spores employ a similar approach for cortical depolymerisation during germination as spores of other Bacillus species.


Assuntos
Bacillus licheniformis/enzimologia , Bacillus licheniformis/genética , Mutação , Esporos Bacterianos/enzimologia , Amidoidrolases/genética , Proteínas de Bactérias/genética , Parede Celular , Microbiologia de Alimentos/métodos , Viabilidade Microbiana , Peptidoglicano/química , Esporos Bacterianos/crescimento & desenvolvimento
3.
Food Microbiol ; 65: 130-135, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28399995

RESUMO

Besides Bacillus cereus, some strains of the psychrotolerant, potentially foodborne pathogen Bacillus weihenstephanensis can produce the emetic toxine (cereulide). This toxin is a heat- and acid-stable cyclic dodecadepsipeptide that causes food intoxication with vomiting. However, some severe clinical cases with lethal outcomes have been described. If cereulide can be produced during refrigerated storage, it will not be inactivated by reheating food, representing an important risk of food intoxication for consumers. In this paper, we determined the capacity of the B. weihenstephanensis strains BtB2-4 and MC67 to grow and produce cereulide on agar media at temperatures from 8 °C to 25 °C and at a pH from 5.4 to 7.0. At 8 °C, strain BtB2-4 produced quantifiable amounts of cereulide, whereas the limit of detection was reached for strain MC67. For BtB2-4, cereulide production increased 5-fold between 8 °C and 10-15 °C and by more than 100-fold between 15 °C and 25 °C. At temperatures of 10 °C and higher, cereulide concentrations were within the range of those reported by previous works in foods implicated in emetic poisoning. At 25 °C, decreasing the pH to 5.4 reduced cereulide production by strain BtB2-4 by at least 20-fold.


Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Depsipeptídeos/análise , Microbiologia do Solo , Bacillus/isolamento & purificação , Meios de Cultura , Depsipeptídeos/isolamento & purificação , Concentração de Íons de Hidrogênio , Limite de Detecção , Temperatura
4.
Appl Environ Microbiol ; 82(14): 4279-4287, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208128

RESUMO

UNLABELLED: When nutrients are scarce, Bacillus species form metabolically dormant and extremely resistant spores that enable survival over long periods of time under conditions not permitting growth. The presence of specific nutrients triggers spore germination through interaction with germinant receptors located in the spore's inner membrane. Bacillus licheniformis is a biotechnologically important species, but it is also associated with food spoilage and food-borne disease. The B. licheniformis ATCC 14580/DSM13 genome exhibits three gerA family operons (gerA, gerK, and ynd) encoding germinant receptors. We show that spores of B. licheniformis germinate efficiently in response to a range of different single l-amino acid germinants, in addition to a weak germination response seen with d-glucose. Mutational analyses revealed that the GerA and Ynd germination receptors function cooperatively in triggering an efficient germination response with single l-amino acid germinants, whereas the GerK germination receptor is essential for germination with d-glucose. Mutant spores expressing only GerA and GerK or only Ynd and GerK show reduced or severely impaired germination responses, respectively, with single l-amino acid germinants. Neither GerA nor Ynd could function alone in stimulating spore germination. Together, these results functionally characterize the germination receptor operons present in B. licheniformis We demonstrate the overlapping germinant recognition patterns of the GerA and Ynd germination receptors and the cooperative functionalities between GerA, Ynd, and GerK in inducing germination. IMPORTANCE: To ensure safe food production and durable foods, there is an obvious need for more knowledge on spore-forming bacteria. It is the process of spore germination that ultimately leads to food spoilage and food poisoning. Bacillus licheniformis is a biotechnologically important species that is also associated with food spoilage and food-borne disease. Despite its importance, the mechanisms of spore germination are poorly characterized in this species. This study provides novel knowledge on germination of B. licheniformis spores. We characterize the germinant recognition profiles of the three germinant receptors present in B. licheniformis spores and demonstrate that the GerA germinant receptor cooperates with the Ynd and GerK germinant receptors to enable an effective germination response to l-amino acids. We also demonstrate that GerK is required for germination in response to the single germinant glucose. This study demonstrates the complex interactions between germinant receptors necessary for efficient germination of B. licheniformis spores.


Assuntos
Bacillus licheniformis/crescimento & desenvolvimento , Bacillus licheniformis/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Aminoácidos/metabolismo , Bacillus licheniformis/metabolismo , Proteínas de Bactérias/genética , Análise Mutacional de DNA , Glucose/metabolismo
5.
Mol Microbiol ; 94(3): 557-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155269

RESUMO

Staphylococcus aureus is a major human pathogen. Hospital infections caused by methicillin-resistant strains (MRSA), which have acquired resistance to a broad spectrum of antibiotics through horizontal gene transfer (HGT), are of particular concern. In S. aureus, virulence and antibiotic resistance genes are often encoded on mobile genetic elements that are disseminated by HGT. Conjugation and phage transduction have long been known to mediate HGT in this species, but it is unclear whether natural genetic transformation contributes significantly to the process. Recently, it was reported that expression of the alternative sigma factor SigH induces the competent state in S. aureus. The transformation efficiency obtained, however, was extremely low, indicating that the optimal conditions for competence development had not been found. We therefore used transcriptome sequencing to determine whether the full set of genes known to be required for competence in other naturally transformable bacteria is part of the SigH regulon. Our results show that several essential competence genes are not controlled by SigH. This presumably explains the low transformation efficiency previously reported, and demonstrates that additional regulating mechanisms must be involved. We found that one such mechanism involves ComK1, a transcriptional activator that acts synergistically with SigH.


Assuntos
Competência de Transformação por DNA , Regulação Bacteriana da Expressão Gênica , Regulon , Staphylococcus aureus/genética , Fatores de Transcrição/genética , Proteínas de Bactérias , Perfilação da Expressão Gênica , Análise de Sequência de DNA , Fator sigma , Fatores de Transcrição/metabolismo , Transformação Bacteriana
6.
BMC Microbiol ; 14: 101, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24755193

RESUMO

BACKGROUND: L-alanine, acting through the GerA receptor, was recently found to be an efficient germinant in Bacillus licheniformis ATCC14580/DSM13. RESULTS: In this study, we show that several of 46 examined B. licheniformis strains germinate remarkably slower than the type strain when exposed to L-alanine. These strains are not necessarily closely related, as determined by MLST (multi-locus sequence typing). Three of the slow-germinating strains were further examined in order to see whether nucleotide substitutions in the gerA sequences were responsible for the slow L-alanine germination. This was performed by complementing the transformable type strain derivate MW3ΔgerAA with gerA variants from the three slow-germinating strains; NVH1032, NVH1112 and NVH800. CONCLUSIONS: A wide selection of B. licheniformis strains was evaluated for L-alanine-induced germination efficiency. Our results show that gerA substitutions could only partially explain why spores of some B. licheniformis strains responded slower than others in the presence of L-alanine.


Assuntos
Alanina/metabolismo , Bacillus/efeitos dos fármacos , Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus/genética , Proteínas de Bactérias/genética , Teste de Complementação Genética , Proteínas de Membrana/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
7.
Int J Syst Evol Microbiol ; 63(Pt 1): 31-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22328607

RESUMO

An aerobic endospore-forming bacillus (NVH 391-98(T)) was isolated during a severe food poisoning outbreak in France in 1998, and four other similar strains have since been isolated, also mostly from food poisoning cases. Based on 16S rRNA gene sequence similarity, these strains were shown to belong to the Bacillus cereus Group (over 97% similarity with the current Group species) and phylogenetic distance from other validly described species of the genus Bacillus was less than 95%. Based on 16S rRNA gene sequence similarity and MLST data, these novel strains were shown to form a robust and well-separated cluster in the B. cereus Group, and constituted the most distant cluster from species of this Group. Major fatty acids (iso-C(15:0), C(16:0), iso-C(17:0), anteiso-C(15 : 0), iso-C(16:0), iso-C(13:0)) supported the affiliation of these strains to the genus Bacillus, and more specifically to the B. cereus Group. NVH 391-98(T) taxon was more specifically characterized by an abundance of iso-C(15:0) and low amounts of iso-C(13:0) compared with other members of the B. cereus Group. Genome similarity together with DNA-DNA hybridization values and physiological and biochemical tests made it possible to genotypically and phenotypically differentiate NVH 391-98(T) taxon from the six current B. cereus Group species. NVH 391-98(T) therefore represents a novel species, for which the name Bacillus cytotoxicus sp. nov. is proposed, with the type strain NVH 391-98(T) (= DSM 22905(T) = CIP 110041(T)).


Assuntos
Bacillus/classificação , Doenças Transmitidas por Alimentos , Filogenia , Bacillus/genética , Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , França , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Antonie Van Leeuwenhoek ; 103(3): 693-700, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23132276

RESUMO

The time/temperature profiles experienced by spores on the track from their natural sporulation environment to consumable food products may be highly diverse. Temperature has been documented as an important factor that may activate spores, i.e. potentiates spores to germinate. There is, however, limited knowledge about the relationship between the expected temperature history and the subsequent germination characteristics of bacterial spores. We show here that the germination rate of five different Bacillus spore populations, represented by strains of Bacillus cereus, Bacillus weihenstephanensis, Bacillus pumilus, Bacillus licheniformis and Bacillus subtilis could be increased following 1 week storage at moderately elevated temperatures, 30-33 °C, compared to spores stored at 3-8 °C. The results imply that spores contamination routes to foods, specifically the temperature history, could be highly relevant data in predictive modeling of food spoilage and safety. Activation at these moderately elevated temperatures may be a native form of spore activation in their natural habitats, knowledge that also could be useful in development of decontamination strategies for mildly heated foods.


Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/efeitos da radiação , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/efeitos da radiação , Microbiologia de Alimentos/métodos , Temperatura , Fatores de Tempo
9.
Infect Immun ; 80(2): 832-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22104106

RESUMO

The Nhe enterotoxin from Bacillus cereus is known to induce cytotoxicity on Vero and CaCo-2 cells by ordered binding of its single components NheA, NheB, and NheC. This study aimed to elucidate functional sites on NheB by identifying the epitopes of the neutralizing monoclonal antibodies 1E11 and 2B11. The binding regions of both antibodies were determined by using recombinant NheB fragments and synthetic peptides. The antigenic site of antibody 1E11 was located within the amino acids 321 to 341 of NheB, whereas reactivity of antibody 2B11 was dependent on the presence of amino acids 122 to 150 and on conformation. Both antibodies were able to bind simultaneously to NheB and did not interfere with target cell binding as shown by immunofluorescence microscopy. A set of neutralization assays revealed that antibody 2B11 most likely interfered with the interaction between NheB and NheC both on the epithelium cell surface and in solution. In contrast, antibody 1E11 inhibited association between NheA and cell-bound NheB in a competitive manner, and effectively neutralized Nhe cytotoxicity on a variety of human cell lines. This distinct mechanism further supports that NheA is the key component during the Nhe mode of action and the C-terminal epitope recognized by antibody 1E11 points to an important functional region of NheB.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Bacillus cereus/metabolismo , Proteínas de Bactérias/imunologia , Enterotoxinas/imunologia , Animais , Bacillus cereus/imunologia , Linhagem Celular , Clonagem Molecular , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Humanos , Mutação , Ligação Proteica , Conformação Proteica
10.
Environ Microbiol ; 14(8): 2233-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22540344

RESUMO

In response to nutrient limitation in the environment, the global transcriptional regulator CodY modulates various pathways in low G+C Gram-positive bacteria. In Bacillus subtilis CodY triggers adaptation to starvation by secretion of proteases coupled to the expression of amino acid transporters. Furthermore, it is involved in modulating survival strategies like sporulation, motility, biofilm formation, and CodY is also known to affect virulence factor production in pathogenic bacteria. In this study, the role of CodY in Bacillus cereus ATCC 14579, the enterotoxin-producing type strain, is investigated. A marker-less deletion mutant of codY (ΔcodY) was generated in B.cereus and the transcriptome changes were surveyed using DNA microarrays. Numerous genes involved in biofilm formation and amino acid transport and metabolism were upregulated and genes associated with motility and virulence were repressed upon deletion of codY. Moreover, we found that CodY is important for efficient production of toxins and for adapting from nutrient-rich to nutrient-limited growth conditions of B.cereus. In contrast, biofilm formation is highly induced in the ΔcodY mutant, suggesting that CodY represses biofilm formation. Together, these results indicate that CodY plays a crucial role in the growth and persistence of B.cereus in different environments such as soil, food, insect guts and the human body.


Assuntos
Bacillus cereus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/biossíntese , Bacillus cereus/genética , Bacillus cereus/metabolismo , Toxinas Bacterianas/genética , Biofilmes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Deleção de Sequência , Transcriptoma , Fatores de Virulência/genética
11.
Appl Environ Microbiol ; 78(6): 1917-29, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247150

RESUMO

The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.


Assuntos
Microbiologia do Ar , Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Ferrovias , Bactérias/química , Técnicas Bacteriológicas/métodos , Análise por Conglomerados , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Noruega , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
13.
BMC Microbiol ; 12: 34, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22420404

RESUMO

BACKGROUND: The genome of Bacillus licheniformis DSM 13 harbours three neighbouring open reading frames showing protein sequence similarities to the proteins encoded from the Bacillus subtilis subsp. subtilis 168 gerA operon, GerAA, GerAB and GerAC. In B. subtilis, these proteins are assumed to form a germinant receptor involved in spore germination induced by the amino acid L-alanine. RESULTS: In this study we show that disruption of the gerAA gene in B. licheniformis MW3 hamper L-alanine and casein hydrolysate-triggered spore germination, measured by absorbance at 600 nm and confirmed by phase contrast microscopy. This ability was restored by complementation with a plasmid-borne copy of the gerA locus. Addition of D-alanine in the casein hydrolysate germination assay abolished germination of both B. licheniformis MW3 and the complementation mutant. Germination of both B. licheniformis MW3 and the gerA disruption mutant was induced by the non-nutrient germinant Ca2+-Dipicolinic acid. CONCLUSIONS: These results demonstrate that the B. licheniformis MW3 gerA locus is involved in germination induced by L-alanine and potentially other components present in casein hydrolysate.


Assuntos
Alanina/metabolismo , Bacillus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Óperon , Bacillus/metabolismo , Proteínas de Bactérias/genética , Caseínas/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese , Esporos Bacterianos/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-22949198

RESUMO

The nonhaemolytic enterotoxin (Nhe) of Bacillus cereus plays a key role in cases of B. cereus food poisoning. The toxin is comprised of three different proteins: NheA, NheB and NheC. Here, the expression in Escherichia coli, purification and crystallization of the NheA protein are reported. The protein was crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The crystals of NheA diffracted to 2.05 Å resolution and belonged to space group C2, with unit-cell parameters a = 308.7, b = 58.2, c = 172.9 Å, ß = 110.6°. Calculation of V(M) values suggests that there are approximately eight protein molecules per asymmetric unit.


Assuntos
Bacillus cereus/química , Proteínas de Bactérias/química , Enterotoxinas/química , Cristalização , Cristalografia por Raios X
15.
Appl Environ Microbiol ; 77(15): 5336-41, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685156

RESUMO

Bacteriophages (phages) carrying Shiga toxin genes constitute a major virulence attribute in enterohemorrhagic Escherichia coli (EHEC). Several EHEC outbreaks have been linked to food. The survival of such strains in different foods has received much attention, while the fate of the mobile Shiga toxin-converting phages (Stx phages) has been less studied. We have investigated the stability of an Stx phage in several food products and examined how storage, food processing, and disinfection influence the infectivity of phage particles. The study involved a recombinant Stx phage (Δstx::cat) of an E. coli O103:H25 strain from a Norwegian outbreak in 2006. Temperature, matrix, and time were factors of major importance for the stability of phage particles. Phages stored at cooling temperatures (4°C) showed a dramatic reduction in stability compared to those stored at room temperature. The importance of the matrix was evident at higher temperatures (60°C). Phages in ground beef were below the detection level when heated to 60°C for more than 10 min, while phages in broth exposed to the same heating conditions showed a 5-log-higher stability. The phages tolerated desiccation poorly but were infective for a substantial period of time in solutions. Under moist conditions, they also had a high ability to tolerate exposure to several disinfectants. In a dry-fermented sausage model, phages were shown to infect E. coli in situ. The results show that Stx phage particles can maintain their infectivity in foods and under food-processing conditions.


Assuntos
Bacteriófagos/metabolismo , Escherichia coli Êntero-Hemorrágica/virologia , Alimentos/virologia , Trato Gastrointestinal/virologia , Toxina Shiga II/metabolismo , Bacteriófagos/genética , DNA Viral , Dessecação , Desinfecção , Escherichia coli Êntero-Hemorrágica/citologia , Escherichia coli Êntero-Hemorrágica/genética , Infecções por Escherichia coli/epidemiologia , Escherichia coli O157 , Manipulação de Alimentos , Indústria de Processamento de Alimentos , Trato Gastrointestinal/microbiologia , Humanos , Produtos da Carne , Aço Inoxidável , Temperatura
16.
Toxins (Basel) ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919248

RESUMO

Bacillus cereus sensu stricto is an important pathogen causing food poisoning, as well as extraintestinal diseases [...].


Assuntos
Bacillus cereus/metabolismo , Enterotoxinas/efeitos adversos , Doenças Transmitidas por Alimentos/microbiologia , Humanos
17.
Toxins (Basel) ; 13(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525722

RESUMO

Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Diarreia/microbiologia , Enterotoxinas/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Proteínas Hemolisinas/metabolismo , Vômito/microbiologia , Animais , Bacillus cereus/genética , Bacillus cereus/patogenicidade , Proteínas de Bactérias/genética , Depsipeptídeos/genética , Depsipeptídeos/metabolismo , Diarreia/diagnóstico , Diarreia/fisiopatologia , Enterotoxinas/genética , Doenças Transmitidas por Alimentos/diagnóstico , Doenças Transmitidas por Alimentos/fisiopatologia , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/fisiopatologia , Proteínas Hemolisinas/genética , Interações Hospedeiro-Patógeno , Humanos , Virulência , Vômito/diagnóstico , Vômito/fisiopatologia
18.
Infect Immun ; 78(9): 3813-21, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20624910

RESUMO

This study focuses on the interaction of the three components of the Bacillus cereus Nhe enterotoxin with particular emphasis on the functional roles of NheB and NheC. The results demonstrated that both NheB and NheC were able to bind to Vero cells directly while NheA lacked this ability. It was also shown that Nhe-induced cytotoxicity required a specific binding order of the individual components whereby the presence of NheC in the priming step as well as the presence of NheA in the final incubation step was mandatory. Priming of cells with NheB alone and addition of NheA plus NheC in the second step failed to induce toxic effects. Furthermore, in solution, excess NheC inhibited binding of NheB to Vero cells, whereas priming of cells with excess NheC resulted in full toxicity if unbound NheC was removed before addition of NheB. By using mutated NheC proteins where the two cysteine residues in the predicted beta-tongue were replaced with glycine (NheCcys-) or where the entire hydrophobic stretch was deleted (NheChr-), the predicted hydrophobic beta-tongue of NheC was found essential for binding to cell membranes but not for interaction with NheB in solution. All data presented here are compatible with the following model. The first step in the mode of action of Nhe is associated with binding of NheC and NheB to the cell surface and probably accompanied by conformational changes. These events allow subsequent binding of NheA, leading to cell lysis.


Assuntos
Bacillus cereus/patogenicidade , Enterotoxinas/toxicidade , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Enterotoxinas/química , Enterotoxinas/metabolismo , L-Lactato Desidrogenase/metabolismo , Células Vero
19.
BMC Microbiol ; 10: 304, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21118484

RESUMO

BACKGROUND: Bacillus cereus and the closely related Bacillus thuringiensis are Gram positive opportunistic pathogens that may cause food poisoning, and the three secreted pore-forming cytotoxins Hbl, Nhe and CytK have been implicated as the causative agents of diarrhoeal disease. It has been proposed that the Hbl toxin is secreted using the flagellar export apparatus (FEA) despite the presence of Sec-type signal peptides. As protein secretion is of key importance in virulence of a microorganism, the mechanisms by which these toxins are secreted were further investigated. RESULTS: Sec-type signal peptides were identified in all toxin components, and secretion of Hbl component B was shown to be dependent on an intact Sec-type signal peptide sequence. Further indication that secretion of Hbl, Nhe and CytK is dependent on the Sec translocation pathway, the main pathway on which bacterial secretion relies, was suggested by the observed intracellular accumulation and reduced secretion of the toxins in cultures supplemented with the SecA inhibitor sodium azide. Although a FEA deficient strain (a flhA mutant) showed reduced toxin expression and reduced cytotoxicity, it readily secreted overexpressed Hbl B, showing that the FEA is not required for Hbl secretion. Thus, the concurrent lack of flagella and reduced toxin secretion in the FEA deficient strain may point towards the presence of a regulatory link between motility and virulence genes, rather than FEA-dependent toxin secretion. CONCLUSIONS: The Hbl, Nhe and CytK toxins appear to be secreted using the Sec pathway, and the reduced Hbl expression of a FEA deficient strain was shown not to be due to a secretion defect.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Citotoxinas/metabolismo , Enterotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Via Secretória , Sequência de Aminoácidos , Animais , Bacillus cereus/química , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Chlorocebus aethiops , Citotoxinas/química , Citotoxinas/genética , Enterotoxinas/química , Enterotoxinas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Transporte Proteico , Alinhamento de Sequência , Células Vero
20.
FEMS Microbiol Rev ; 32(4): 579-606, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18422617

RESUMO

Bacillus cereus is widespread in nature and frequently isolated from soil and growing plants, but it is also well adapted for growth in the intestinal tract of insects and mammals. From these habitats it is easily spread to foods, where it may cause an emetic or a diarrhoeal type of food-associated illness that is becoming increasingly important in the industrialized world. The emetic disease is a food intoxication caused by cereulide, a small ring-formed dodecadepsipeptide. Similar to the virulence determinants that distinguish Bacillus thuringiensis and Bacillus anthracis from B. cereus, the genetic determinants of cereulide are plasmid-borne. The diarrhoeal syndrome of B. cereus is an infection caused by vegetative cells, ingested as viable cells or spores, thought to produce protein enterotoxins in the small intestine. Three pore-forming cytotoxins have been associated with diarrhoeal disease: haemolysin BL (Hbl), nonhaemolytic enterotoxin (Nhe) and cytotoxin K. Hbl and Nhe are homologous three-component toxins, which appear to be related to the monooligomeric toxin cytolysin A found in Escherichia coli. This review will focus on the toxins associated with foodborne diseases frequently caused by B. cereus. The disease characteristics are described, and recent findings regarding the associated toxins are discussed, as well as the present knowledge on virulence regulation.


Assuntos
Bacillus cereus/metabolismo , Enterotoxinas/metabolismo , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Trato Gastrointestinal/microbiologia , Microbiologia do Solo , Animais , Bacillus cereus/classificação , Bacillus cereus/isolamento & purificação , Bacillus cereus/patogenicidade , Diarreia/microbiologia , Enterotoxinas/química , Enterotoxinas/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vômito/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA