Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 160(4): 745-758, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25662011

RESUMO

Impaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase. Insulin's ability to suppress hepatic acetyl CoA, PC activity, and lipolysis was lost in high-fat-fed rats, a phenomenon reversible by IL-6 neutralization and inducible by IL-6 infusion. Taken together, these data identify WAT-derived hepatic acetyl CoA as the main regulator of HGP by insulin and link it to inflammation-induced hepatic insulin resistance associated with obesity and T2D.


Assuntos
Acetilcoenzima A/metabolismo , Resistência à Insulina , Fígado/metabolismo , Paniculite/metabolismo , Tecido Adiposo Branco/química , Adolescente , Animais , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Glucose/metabolismo , Humanos , Hiperglicemia , Interleucina-6/análise , Lipólise , Masculino , Camundongos , Obesidade/metabolismo , Ratos Sprague-Dawley
2.
Genes Dev ; 35(1-2): 133-146, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334822

RESUMO

The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues.


Assuntos
Tecido Adiposo/fisiologia , Comunicação Autócrina/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/genética , Transdução de Sinais/genética , Adipócitos/metabolismo , Adiponectina/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Sistema Endócrino/metabolismo , Metabolismo Energético/genética , Retroalimentação Fisiológica/fisiologia , Fatores de Crescimento de Fibroblastos/sangue , Hepatócitos/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , MAP Quinase Quinase 4/deficiência , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos
3.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282921

RESUMO

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Assuntos
Síndrome Metabólica , PPAR alfa , Animais , Camundongos , Proteínas de Transporte/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Camundongos Knockout , Fosforilação , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , MAP Quinase Quinase 4/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(6): 2751-2760, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980524

RESUMO

Obesity is associated with a chronic state of low-grade inflammation and progressive tissue infiltration by immune cells and increased expression of inflammatory cytokines. It is established that interleukin 6 (IL6) regulates multiple aspects of metabolism, including glucose disposal, lipolysis, oxidative metabolism, and energy expenditure. IL6 is secreted by many tissues, but the role of individual cell types is unclear. We tested the role of specific cells using a mouse model with conditional expression of the Il6 gene. We found that IL6 derived from adipocytes increased, while IL6 derived from myeloid cells and muscle suppressed, macrophage infiltration of adipose tissue. These opposite actions were associated with a switch of IL6 signaling from a canonical mode (myeloid cells) to a noncanonical trans-signaling mode (adipocytes and muscle) with increased expression of the ADAM10/17 metalloprotease that promotes trans-signaling by the soluble IL6 receptor α. Collectively, these data demonstrate that the source of IL6 production plays a major role in the physiological regulation of metabolism.


Assuntos
Tecido Adiposo/imunologia , Interleucina-6/imunologia , Obesidade/imunologia , Proteína ADAM10/genética , Proteína ADAM10/imunologia , Proteína ADAM17/genética , Proteína ADAM17/imunologia , Adipócitos/imunologia , Animais , Feminino , Humanos , Interleucina-6/genética , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/imunologia , Células Mieloides/imunologia , Obesidade/genética , Especificidade da Espécie
5.
FASEB J ; 32(4): 2292-2304, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29242277

RESUMO

Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78-/-) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78-/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78-/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78-/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.


Assuntos
Proteínas de Choque Térmico/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Obesidade/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Chaperona BiP do Retículo Endoplasmático , Glucose/metabolismo , Proteínas de Choque Térmico/genética , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Obesidade/etiologia , Resposta a Proteínas não Dobradas
6.
J Biol Chem ; 288(14): 9957-9970, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23426369

RESUMO

The enzyme acyl-CoA synthetase 1 (ACSL1) is induced by peroxisome proliferator-activated receptor α (PPARα) and PPARγ in insulin target tissues, such as skeletal muscle and adipose tissue, and plays an important role in ß-oxidation in these tissues. In macrophages, however, ACSL1 mediates inflammatory effects without significant effects on ß-oxidation. Thus, the function of ACSL1 varies in different tissues. We therefore investigated the signals and signal transduction pathways resulting in ACSL1 induction in macrophages as well as the consequences of ACSL1 deficiency for phospholipid turnover in LPS-activated macrophages. LPS, Gram-negative bacteria, IFN-γ, and TNFα all induce ACSL1 expression in macrophages, whereas PPAR agonists do not. LPS-induced ACSL1 expression is dependent on Toll-like receptor 4 (TLR4) and its adaptor protein TRIF (Toll-like receptor adaptor molecule 1) but does not require the MyD88 (myeloid differentiation primary response gene 88) arm of TLR4 signaling; nor does it require STAT1 (signal transducer and activator of transcription 1) for maximal induction. Furthermore, ACSL1 deletion attenuates phospholipid turnover in LPS-stimulated macrophages. Thus, the regulation and biological function of ACSL1 in macrophages differ markedly from that in insulin target tissues. These results suggest that ACSL1 may have an important role in the innate immune response. Further, these findings illustrate an interesting paradigm in which the same enzyme, ACSL1, confers distinct biological effects in different cell types, and these disparate functions are paralleled by differences in the pathways that regulate its expression.


Assuntos
Coenzima A Ligases/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Animais , Células da Medula Óssea/citologia , Feminino , Imunidade Inata , Interferon gama/metabolismo , MAP Quinase Quinase 4/metabolismo , Macrófagos/citologia , Macrófagos Peritoneais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais
7.
J Lipid Res ; 52(6): 1234-1246, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21447485

RESUMO

The mechanism of FFA-induced insulin resistance is not fully understood. We have searched for effector molecules(s) in FFA-induced insulin resistance. Palmitic acid (PA) but not oleic acid (OA) induced insulin resistance in L6 myotubes through C-Jun N-terminal kinase (JNK) and insulin receptor substrate 1 (IRS-1) Ser307 phosphorylation. Inhibitors of ceramide synthesis did not block insulin resistance by PA. However, inhibition of the conversion of PA to lysophosphatidylcholine (LPC) by calcium-independent phospholipase A2 (iPLA2) inhibitors, such as bromoenol lactone (BEL) or palmitoyl trifluoromethyl ketone (PACOCF3), prevented insulin resistance by PA. iPLA2 inhibitors or iPLA2 small interfering RNA (siRNA) attenuated JNK or IRS-1 Ser307 phosphorylation by PA. PA treatment increased LPC content, which was reversed by iPLA2 inhibitors or iPLA2 siRNA. The intracellular DAG level was increased by iPLA2 inhibitors, despite ameliorated insulin resistance. Pertussis toxin (PTX), which inhibits LPC action through the G-protein coupled receptor (GPCR)/Gα(i), reversed insulin resistance by PA. BEL administration ameliorated insulin resistance and diabetes in db/db mice. JNK and IRS-1Ser307 phosphorylation in the liver and muscle of db/db mice was attenuated by BEL. LPC content was increased in the liver and muscle of db/db mice, which was suppressed by BEL. These findings implicate LPC as an important lipid intermediate that links saturated fatty acids to insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Lisofosfatidilcolinas , Ácido Palmítico , Fosfolipases A2 Independentes de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Proteínas Sanguíneas/farmacologia , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Inativação Gênica , Glucose/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Fígado/patologia , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/metabolismo , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas , Naftalenos/farmacologia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Toxina Pertussis/farmacologia , Fosfolipases A2 Independentes de Cálcio/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Pironas/farmacologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
8.
Sci Signal ; 14(713): eabf2059, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905386

RESUMO

Chronic metabolic inflammation is a key feature of obesity, insulin resistance, and diabetes. Here, we showed that altered regulation of the Ca2+ channel inositol trisphosphate receptor (IP3R) was an adipocyte-intrinsic event involved in the emergence and propagation of inflammatory signaling and the resulting insulin resistance. Inflammation induced by cytokine exposure in vitro or by obesity in vivo led to increases in the abundance and activity of IP3Rs and in the phosphorylation of the Ca2+-dependent kinase CaMKII in adipocytes in a manner dependent on the kinase JNK. In mice, adipocyte-specific loss of IP3R1/2 protected against adipose tissue inflammation and insulin resistance, despite the mice exhibiting substantial diet-induced weight gain. Thus, this work suggests that increased IP3R activity is a key link between obesity, inflammation, and insulin resistance. These data also suggest that approaches to target IP3R-mediated Ca2+ homeostasis in adipocytes may offer new therapeutic opportunities against metabolic diseases, especially because GWAS studies also implicate this locus in human obesity.


Assuntos
Adipócitos , Obesidade , Humanos , Inflamação , Transdução de Sinais
9.
Nat Commun ; 9(1): 3030, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072727

RESUMO

Skeletal muscle has a remarkable plasticity to adapt and remodel in response to environmental cues, such as physical exercise. Endurance exercise stimulates improvements in muscle oxidative capacity, while resistance exercise induces muscle growth. Here we show that the c-Jun N-terminal kinase (JNK) is a molecular switch that when active, stimulates muscle fibers to grow, resulting in increased muscle mass. Conversely, when muscle JNK activation is suppressed, an alternative remodeling program is initiated, resulting in smaller, more oxidative muscle fibers, and enhanced aerobic fitness. When muscle is exposed to mechanical stress, JNK initiates muscle growth via phosphorylation of the transcription factor, SMAD2, at specific linker region residues leading to inhibition of the growth suppressor, myostatin. In human skeletal muscle, this JNK/SMAD signaling axis is activated by resistance exercise, but not endurance exercise. We conclude that JNK acts as a key mediator of muscle remodeling during exercise via regulation of myostatin/SMAD signaling.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Músculos/metabolismo , Miostatina/metabolismo , Proteínas Smad/metabolismo , Adulto , Animais , Núcleo Celular/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hipertrofia , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosforilação , Condicionamento Físico Animal , Resistência Física , Transporte Proteico , Transdução de Sinais , Proteínas Smad/antagonistas & inibidores
10.
Cell Rep ; 15(1): 19-26, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052181

RESUMO

The cJun NH2-terminal kinase (JNK) signaling pathway is required for the development of hepatitis and hepatocellular carcinoma. A role for JNK in liver parenchymal cells has been proposed, but more recent studies have implicated non-parenchymal liver cells as the relevant site of JNK signaling. Here, we tested the hypothesis that myeloid cells mediate this function of JNK. We show that mice with myeloid cell-specific JNK deficiency exhibit reduced hepatic inflammation and suppression of both hepatitis and hepatocellular carcinoma. These data identify myeloid cells as a site of pro-inflammatory signaling by JNK that can promote liver pathology. Targeting myeloid cells with a drug that inhibits JNK may therefore provide therapeutic benefit for the treatment of inflammation-related liver disease.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatite/metabolismo , Neoplasias Hepáticas/metabolismo , MAP Quinase Quinase 4/metabolismo , Células Mieloides/metabolismo , Animais , Inflamação/metabolismo , MAP Quinase Quinase 4/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Elife ; 52016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27635635

RESUMO

Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia.


Assuntos
Tecido Adiposo/fisiologia , Processamento Alternativo , Antígenos de Neoplasias/análise , Proteínas de Ligação a RNA/análise , Termogênese , Animais , Antígenos de Neoplasias/genética , Biologia Computacional , Hiperglicemia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígeno Neuro-Oncológico Ventral , Obesidade/fisiopatologia , Proteínas de Ligação a RNA/genética
12.
Biochem Pharmacol ; 66(6): 955-63, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12963482

RESUMO

Flavonoids are natural polyphenolic compounds that have anti-inflammatory, cytoprotective and anticarcinogenic effects. In this study, we investigated the effects of several flavonoids on nuclear factor-kappa B (NF-kappa B) activation by using luciferase reporter gene assay. Among the flavonoids examined, luteolin showed the most potent inhibition on lipopolysaccharide (LPS)-stimulated NF-kappa B transcriptional activity in Rat-1 fibroblasts. Luteolin did not inhibit either I kappa B alpha degradation or NF-kappa B nuclear translocation, DNA binding or phosphorylation by LPS. However, luteolin prevented LPS-stimulated interaction between the p65 subunit of NF-kappa B and the transcriptional coactivator CBP. In addition, a specific PKA inhibitor that blocked the phosphorylation of CREB and c-Jun by luteolin partially reversed the inhibitory effect of luteolin on NF-kappa B.CBP complex formation and NF-kappa B transcriptional activity by LPS. These data imply that inhibition of NF-kappa B transcriptional activity by luteolin may occur through competition with transcription factors for coactivator that is available in limited amounts. Taken together, this study provides a molecular basis for the understanding of the anti-inflammatory effects of luteolin.


Assuntos
Proteínas de Ligação a DNA , Fibroblastos/efeitos dos fármacos , Flavonoides/farmacologia , NF-kappa B/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator 1 Ativador da Transcrição , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA/efeitos dos fármacos , DNA/metabolismo , Interações Medicamentosas , Fibroblastos/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Lipopolissacarídeos/farmacologia , Luteolina , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa , Fosforilação/efeitos dos fármacos , Ratos , Fatores de Transcrição/metabolismo
13.
Science ; 339(6116): 218-22, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23223452

RESUMO

The cJun NH(2)-terminal kinase (JNK) signaling pathway contributes to inflammation and plays a key role in the metabolic response to obesity, including insulin resistance. Macrophages are implicated in this process. To test the role of JNK, we established mice with selective JNK deficiency in macrophages. We report that feeding a high-fat diet to control and JNK-deficient mice caused similar obesity, but only mice with JNK-deficient macrophages remained insulin-sensitive. The protection of mice with macrophage-specific JNK deficiency against insulin resistance was associated with reduced tissue infiltration by macrophages. Immunophenotyping demonstrated that JNK was required for pro-inflammatory macrophage polarization. These studies demonstrate that JNK in macrophages is required for the establishment of obesity-induced insulin resistance and inflammation.


Assuntos
Inflamação/fisiopatologia , Resistência à Insulina , Macrófagos/enzimologia , Macrófagos/imunologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Obesidade/fisiopatologia , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica , Técnica Clamp de Glucose , Imunofenotipagem , Inflamação/imunologia , Ilhotas Pancreáticas/patologia , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos , Macrófagos/fisiologia , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/deficiência , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Proteína Quinase 9 Ativada por Mitógeno/genética , Obesidade/imunologia
14.
Cell Rep ; 5(1): 259-70, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24095730

RESUMO

Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBß is a potential key regulator of adipose insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
15.
Diabetes ; 58(2): 329-36, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19171749

RESUMO

OBJECTIVE: Imatinib has been reported to induce regression of type 2 diabetes in chronic leukemia patients. However, the mechanism of diabetes amelioration by imatinib is unknown, and it is uncertain whether imatinib has effects on type 2 diabetes itself without other confounding diseases like leukemia. We studied the effect of imatinib on diabetes in db/db mice and investigated possible mechanism's underlying improved glycemic control by imatinib. RESEARCH DESIGN AND METHODS: Glucose tolerance and insulin tolerance tests were done after daily intraperitoneal injection of 25 mg/kg imatinib into db/db and C57BL/6 mice for 4 weeks. Insulin signaling and endoplasmic reticulum stress responses were studied by Western blotting. beta-Cell mass and apoptotic beta-cell number were determined by combined terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and insulin immunohistochemistry. The in vitro effect of imatinib was studied using HepG2 cells. RESULTS: Imatinib induced remission of diabetes in db/db mice and amelioration of insulin resistance. Expression of endoplasmic reticulum stress markers in the liver and adipose tissues of db/db mice, such as phospho-PERK, phospho-eIF2alpha, TRB3, CHOP, and phospho-c-Jun NH(2)-terminal kinase, was reduced by imatinib. Insulin receptor substrate-1 tyrosine phosphorylation and Akt phosphorylation after insulin administration were improved by imatinib. Serum aminotransferase levels and hepatic triglyceride contents were decreased by imatinib. Pancreatic beta-cell mass was increased by imatinib, accompanied by decreased TUNEL(+) beta-cell and increased BrdU(+) beta-cell numbers. Imatinib attenuated endoplasmic reticulum stress in hepatoma cells in vitro. CONCLUSIONS: Imatinib ameliorated endoplasmic reticulum stress and induced remission of diabetes in db/db mice. Imatinib or related compounds could be used as therapeutic agents against type 2 diabetes and metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Retículo Endoplasmático/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Benzamidas , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Mesilato de Imatinib , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Indução de Remissão , Fator de Transcrição CHOP/metabolismo
16.
Cell Metab ; 8(4): 318-24, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18840362

RESUMO

Autophagy is a cellular degradation-recycling system for aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in various diseases including neurodegeneration, its role in pancreatic beta cells and glucose homeostasis has not been described. We produced mice with beta cell-specific deletion of Atg7 (autophagy-related 7). Atg7 mutant mice showed impaired glucose tolerance and decreased serum insulin level. beta cell mass and pancreatic insulin content were reduced because of increased apoptosis and decreased proliferation of beta cells. Physiological studies showed reduced basal and glucose-stimulated insulin secretion and impaired glucose-induced cytosolic Ca2+ transients in autophagy-deficient beta cells. Morphologic analysis revealed accumulation of ubiquitinated protein aggregates colocalized with p62, which was accompanied by mitochondrial swelling, endoplasmic reticulum distension, and vacuolar changes in beta cells. These results suggest that autophagy is necessary to maintain structure, mass and function of pancreatic beta cells, and its impairment causes insulin deficiency and hyperglycemia because of abnormal turnover and function of cellular organelles.


Assuntos
Autofagia/fisiologia , Hiperglicemia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Animais , Proteína 7 Relacionada à Autofagia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Glucose/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ubiquitina/metabolismo
17.
J Lipid Res ; 49(1): 84-97, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17951222

RESUMO

The pathogenesis of nonalcoholic steatohepatitis (NASH) is unclear, despite epidemiological data implicating FFAs. We studied the pathogenesis of NASH using lipoapoptosis models. Palmitic acid (PA) induced classical apoptosis of hepatocytes. PA-induced lipoapoptosis was inhibited by acyl-CoA synthetase inhibitor but not by ceramide synthesis inhibitors, suggesting that conversion products other than ceramide are involved. Phospholipase A(2) (PLA(2)) inhibitors blocked PA-induced hepatocyte death, suggesting an important role for PLA(2) and its product lysophosphatidylcholine (LPC). Small interfering RNA for Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibited the lipoapoptosis of hepatocytes. PA increased LPC content, which was reversed by iPLA(2) inhibitors. Pertussis toxin or dominant-negative Galpha(i) mutant inhibited hepatocyte death by PA or LPC acting through G-protein-coupled receptor (GPCR)/Galpha(i). PA decreased cardiolipin content and induced mitochondrial potential loss and cytochrome c translocation. Oleic acid inhibited PA-induced hepatocyte death by diverting PA to triglyceride and decreasing LPC content, suggesting that FFAs lead to steatosis or lipoapoptosis according to the abundance of saturated/unsaturated FFAs. LPC administration induced hepatitis in vivo. LPC content was increased in the liver specimens from NASH patients. These results demonstrate that LPC is a death effector in the lipoapoptosis of hepatocytes and suggest potential therapeutic values of PLA(2) inhibitors or GPCR/Galpha(i) inhibitors in NASH.


Assuntos
Apoptose , Hepatócitos/citologia , Hepatócitos/metabolismo , Lisofosfatidilcolinas/metabolismo , Fosfolipases A2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Citocromos c/metabolismo , Inibidores Enzimáticos/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Ácido Oleico/farmacologia , Ácido Palmítico/farmacologia , RNA Interferente Pequeno/metabolismo
18.
Immunity ; 27(2): 321-33, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17707128

RESUMO

Although it is established that defective clearance and, hence, increased accumulation of apoptotic cells can lead to autoimmunity, the mechanism by which this occurs remains elusive. Here, we observed that apoptotic cells undergoing secondary necrosis but not intact apoptotic cells provoked substantial immune responses, which were mediated through the toll-like receptor 2 (TLR2) pathway. The development of autoimmune diabetes was markedly inhibited in Tlr2(-/-) mice but not in Tlr4(-/-) mice, showing that TLR2 plays an important role in the initiation of the disease. Apoptotic beta-cell injury could stimulate the priming of diabetogenic T cells through a TLR2-dependent, but TLR4-independent, activation of antigen-presenting cells. These findings suggest that beta-cell death and its sensing via TLR2 may be an initial event for the stimulation of antigen-presenting cells and development of autoimmune diabetes.


Assuntos
Apoptose , Autoimunidade/genética , Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/patologia , Receptor 2 Toll-Like/fisiologia , Animais , Apoptose/genética , Linfócitos T CD4-Positivos/imunologia , Morte Celular , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , NF-kappa B/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia
19.
Proc Natl Acad Sci U S A ; 104(6): 1913-8, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17267600

RESUMO

Whereas NF-kappaB has potent antiapoptotic function in most cell types, it was reported that in pancreatic beta cells it serves a proapoptotic function and may contribute to the pathogenesis of autoimmune type 1 diabetes. To investigate the role of beta cell NF-kappaB in autoimmune diabetes, we produced transgenic mice expressing a nondegradable form of IkappaBalpha in pancreatic beta cells (RIP-mIkappaBalpha mice). beta cells of these mice were more susceptible to killing by TNF-alpha plus IFN-gamma but more resistant to IL-1beta plus IFN-gamma than normal beta cells. Similar results were obtained with beta cells lacking IkappaB kinase beta, a protein kinase required for NF-kappaB activation. Inhibition of beta cell NF-kappaB accelerated the development of autoimmune diabetes in nonobese diabetic mice but had no effect on glucose tolerance or serum insulin in C57BL/6 mice, precluding a nonphysiological effect of transgene expression. Development of diabetes after transfer of diabetogenic CD4(+) T cells was accelerated in RIP-mIkappaBalpha/nonobese diabetic mice and was abrogated by anti-TNF therapy. These results suggest that under conditions that resemble autoimmune type 1 diabetes, the dominant effect of NF-kappaB is prevention of TNF-induced apoptosis. This differs from the proapoptotic function of NF-kappaB in IL-1beta-stimulated beta cells.


Assuntos
Apoptose/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , NF-kappa B/fisiologia , Animais , Diabetes Mellitus Tipo 1/patologia , Proteínas I-kappa B/biossíntese , Proteínas I-kappa B/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Inibidor de NF-kappaB alfa , Fator de Necrose Tumoral alfa/fisiologia
20.
Mol Pharmacol ; 69(6): 1871-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16540597

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental pollutant with many toxic effects, including endocrine disruption, reproductive dysfunction, immunotoxicity, liver damage, and cancer. These are mediated by TCDD binding to and activating the aryl hydrocarbon receptor (AhR), a basic helix-loop-helix transcription factor. In this regard, targeting the AhR using novel small molecule inhibitors is an attractive strategy for the development of potential preventive agents. In this study, by screening a chemical library composed of approximately 10,000 compounds, we identified a novel compound, 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191), that potently inhibits TCDD-induced AhR-dependent transcription. In addition, CH-223191 blocked the binding of TCDD to AhR and inhibited TCDD-mediated nuclear translocation and DNA binding of AhR. These inhibitory effects of CH-223191 prevented the expression of cytochrome P450 enzymes, target genes of the AhR. Unlike many known antagonists of AhR, CH-223191 did not have detectable AhR agonist-like activity or estrogenic potency, suggesting that CH-223191 is a specific antagonist of AhR. It is noteworthy that CH-223191 potently prevented TCDD-elicited cytochrome P450 induction, liver toxicity, and wasting syndrome in mice. Taken together, these results demonstrate that this novel compound, CH-223191, may be a useful agent for the study of AhR-mediated signal transduction and the prevention of TCDD-associated pathology.


Assuntos
Antídotos/farmacologia , Compostos Azo/farmacologia , Citocromo P-450 CYP1A1/antagonistas & inibidores , Dioxinas/antagonistas & inibidores , Pirazóis/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Animais , Antídotos/química , Compostos Azo/química , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/efeitos dos fármacos , Dioxinas/metabolismo , Dioxinas/toxicidade , Avaliação Pré-Clínica de Medicamentos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transporte Proteico/efeitos dos fármacos , Pirazóis/química , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA