Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397078

RESUMO

Hanseniaspora uvarum is the predominant yeast species in the majority of wine fermentations, which has only recently become amenable to directed genetic manipulation. The genetics and metabolism of H. uvarum have been poorly studied as compared to other yeasts of biotechnological importance. This work describes the construction and characterization of homozygous deletion mutants in the HuZWF1 gene, encoding glucose-6-phosphate dehydrogenase (G6PDH), which provides the entrance into the oxidative part of the pentose phosphate pathway (PPP) and serves as a major source of NADPH for anabolic reactions and oxidative stress response. Huzwf1 deletion mutants grow more slowly on glucose medium than wild-type and are hypersensitive both to hydrogen peroxide and potassium bisulfite, indicating that G6PDH activity is required to cope with these stresses. The mutant also requires methionine for growth. Enzyme activity can be restored by the expression of heterologous G6PDH genes from other yeasts and humans under the control of a strong endogenous promoter. These findings provide the basis for a better adaptation of H. uvarum to conditions used in wine fermentations, as well as its use for other biotechnological purposes and as an expression organism for studying G6PDH functions in patients with hemolytic anemia.


Assuntos
Hanseniaspora , Vinho , Humanos , Fermentação , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hanseniaspora/enzimologia , Homozigoto , Deleção de Sequência
2.
J Cell Sci ; 134(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34435638

RESUMO

Rho5 is the yeast homolog of the human small GTPase Rac1. We characterized the genes encoding Rho5 and the subunits of its dimeric activating guanine-nucleotide-exchange factor (GEF), Dck1 and Lmo1, in the yeast Kluyveromyces lactis. Rapid translocation of the three GFP-tagged components to mitochondria upon oxidative stress and carbon starvation indicate a similar function of KlRho5 in energy metabolism and mitochondrial dynamics as described for its Saccharomyces cerevisiae homolog. Accordingly, Klrho5 deletion mutants are hyper-resistant towards hydrogen peroxide. Moreover, synthetic lethalities of rho5 deletions with key components in nutrient sensing, such as sch9 and gpr1, are not conserved in K. lactis. Instead, Klrho5 deletion mutants display morphological defects with strengthened lateral cell walls and protruding bud scars. The latter result from aberrant cytokinesis, as observed by following the budding process in vivo and by transmission electron microscopy of the bud neck region. This phenotype can be suppressed by KlCDC42G12V, which encodes a hyper-active variant. Data from live-cell fluorescence microscopy support the notion that KlRho5 interferes with the actin moiety of the contractile actomyosin ring, with consequences different from those previously reported for mutants lacking myosin.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Actomiosina/metabolismo , Citocinese/genética , Humanos , Kluyveromyces , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Psychiatry ; 27(7): 3010-3023, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393558

RESUMO

The microtubule-associated protein tau plays a central role in tauopathies such as Alzheimer's disease (AD). The exact molecular mechanisms underlying tau toxicity are unclear, but aging is irrefutably the biggest risk factor. This raises the question of how cellular senescence affects the function of tau as a microtubule regulator. Here we report that the proportion of tau that is proteolytically cleaved at the caspase-3 site (TauC3) doubles in the hippocampus of senescent mice. TauC3 is also elevated in AD patients. Through quantitative live-cell imaging, we show that TauC3 has a drastically reduced dynamics of its microtubule interaction. Single-molecule tracking of tau confirmed that TauC3 has a longer residence time on axonal microtubules. The reduced dynamics of the TauC3-microtubule interaction correlated with a decreased transport of mitochondria, a reduced processivity of APP-vesicle transport and an induction of region-specific dendritic atrophy in CA1 neurons of the hippocampus. The microtubule-targeting drug Epothilone D normalized the interaction of TauC3 with microtubules and modulated the transport of APP-vesicles dependent on the presence of overexpressed human tau. The results indicate a novel toxic gain of function, in which a post-translational modification of tau changes the dynamics of the tau-microtubule interaction and thus leads to axonal transport defects and neuronal degeneration. The data also introduce microtubule-targeting drugs as pharmacological modifiers of the tau-microtubule interaction with the potential to restore the physiological interaction of pathologically altered tau with microtubules.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Transporte Axonal , Caspases/metabolismo , Mutação com Ganho de Função , Humanos , Camundongos , Microtúbulos/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
4.
Cell Mol Life Sci ; 79(8): 444, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869176

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a severe cardiac disease that leads to heart failure or sudden cardiac death (SCD). For the pathogenesis of ARVC, various mutations in at least eight different genes have been identified. A rare form of ARVC is associated with the mutation TMEM43 p.S358L, which is a fully penetrant variant in male carriers. TMEM43 p.S358 is homologous to CG8111 p.S333 in Drosophila melanogaster. We established CRISPR/Cas9-mediated CG8111 knock-out mutants in Drosophila, as well as transgenic fly lines carrying an overexpression construct of the CG8111 p.S333L substitution. Knock-out flies developed normally, whereas the overexpression of CG8111 p.S333L caused growth defects, loss of body weight, cardiac arrhythmias, and premature death. An evaluation of a series of model mutants that replaced S333 by selected amino acids proved that the conserved serine is critical for the physiological function of CG8111. Metabolomic and proteomic analyses revealed that the S333 in CG8111 is essential to proper energy homeostasis and lipid metabolism in the fly. Of note, metabolic impairments were also found in the murine Tmem43 disease model, and fibrofatty replacement is a hallmark of human ARVC5. These findings contribute to a more comprehensive understanding of the molecular functions of CG8111 in Drosophila, and can represent a valuable basis to assess the aetiology of the human TMEM43 p.S358L variant in more detail.


Assuntos
Displasia Arritmogênica Ventricular Direita , Animais , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteômica
5.
PLoS Genet ; 16(8): e1008745, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845888

RESUMO

Sphingolipids are abundant and essential molecules in eukaryotes that have crucial functions as signaling molecules and as membrane components. Sphingolipid biosynthesis starts in the endoplasmic reticulum with the condensation of serine and palmitoyl-CoA. Sphingolipid biosynthesis is highly regulated to maintain sphingolipid homeostasis. Even though, serine is an essential component of the sphingolipid biosynthesis pathway, its role in maintaining sphingolipid homeostasis has not been precisely studied. Here we show that serine uptake is an important factor for the regulation of sphingolipid biosynthesis in Saccharomyces cerevisiae. Using genetic experiments, we find the broad-specificity amino acid permease Gnp1 to be important for serine uptake. We confirm these results with serine uptake assays in gnp1Δ cells. We further show that uptake of exogenous serine by Gnp1 is important to maintain cellular serine levels and observe a specific connection between serine uptake and the first step of sphingolipid biosynthesis. Using mass spectrometry-based flux analysis, we further observed imported serine as the main source for de novo sphingolipid biosynthesis. Our results demonstrate that yeast cells preferentially use the uptake of exogenous serine to regulate sphingolipid biosynthesis. Our study can also be a starting point to analyze the role of serine uptake in mammalian sphingolipid metabolism.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Esfingolipídeos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Homeostase , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/biossíntese
6.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768181

RESUMO

Hanseniaspora uvarum is an ascomycetous yeast that frequently dominates the population in the first two days of wine fermentations. It contributes to the production of many beneficial as well as detrimental aroma compounds. While the genome sequence of the diploid type strain DSM 2768 has been largely elucidated, transformation by electroporation was only recently achieved. We here provide an elaborate toolset for the genetic manipulation of this yeast. A chromosomal replication origin was isolated and used for the construction of episomal, self-replicating cloning vectors. Moreover, homozygous auxotrophic deletion markers (Huura3, Huhis3, Huleu2, Huade2) have been obtained in the diploid genome as future recipients and a proof of principle for the application of PCR-based one-step gene deletion strategies. Besides a hygromycin resistance cassette, a kanamycin resistance gene was established as a dominant marker for selection on G418. Recyclable deletion cassettes flanked by loxP-sites and the corresponding Cre-recombinase expression vectors were tailored. Moreover, we report on a chemical transformation procedure with the use of freeze-competent cells. Together, these techniques and constructs pave the way for efficient and targeted manipulations of H. uvarum.


Assuntos
Hanseniaspora , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hanseniaspora/genética , Reação em Cadeia da Polimerase
7.
J Cell Sci ; 133(13)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32499409

RESUMO

Endosome biogenesis in eukaryotic cells is critical for nutrient uptake and plasma membrane integrity. Early endosomes initially contain Rab5, which is replaced by Rab7 on late endosomes prior to their fusion with lysosomes. Recruitment of Rab7 to endosomes requires the Mon1-Ccz1 guanine-nucleotide-exchange factor (GEF). Here, we show that full function of the Drosophila Mon1-Ccz1 complex requires a third stoichiometric subunit, termed Bulli (encoded by CG8270). Bulli localises to Rab7-positive endosomes, in agreement with its function in the GEF complex. Using Drosophila nephrocytes as a model system, we observe that absence of Bulli results in (i) reduced endocytosis, (ii) Rab5 accumulation within non-acidified enlarged endosomes, (iii) defective Rab7 localisation and (iv) impaired endosomal maturation. Moreover, longevity of animals lacking bulli is affected. Both the Mon1-Ccz1 dimer and a Bulli-containing trimer display Rab7 GEF activity. In summary, this suggests a key role for Bulli in the Rab5 to Rab7 transition during endosomal maturation rather than a direct influence on the GEF activity of Mon1-Ccz1.


Assuntos
Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP , Animais , Drosophila/metabolismo , Endocitose , Endossomos/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054955

RESUMO

The milk yeast Kluyveromyces lactis degrades glucose through glycolysis and the pentose phosphate pathway and follows a mainly respiratory metabolism. Here, we investigated the role of two reactions which are required for the final steps of glucose degradation from both pathways, as well as for gluconeogenesis, namely fructose-1,6-bisphosphate aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In silico analyses identified one gene encoding the former (KlFBA1), and three genes encoding isoforms of the latter (KlTDH1, KlTDH2, KlGDP1). Phenotypic analyses were performed by deleting the genes from the haploid K. lactis genome. While Klfba1 deletions lacked detectable FBA activity, they still grew poorly on glucose. To investigate the in vivo importance of the GAPDH isoforms, different mutant combinations were analyzed for their growth behavior and enzymatic activity. KlTdh2 represented the major glycolytic GAPDH isoform, as its lack caused a slower growth on glucose. Cells lacking both KlTdh1 and KlTdh2 failed to grow on glucose but were still able to use ethanol as sole carbon sources, indicating that KlGdp1 is sufficient to promote gluconeogenesis. Life-cell fluorescence microscopy revealed that KlTdh2 accumulated in the nucleus upon exposure to oxidative stress, suggesting a moonlighting function of this isoform in the regulation of gene expression. Heterologous complementation of the Klfba1 deletion by the human ALDOA gene renders K. lactis a promising host for heterologous expression of human disease alleles and/or a screening system for specific drugs.


Assuntos
Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Kluyveromyces/enzimologia , Kluyveromyces/genética , Metabolismo Energético , Ativação Enzimática , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Glicólise , Humanos , Redes e Vias Metabólicas , Estresse Oxidativo , Via de Pentose Fosfato , Fenótipo
9.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887245

RESUMO

Rho5, the yeast homolog of human Rac1, is a small GTPase which regulates the cell response to nutrient and oxidative stress by inducing mitophagy and apoptosis. It is activated by a dimeric GEF composed of the subunits Dck1 and Lmo1. Upon stress, all three proteins rapidly translocate from the cell surface (Rho5) and a diffuse cytosolic distribution (Dck1 and Lmo1) to mitochondria, with translocation of the GTPase depending on both GEF subunits. We here show that the latter associate with mitochondria independent from each other and from Rho5. The trapping of Dck1-GFP or GFP-Lmo1 to the mitochondrial surface by a specific nanobody fused to the transmembrane domain (TMD) of Fis1 results in a loss of function, mimicking the phenotypes of the respective gene deletions, dck1 or lmo1. Direct fusion of Rho5 to Fis1TMD, i.e., permanent attachment to the mitochondria, also mimics the phenotypes of an rho5 deletion. Together, these data suggest that the GTPase needs to be activated at the plasma membrane prior to its translocation in order to fulfill its function in the oxidative stress response. This notion is substantiated by the observation that strains carrying fusions of Rho5 to the cell wall integrity sensor Mid2, confining the GTPase to the plasma membrane, retained their function. We propose a model in which Rho5 activated at the plasma membrane represses the oxidative stress response under standard growth conditions. This repression is relieved upon its GEF-mediated translocation to mitochondria, thus triggering mitophagy and apoptosis.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Proteínas de Ligação a DNA/metabolismo , Guanidina , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
10.
Int Microbiol ; 23(1): 43-53, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31020478

RESUMO

A wealth of data is accumulating on the physiological functions of human Rac1, a member of the Rho GTPase family of molecular switches and substrate of botulinum toxin, which was first identified as a regulator of cell motility through its effect on the actin cytoskeleton. Later on, it was found to be involved in different diseases like cancers, cardiac function, neuronal disorders, and apoptotic cell death. Despite the presence of Rac1 homologues in most fungi investigated so far, including Rho5 in the genetically tractable model yeast Saccharomyces cerevisiae, knowledge on their physiological functions is still scarce, let alone the details of the molecular mechanisms of their actions and interactions. Nevertheless, all functions proposed for human Rac1 seem to be conserved in one or the other fungus. This includes the regulation of MAPK cascades, polarized growth, and actin dynamics. Moreover, both the production and response to reactive oxygen species, as well as the reaction to nutrient availability, can be affected. We here summarize the studies performed on fungal Rac1 homologues, with a special focus on S. cerevisiae Rho5, which may be of use in drug development in medicine and agriculture.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/citologia , Fungos/fisiologia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Apoptose , Autofagia , Parede Celular/metabolismo , Senescência Celular , Citoesqueleto/metabolismo , Metabolismo Energético , Humanos , Concentração Osmolar , Estresse Oxidativo , Ligação Proteica , Isoformas de Proteínas , Proteínas rho de Ligação ao GTP/metabolismo
11.
J Biol Chem ; 293(20): 7864-7879, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29599288

RESUMO

The biomechanical properties of extracellular matrices (ECMs) are critical to many biological processes, including cell-cell communication and cell migration and function. The correct balance between stiffness and elasticity is essential to the function of numerous tissues, including blood vessels and the lymphatic system, and depends on ECM constituents (the "matrisome") and on their level of interconnection. However, despite its physiological relevance, the matrisome composition and organization remain poorly understood. Previously, we reported that the ADAMTS-like protein Lonely heart (Loh) is critical for recruiting the type IV collagen-like protein Pericardin to the cardiac ECM. Here, we utilized Drosophila as a simple and genetically amenable invertebrate model for studying Loh-mediated recruitment of tissue-specific ECM components such as Pericardin to the ECM. We focused on the functional relevance of distinct Loh domains to protein localization and Pericardin recruitment. Analysis of Loh deletion constructs revealed that one thrombospondin type 1 repeat (TSR1-1), which has an embedded WXXW motif, is critical for anchoring Loh to the ECM. Two other thrombospondin repeats, TSR1-2 and TSR1-4, the latter containing a CXXTCXXG motif, appeared to be dispensable for tethering Loh to the ECM but were crucial for proper interaction with and recruitment of Pericardin. Moreover, our results also suggested that Pericardin in the cardiac ECM primarily ensures the structural integrity of the heart, rather than increasing tissue flexibility. In conclusion, our work provides new insights into the roles of thrombospondin type 1 repeats and advances our understanding of cardiac ECM assembly and function.


Assuntos
Proteínas ADAM/genética , Colágeno Tipo IV/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Trombospondinas/genética , Proteínas ADAM/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Clonagem Molecular , Colágeno Tipo IV/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Coração/crescimento & desenvolvimento , Organogênese/genética , Domínios Proteicos , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Células Sf9 , Transdução de Sinais , Spodoptera/citologia , Spodoptera/metabolismo , Trombospondinas/metabolismo
12.
Biochem J ; 475(20): 3239-3254, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30237153

RESUMO

The solute carrier 45 family (SLC45) was defined in the course of the Human Genome Project and consists of four members, A1-A4, which show only 20-30% identity of amino acid sequences among each other. All these members exhibit an identity of ∼20% to plant H+/sucrose cotransporters. Recently, we expressed members of the murine SLC45 family in yeast cells and demonstrated that they are, like their plant counterparts, H+/sucrose cotransporters. In contrast with the plant proteins, SLC45 transporters recognise also the monosaccharides glucose and fructose as physiological substrates and seem to be involved in alternative sugar supply as well as in osmoregulation of several mammalian tissues. In the present study, we provide novel insights into the regulation of SLC45 transporters. By screening for interaction partners, we found a 14-3-3 protein as a promising candidate for control of transport activity. Indeed, co-expression of the gamma isoform of murine 14-3-3 protein in yeast and Xenopus oocytes led to a significant decrease in transport rates of the murine SLC45 transporters as well as of the plant H+/sucrose transporter Sut1.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Proteínas 14-3-3/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Plantas/genética , Xenopus laevis
13.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703278

RESUMO

The small GTPase Rho5 of Saccharomyces cerevisiae is required for proper regulation of different signaling pathways, which includes the response to cell wall, osmotic, nutrient, and oxidative stress. We here show that proper in vivo function and intracellular distribution of Rho5 depends on its hypervariable region at the carboxyterminal end, which includes the CAAX box for lipid modification, a preceding polybasic region (PBR) carrying a serine residue, and a 98 amino acid-specific insertion only present in Rho5 of S. cerevisiae but not in its human homolog Rac1. Results from trapping GFP-Rho5 variants to the mitochondrial surface suggest that the GTPase needs to be activated at the plasma membrane prior to its translocation to mitochondria in order to fulfil its role in oxidative stress response. These findings are supported by heterologous expression of a codon-optimized human RAC1 gene, which can only complement a yeast rho5 deletion in a chimeric fusion with RHO5 sequences that restore the correct spatiotemporal distribution of the encoded protein.


Assuntos
Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Teste de Complementação Genética , Humanos , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
14.
BMC Plant Biol ; 18(1): 184, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189844

RESUMO

BACKGROUND: Plant cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GapC) displays redox-dependent changes in its subcellular localizations and activity. Apart from its fundamental role in glycolysis, it also exhibits moonlighting properties. Since the exceptional redox-sensitivity of GapC has been suggested to play a crucial role in its various functions, we here studied its redox-dependent subcellular localization and the influence of the redox-state on GapC protein interactions. RESULTS: In mesophyll protoplasts from Arabidopsis thaliana, colocalization of GapC with mitochondria was more pronounced under reducing conditions than upon oxidative stress. In accordance, reduced GapC showed an increased affinity to the mitochondrial voltage-dependent anion-selective channel (VDAC) compared to the oxidized one. On the other hand, nuclear localization of GapC was increased under oxidizing conditions. The essential role of the catalytic cysteine for nuclear translocation was shown by using the corresponding cysteine mutants. Furthermore, interaction of GapC with the thioredoxin Trx-h3 as a candidate to revert the redox-modifications, occurred in the nucleus of oxidized protoplasts. In a yeast complementation assay, we could demonstrate that the plant-specific non-phosphorylating glyceraldehyde 3-P dehydrogenase (GapN) can substitute for glucose 6-P dehydrogenase to generate NADPH for re-reduction of the Trx system and ROS defense. CONCLUSIONS: The preferred association of reduced, glycolytically active GapC with VDAC suggests a substrate-channeling metabolon at the mitochondrial surface for efficient energy generation. Increased occurrence of oxidized GapC in the nucleus points to a function in signal transduction and gene expression. Furthermore, the interaction of GapC with Trx-h3 in the nucleus indicates reversal of the oxidative cysteine modification after re-establishment of cellular homeostasis. Both, energy metabolism and signal transfer for long-term adjustment and protection from redox-imbalances are mediated by the various functions of GapC. The molecular properties of GapC as a redox-switch are key to its multiple roles in orchestrating energy metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citosol/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Metabolismo Energético , Teste de Complementação Genética , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Mitocôndrias/metabolismo , Mutação , Oxirredução , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Tiorredoxinas/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
15.
Fungal Genet Biol ; 111: 16-29, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175366

RESUMO

The NAD+-dependent glycerol 3-phosphate dehydrogenase (KlGpd1) is an important enzyme for maintenance of the cytosolic redox balance in the milk yeast Kluyveromyces lactis. The enzyme is localized in peroxisomes and in the cytosol, indicating its requirement for the oxidation of NADH in both compartments. Klgpd1 mutants grow more slowly on glucose than wild-type cells and do not grow on ethanol as a sole carbon source. We studied the molecular basis of the latter phenotype and found that Gpd1 is required for high expression of KlICL1 and KlMLS1 which encode the key enzymes of the glyoxylate pathway isocitrate lyase and malate synthase, respectively. This regulation is mediated by CSRE elements in the promoters of these genes and the Snf1-regulated transcription factors KlCat8 and KlSip4. To study the transactivation function of these factors we developed a modified yeast one-hybrid system for K. lactis, using the endogenous ß-galactosidase gene LAC4 as a reporter in a lac9 deletion background. In combination with ChIP analyses we discovered that Gpd1 controls both the specific binding of Cat8 and Sip4 to the target promoters and the capacity of these factors to activate the reporter gene expression. We propose a model in which KlGpd1 activity is required for maintenance of the redox balance. In its absence, genes which function in generating redox balance instabilities are not expressed. A comparison of mutant phenotypes further indicates, that this system not only operates in K. lactis, but also in Saccharomyces cerevisiae.


Assuntos
Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Kluyveromyces/enzimologia , Fatores de Transcrição/antagonistas & inibidores , Regulação Fúngica da Expressão Gênica , Glioxilatos/metabolismo , Isocitrato Liase/metabolismo , Kluyveromyces/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/fisiologia
16.
Int J Mol Sci ; 19(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049968

RESUMO

Rho5 is a small GTPase of Saccharomyces cerevisiae and a homolog of mammalian Rac1. The latter regulates glucose metabolism and actin cytoskeleton dynamics, and its misregulation causes cancer and a variety of other diseases. In yeast, Rho5 has been implicated in different signal transduction pathways, governing cell wall integrity and the responses to high medium osmolarity and oxidative stress. It has also been proposed to affect mitophagy and apoptosis. Here, we demonstrate that Rho5 rapidly relocates from the plasma membrane to mitochondria upon glucose starvation, mediated by its dimeric GDP/GTP exchange factor (GEF) Dck1/Lmo1. A function in response to glucose availability is also suggested by synthetic genetic phenotypes of a rho5 deletion with gpr1, gpa2, and sch9 null mutants. On the other hand, the role of mammalian Rac1 in regulating the action cytoskeleton does not seem to be strongly conserved in S. cerevisiae Rho5. We propose that Rho5 serves as a central hub in integrating various stress conditions, including a crosstalk with the cAMP/PKA (cyclic AMP activating protein kinase A) and Sch9 branches of glucose signaling pathways.


Assuntos
Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/análise , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Proteínas rho de Ligação ao GTP/análise , Proteínas rho de Ligação ao GTP/genética
17.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887422

RESUMO

Hanseniaspora uvarum (anamorph Kloeckera apiculata) is a predominant yeast on wine grapes and other fruits and has a strong influence on wine quality, even when Saccharomyces cerevisiae starter cultures are employed. In this work, we sequenced and annotated approximately 93% of the H. uvarum genome. Southern and synteny analyses were employed to construct a map of the seven chromosomes present in a type strain. Comparative determinations of specific enzyme activities within the fermentative pathway in H. uvarum and S. cerevisiae indicated that the reduced capacity of the former yeast for ethanol production is caused primarily by an ∼10-fold-lower activity of the key glycolytic enzyme pyruvate kinase. The heterologous expression of the encoding gene, H. uvarumPYK1 (HuPYK1), and two genes encoding the phosphofructokinase subunits, HuPFK1 and HuPFK2, in the respective deletion mutants of S. cerevisiae confirmed their functional homology.IMPORTANCEHanseniaspora uvarum is a predominant yeast species on grapes and other fruits. It contributes significantly to the production of desired as well as unfavorable aroma compounds and thus determines the quality of the final product, especially wine. Despite this obvious importance, knowledge on its genetics is scarce. As a basis for targeted metabolic modifications, here we provide the results of a genomic sequencing approach, including the annotation of 3,010 protein-encoding genes, e.g., those encoding the entire sugar fermentation pathway, key components of stress response signaling pathways, and enzymes catalyzing the production of aroma compounds. Comparative analyses suggest that the low fermentative capacity of H. uvarum compared to that of Saccharomyces cerevisiae can be attributed to low pyruvate kinase activity. The data reported here are expected to aid in establishing H. uvarum as a non-Saccharomyces yeast in starter cultures for wine and cider fermentations.


Assuntos
Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Hanseniaspora/genética , Hanseniaspora/metabolismo , Piruvato Quinase/metabolismo , Vitis/microbiologia , Fermentação , Proteínas Fúngicas/genética , Glicólise , Hanseniaspora/enzimologia , Piruvato Quinase/genética
18.
Cell Microbiol ; 18(9): 1251-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27337501

RESUMO

The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Parede Celular/metabolismo , Endocitose , Transporte Proteico , Saccharomyces cerevisiae/ultraestrutura
19.
Mol Microbiol ; 96(2): 306-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25598154

RESUMO

The exact function and regulation of the small GTPase Rho5, a putative homolog of mammalian Rac1, in the yeast Saccharomyces cerevisiae have not yet been elucidated. In a genetic screen initially designed to identify novel regulators of cell wall integrity signaling, we identified the homologs of mammalian DOCK1 (Dck1) and ELMO (Lmo1) as upstream components which regulate Rho5. Deletion mutants in any of the encoding genes (DCK1, LMO1, RHO5) showed hyper-resistance to cell wall stress agents, demonstrating a function in cell wall integrity signaling. Live-cell fluorescence microscopy showed that Dck1, Lmo1 and Rho5 quickly relocate to mitochondria under oxidative stress and cell viability assays indicate a role of Dck1/Lmo1/Rho5 signaling in triggering cell death as a response to hydrogen peroxide treatment. A regulatory role in autophagy/mitophagy is suggested by the colocalization of Rho5 with autophagic markers and the decreased mitochondrial turnover observed in dck1, lmo1 and rho5 deletion mutants. Rho5 activation may thus serve as a central hub for the integration of different signaling pathways.


Assuntos
Regulação Enzimológica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Estresse Oxidativo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética
20.
Fungal Genet Biol ; 94: 69-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422440

RESUMO

Septins are key components of the cell division machinery from yeast to humans. The model yeast Saccharomyces cerevisiae has five mitotic septins, Cdc3, Cdc10, Cdc11, Cdc12, and Shs1. Here we characterized the five orthologs from the genetically less-redundant milk yeast Kluyveromyces lactis. We found that except for KlSHS1 all septin genes are essential. Klshs1 deletions displayed temperature-sensitive growth and morphological defects. Heterologous complementation analyses revealed that all five K. lactis genes encode functional orthologs of their S. cerevisiae counterparts. Fluorophore-tagged versions of the K. lactis septins localized to a ring at the incipient bud site and split into two separate rings at the bud neck later in cytokinesis. One of the key proteins recruited to the bud neck by septins in S. cerevisiae is the chitin synthase Chs2, which synthesizes the primary septum. KlCHS2 was found to be essential and deletions showed cytokinetic defects upon spore germination. KlChs2-GFP also localized to the bud neck and to punctate structures in K. lactis. We conclude that cytokinesis in K. lactis is similar to S. cerevisiae and chimeric septin complexes are fully functional in both yeasts. In contrast to some S. cerevisiae strains, KlChs2 and KlCdc10 were found to be essential.


Assuntos
Quitina Sintase/metabolismo , Citocinese , Kluyveromyces/fisiologia , Septinas/fisiologia , Deleção de Genes , Genes Fúngicos , Teste de Complementação Genética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Mitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA