Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Phys Rev Lett ; 132(22): 226201, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877909

RESUMO

Electrical control of charge density waves has been of immense interest, as the strong underlying electron-lattice interactions potentially open new, efficient pathways for manipulating their ordering and, consequently, their electronic properties. However, the transition mechanisms are often unclear as electric field, current, carrier injection, heat, and strain can all contribute and play varying roles across length scales and timescales. Here, we provide insight on how electrical stimulation melts the room temperature charge density wave order in 1T-TaS_{2} by visualizing the atomic and mesoscopic structural dynamics from quasi-static to nanosecond pulsed melting. Using a newly developed ultrafast electron microscope setup with electrical stimulation, we reveal the order and strain dynamics during voltage pulses as short as 20 ns. The order parameter dynamics across a range of pulse amplitudes and durations support a thermally driven mechanism even for fields as high as 19 kV cm^{-1}. In addition, time-resolved imaging reveals a heterogeneous, mesoscopic strain response across the flake, including MHz-scale acoustic resonances that emerge during sufficiently short pulsed excitation which may modulate the order. These results suggest that metallic charge density wave phases like studied here may be more robust to electronic switching pathways than insulating ones, motivating further investigations at higher fields and currents in this and other related systems.

2.
Nano Lett ; 22(16): 6530-6536, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939762

RESUMO

Isolated solid-state atomic defects with telecom optical transitions are ideal quantum photon emitters and spin qubits for applications in long-distance quantum communication networks. Prototypical telecom defects, such as erbium, suffer from poor photon emission rates, requiring photonic enhancement using resonant optical cavities. Moreover, many of the traditional hosts for erbium ions are not amenable to direct incorporation with existing integrated photonics platforms, limiting scalable fabrication of qubit-based devices. Here, we present a scalable approach toward CMOS-compatible telecom qubits by using erbium-doped titanium dioxide thin films grown atop silicon-on-insulator substrates. From this heterostructure, we have fabricated one-dimensional photonic crystal cavities demonstrating quality factors in excess of 5 × 104 and corresponding Purcell-enhanced optical emission rates of the erbium ensembles in excess of 200. This easily fabricated materials platform represents an important step toward realizing telecom quantum memories in a scalable qubit architecture compatible with mature silicon technologies.

3.
Sensors (Basel) ; 22(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632322

RESUMO

Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R2 of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m3/m3). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.


Assuntos
Agricultura , Solo , Algoritmos , Ecologia , Água
6.
ACS Nano ; 18(14): 9929-9941, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533847

RESUMO

The use of trivalent erbium (Er3+), typically embedded as an atomic defect in the solid-state, has widespread adoption as a dopant in telecommunication devices and shows promise as a spin-based quantum memory for quantum communication. In particular, its natural telecom C-band optical transition and spin-photon interface make it an ideal candidate for integration into existing optical fiber networks without the need for quantum frequency conversion. However, successful scaling requires a host material with few intrinsic nuclear spins, compatibility with semiconductor foundry processes, and straightforward integration with silicon photonics. Here, we present Er-doped titanium dioxide (TiO2) thin film growth on silicon substrates using a foundry-scalable atomic layer deposition process with a wide range of doping controls over the Er concentration. Even though the as-grown films are amorphous after oxygen annealing, they exhibit relatively large crystalline grains, and the embedded Er ions exhibit the characteristic optical emission spectrum from anatase TiO2. Critically, this growth and annealing process maintains the low surface roughness required for nanophotonic integration. Finally, we interface Er ensembles with high quality factor Si nanophotonic cavities via evanescent coupling and demonstrate a large Purcell enhancement (≈300) of their optical lifetime. Our findings demonstrate a low-temperature, nondestructive, and substrate-independent process for integrating Er-doped materials with silicon photonics. At high doping densities this platform can enable integrated photonic components such as on-chip amplifiers and lasers, while dilute concentrations can realize single ion quantum memories.

7.
Adv Mater ; 35(37): e2204944, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36579797

RESUMO

Deep learning has become ubiquitous, touching daily lives across the globe. Today, traditional computer architectures are stressed to their limits in efficiently executing the growing complexity of data and models. Compute-in-memory (CIM) can potentially play an important role in developing efficient hardware solutions that reduce data movement from compute-unit to memory, known as the von Neumann bottleneck. At its heart is a cross-bar architecture with nodal non-volatile-memory elements that performs an analog multiply-and-accumulate operation, enabling the matrix-vector-multiplications repeatedly used in all neural network workloads. The memory materials can significantly influence final system-level characteristics and chip performance, including speed, power, and classification accuracy. With an over-arching co-design viewpoint, this review assesses the use of cross-bar based CIM for neural networks, connecting the material properties and the associated design constraints and demands to application, architecture, and performance. Both digital and analog memory are considered, assessing the status for training and inference, and providing metrics for the collective set of properties non-volatile memory materials will need to demonstrate for a successful CIM technology.

8.
Lab Chip ; 23(9): 2327-2340, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083052

RESUMO

The paper presents fabrication methodologies that integrate silicon components into soft microfluidic devices to perform microbial cell lysis for biological applications. The integration methodology consists of a silicon chip that is fabricated with microstructure arrays and embedded in a microfluidic device, which is driven by piezoelectric actuation to perform cell lysis by physically breaking microbial cell walls via micromechanical impaction. We present different silicon microarray geometries, their fabrication techniques, integration of said micropatterned silicon impactor chips into microfluidic devices, and device operation and testing on synthetic microbeads and two yeast species (S. cerevisiae and C. albicans) to evaluate their efficacy. The generalized strategy developed for integration of the micropatterned silicon impactor chip into soft microfluidic devices can serve as an important process step for a new class of hybrid silicon-polymeric devices for future cellular processing applications. The proposed integration methodology can be scalable and integrated as an in-line cell lysis tool with existing microfluidics assays.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Silício/química , Saccharomyces cerevisiae , Dispositivos Lab-On-A-Chip
9.
Nat Commun ; 13(1): 1517, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314686

RESUMO

One of the most common approaches for quenching single-photon avalanche diodes is to use a passive resistor in series with it. A drawback of this approach has been the limited recovery speed of the single-photon avalanche diodes. High resistance is needed to quench the avalanche, leading to slower recharging of the single-photon avalanche diodes depletion capacitor. We address this issue by replacing a fixed quenching resistor with a bias-dependent adaptive resistive switch. Reversible generation of metallic conduction enables switching between low and high resistance states under unipolar bias. As an example, using a Pt/Al2O3/Ag resistor with a commercial silicon single-photon avalanche diodes, we demonstrate avalanche pulse widths as small as ~30 ns, 10× smaller than a passively quenched approach, thus significantly improving the single-photon avalanche diodes frequency response. The experimental results are consistent with a model where the adaptive resistor dynamically changes its resistance during discharging and recharging the single-photon avalanche diodes.

10.
ACS Nano ; 16(9): 14754-14764, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36049118

RESUMO

Here, we introduce polymer of intrinsic microporosity 1 (PIM-1) to design single-layer and multilayered all-inorganic antireflective coatings (ARCs) with excellent mechanical properties. Using PIM-1 as a template in sequential infiltration synthesis (SIS), we can fabricate highly uniform, mechanically stable conformal coatings of AlOx with porosities of ∼50% and a refractive index of 1.41 compared to 1.76 for nonporous AlOx that is perfectly suited for substrates commonly used in high-end optical systems or touch screens (e.g., sapphire, conductive glass, bendable glass, etc.). We show that such films can be used as a single-layer ARC capable of reduction of the Fresnel reflections of sapphire to as low as 0.1% at 500 nm being deposited only on one side of the substrate. We also demonstrate that deposition of the second layer with higher porosity using block copolymers enables the design of graded-index double-layered coatings. AlOx structures with just two layers and a total thickness of less than 200 nm are capable of reduction of Fresnel reflections under normal illumination to below 0.5% in a broad spectral range with 0.1% reflection at 700 nm. Additionally, and most importantly, we show that highly porous single-layer and graded-index double-layered ARCs are characterized by high hardness and scratch resistivity. The hardness and the maximum reached load were 7.5 GPa and 13 mN with a scratch depth of about 130 nm, respectively, that is very promising for the structures consisting of two porous AlOx layers with 50% and 85% porosities, correspondingly. Such mechanical properties of coatings can also allow their application as protective layers for other optical coatings.

11.
ACS Nano ; 15(7): 10748-10758, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34269059

RESUMO

Agricultural innovation is a key component of the global economy and enhances food security, health, and nutrition. Current innovation efforts focus mainly on supporting the transition to sustainable food systems, which is expected to harness technological advances across a range of fields. In this Nano Focus, we discuss how such efforts would benefit from not only supporting farmer participation in deciding transition pathways but also in fostering the interdisciplinary training and development of entrepreneurial-minded farmers, whom we term "AgTech Pioneers", to participate in cross-sector agricultural innovation ecosystems as cocreators and informed users of developing and future technologies. Toward this goal, we discuss possible strategies based on talent development, cross-disciplinary educational and training programs, and innovation clusters to build an AgTech Pioneer ecosystem, which can help to reinvigorate interest in farming careers and to identify and address challenges and opportunities in agriculture by accelerating and applying advances in nanoscience, nanotechnology, and related fields.


Assuntos
Agricultura , Ecossistema , Nanotecnologia
12.
ACS Nano ; 15(3): 4155-4164, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33646747

RESUMO

Resistance switching in metal-insulator-metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (>109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.

13.
Opt Express ; 18 Suppl 4: A568-74, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21165090

RESUMO

We have developed an inexpensive and scalable method to create wire textures on multi-crystalline Si solar cell surfaces for enhanced light trapping. The wires are created by reactive ion etching, using a monolayer high self-assembled array of polymer microspheres as an etch mask. Chemical functionalization of the microspheres and the Si surface allows the mask to be assembled by simple dispensing, without spin or squeegee based techniques. Surface reflectivities of the resulting wire textured multi-crystalline solar cells were comparable to that of KOH etched single crystal Si (100). Electrically, the solar cells exhibited a 20% gain in the short circuit current compared to planar multicrystalline Si control devices, and a relative increase of 7-16% in the "pseudo" efficiencies when the series resistance contributions are extracted out.

14.
Nano Lett ; 9(12): 4548-52, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19856942

RESUMO

We report the observation of photocurrent in silicon nanowires induced by nonradiative resonant energy transfer (NRET) from adjacent layers of lead sulfide nanocrystal quantum dots using time-resolved photocurrent measurements. This demonstration supports the feasibility of a new solar cell paradigm (Lu, S.; Madhukar, A. Nano Lett. 2007, 7, 3443-3451) that exploits NRET between efficient photon absorbers and adjacent nanowire/quantum well high-mobility charge transport channels and could offer a viable alternative to the limitations of carrier transport and collection faced by excitonic solar cells.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Fotoquímica/métodos , Pontos Quânticos , Silício/química , Condutividade Elétrica , Fontes de Energia Elétrica , Campos Eletromagnéticos , Transferência de Energia , Luz , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Energia Solar , Propriedades de Superfície
15.
Nano Lett ; 9(9): 3296-301, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19639967

RESUMO

We have examined the formation of silicon nanowires grown by self-assembly from Si substrates with thin aluminum films. Postgrowth and in situ investigations using various Al deposition and annealing conditions suggest that nanowire growth takes place with a supercooled liquid droplet (i.e., the vapor-liquid-solid system), even though the growth temperatures are below the bulk Al/Si eutectic temperature. Wire morphology as a function of processing conditions is also described. It is shown that when Al environmental exposure is prevented before wire growth a wide process window for wire formation can be achieved. Under optimum growth conditions, it is possible to produce excellent crystal quality nanowires with rapid growth rates, high surface densities, low diameter dispersion, and controlled tapering. Photoelectron spectroscopy measurements indicate that the use of Al leads to active doping levels that depend on the growth temperature in as-grown nanowires and increase when annealed. We suggest that these structural and electronic properties will be relevant to photovoltaic and other applications, where the more common use of Au is believed to be detrimental to performance.


Assuntos
Alumínio/química , Nanofios/química , Silício/química , Teste de Materiais , Membranas Artificiais , Estrutura Molecular , Nanotecnologia , Tamanho da Partícula , Propriedades de Superfície
16.
ACS Nano ; 14(5): 6339-6347, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32329337

RESUMO

The emergence of a pandemic affecting the respiratory system can result in a significant demand for face masks. This includes the use of cloth masks by large sections of the public, as can be seen during the current global spread of COVID-19. However, there is limited knowledge available on the performance of various commonly available fabrics used in cloth masks. Importantly, there is a need to evaluate filtration efficiencies as a function of aerosol particulate sizes in the 10 nm to 10 µm range, which is particularly relevant for respiratory virus transmission. We have carried out these studies for several common fabrics including cotton, silk, chiffon, flannel, various synthetics, and their combinations. Although the filtration efficiencies for various fabrics when a single layer was used ranged from 5 to 80% and 5 to 95% for particle sizes of <300 nm and >300 nm, respectively, the efficiencies improved when multiple layers were used and when using a specific combination of different fabrics. Filtration efficiencies of the hybrids (such as cotton-silk, cotton-chiffon, cotton-flannel) was >80% (for particles <300 nm) and >90% (for particles >300 nm). We speculate that the enhanced performance of the hybrids is likely due to the combined effect of mechanical and electrostatic-based filtration. Cotton, the most widely used material for cloth masks performs better at higher weave densities (i.e., thread count) and can make a significant difference in filtration efficiencies. Our studies also imply that gaps (as caused by an improper fit of the mask) can result in over a 60% decrease in the filtration efficiency, implying the need for future cloth mask design studies to take into account issues of "fit" and leakage, while allowing the exhaled air to vent efficiently. Overall, we find that combinations of various commonly available fabrics used in cloth masks can potentially provide significant protection against the transmission of aerosol particles.


Assuntos
Aerossóis/química , Filtração/normas , Máscaras/normas , Dispositivos de Proteção Respiratória/normas , Têxteis/normas , Absorção Fisico-Química , Eletricidade Estática , Têxteis/classificação
17.
J Chem Phys ; 130(17): 174711, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19425802

RESUMO

Microstructure evolution and electrical conductivity relaxation kinetics in highly textured and nanocrystalline dense ceria thin films (approximately 65 nm) are reported in this paper. Highly textured films were grown on sapphire c-plane substrates by molecular beam synthesis (MBS) with orientation relationship (111)CeO(2)parallel(0001)Al(2)O(3) and [110]CeO(2)parallel[1210]Al(2)O(3). No significant structural changes were observed in highly textured films even after extensive annealing at high temperature. In contrast to MBS grown films, ceria films grown by electron beam evaporation at room temperature had polycrystalline structure with approximately 10 nm grains, which grew to approximately 30 nm upon annealing at 1173 K. Grain growth kinetics was self-limiting and the out-of-plane orientation was found to be substrate dependent. From conductivity relaxation measurements, oxygen exchange rate in highly textured thin films was found to be much slower than that in polycrystalline films. The response time for highly textured films to changes in P(O(2)) from 1.07x10(-12) to 5.43x10(-10) Pa at 1148 K was 0.65 s, whereas that for polycrystalline films was 0.13 s under identical conditions. From temperature dependent experiments, activation energy for relaxation time was found to be similar, suggesting similar rate-limiting mechanisms in polycrystalline and highly textured films. The results highlight the importance of near-surface defects in controlling kinetics of oxygen incorporation into nanostructured oxides. In a broader context, the results maybe of relevance to designing catalytic surfaces in solid state ionic devices such as fuel cells.

18.
Front Neurosci ; 12: 856, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555289

RESUMO

Information in the central nervous system (CNS) is conducted via electrical signals known as action potentials and is encoded in time. Several neurological disorders including depression, Attention Deficit Hyperactivity Disorder (ADHD), originate in faulty brain signaling frequencies. Here, we present a Hodgkin-Huxley model analog for a strongly correlated VO2 artificial neuron system that undergoes an electrically-driven insulator-metal transition. We demonstrate that tuning of the insulating phase resistance in VO2 threshold switch circuits can enable direct mimicry of neuronal origins of disorders in the CNS. The results introduce use of circuits based on quantum materials as complementary to model animal studies for neuroscience, especially when precise measurements of local electrical properties or competing parallel paths for conduction in complex neural circuits can be a challenge to identify onset of breakdown or diagnose early symptoms of disease.

19.
Nanoscale ; 10(20): 9441-9449, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29663006

RESUMO

Large banks of cheap, fast, non-volatile, energy efficient, scalable solid-state memories are an increasingly essential component for today's data intensive computing. Conductive-bridge random access memory (CBRAM) - which involves voltage driven formation and dissolution of Cu or Ag filaments in a Cu (or Ag) anode/dielectric (HfO2 or Al2O3)/inert cathode device - possesses the necessary attributes to fit the requirements. Cu and Ag are, however, fast diffusers and known contaminants in silicon microelectronics. Herein, employing a criterion for electrode metal selection applicable to cationic filamentary devices and using first principles calculations for estimating diffusion barriers in HfO2, we identify tin (Sn) as a rational, silicon CMOS compatible replacement for Cu and Ag anodes in CBRAM devices. We then experimentally fabricate Sn based CBRAM devices and demonstrate very fast, steep-slope memory switching as well as threshold switching, comparable to Cu or Ag based devices. Furthermore, time evolution of the cationic filament formation along with the switching mechanism is discussed based on time domain measurements (I vs. t) carried out under constant voltage stress. The time to threshold is shown to be a function of both the voltage stress (Vstress) as well as the initial leakage current (I0) through the device.

20.
ACS Nano ; 11(3): 2521-2530, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28139905

RESUMO

Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al2O3 can be lowered from 1.76 down to 1.1 using this method. The thickness of the Al2O3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA