Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mol Cell ; 70(6): 991-992, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932910

RESUMO

Takahashi et al. (2018) report that the peptide CLE25 together with the BAM1, BAM3 LRR receptor-like kinases are involved in root-to-shoot communication during dehydration stress in Arabidopsis.


Assuntos
Ácido Abscísico , Arabidopsis , Proteínas de Arabidopsis , Peptídeos , Proteínas Serina-Treonina Quinases , Abastecimento de Água
2.
Plant Cell ; 34(11): 4274-4292, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929087

RESUMO

Lipid droplets (LDs) are evolutionarily conserved organelles that serve as hubs of cellular lipid and energy metabolism in virtually all organisms. Mobilization of LDs is important in light-induced stomatal opening. However, whether and how LDs are involved in stomatal development remains unknown. We show here that Arabidopsis thaliana LIPID DROPLETS AND STOMATA 1 (LDS1)/RABC1 (At1g43890) encodes a member of the Rab GTPase family that is involved in regulating LD dynamics and stomatal morphogenesis. The expression of RABC1 is coordinated with the different phases of stomatal development. RABC1 targets to the surface of LDs in response to oleic acid application in a RABC1GEF1-dependent manner. RABC1 physically interacts with SEIPIN2/3, two orthologues of mammalian seipin, which function in the formation of LDs. Disruption of RABC1, RABC1GEF1, or SEIPIN2/3 resulted in aberrantly large LDs, severe defects in guard cell vacuole morphology, and stomatal function. In conclusion, these findings reveal an aspect of LD function and uncover a role for lipid metabolism in stomatal development in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Lipídeos/genética , Mamíferos/metabolismo
3.
New Phytol ; 239(5): 1903-1918, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349864

RESUMO

The cuticle is a protective layer covering aerial plant organs. We studied the function of waxes for the establishment of the cuticular barrier in barley (Hordeum vulgare). The barley eceriferum mutants cer-za.227 and cer-ye.267 display reduced wax loads, but the genes affected, and the consequences of the wax changes for the barrier function remained unknown. Cuticular waxes and permeabilities were measured in cer-za.227 and cer-ye.267. The mutant loci were isolated by bulked segregant RNA sequencing. New cer-za alleles were generated by genome editing. The CER-ZA protein was characterized after expression in yeast and Arabidopsis cer4-3. Cer-za.227 carries a mutation in HORVU5Hr1G089230 encoding acyl-CoA reductase (FAR1). The cer-ye.267 mutation is located to HORVU4Hr1G063420 encoding ß-ketoacyl-CoA synthase (KAS1) and is allelic to cer-zh.54. The amounts of intracuticular waxes were strongly decreased in cer-ye.267. The cuticular water loss and permeability of cer-za.227 were similar to wild-type (WT), but were increased in cer-ye.267. Removal of epicuticular waxes revealed that intracuticular, but not epicuticular waxes are required to regulate cuticular transpiration. The differential decrease in intracuticular waxes between cer-za.227 and cer-ye.267, and the removal of epicuticular waxes indicate that the cuticular barrier function mostly depends on the presence of intracuticular waxes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Proteínas de Saccharomyces cerevisiae , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ceras/metabolismo , Mutação/genética , Epiderme Vegetal/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo
4.
New Phytol ; 235(5): 1796-1806, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35637611

RESUMO

Growth at increased concentrations of CO2 induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO2 -induced decrease in transpiration. We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7). aca7 mutant alleles display wild-type (WT) responses to abscisic acid (ABA) and light but are compromised in their response to elevated CO2 . ACA7 is expressed in guard cells. When aca7 mutants are grown at 1000 ppm CO2 they exhibit higher transpiration and higher seed Fe and Zn content than WT grown under the same conditions. Our data show that by increasing transpiration it is possible to partially mitigate the reduction in seed Fe and Zn content when Arabidopsis is grown at elevated CO2 .


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Dióxido de Carbono/farmacologia , Mutação/genética , Estômatos de Plantas/fisiologia , Sementes , Zinco
5.
Plant Physiol ; 183(1): 317-330, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179629

RESUMO

In plants, water use efficiency (WUE) is a complex trait arising from numerous physiological and developmental characteristics. Here, we investigated the involvement of circadian regulation in long-term WUE in Arabidopsis (Arabidopsis thaliana) under light and dark conditions. Circadian rhythms are generated by the circadian oscillator, which provides a cellular measure of the time of day. In plants, the circadian oscillator contributes to the regulation of many aspects of physiology, including stomatal opening, rate of photosynthesis, carbohydrate metabolism, and developmental processes such as the initiation of flowering. We investigated the impact of the misregulation of numerous genes encoding various components of the circadian oscillator on whole plant, long-term WUE. From this analysis, we identified a role for the circadian oscillator in WUE. It appears that the circadian clock contributes to the control of transpiration and biomass accumulation. We also established that the circadian oscillator within guard cells can contribute to long-term WUE. Our experiments indicate that knowledge of circadian regulation will be important for developing crops with improved WUE.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Fotossíntese/fisiologia , Transpiração Vegetal/genética , Transpiração Vegetal/fisiologia
6.
Plant Physiol ; 182(3): 1404-1419, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949030

RESUMO

High temperature promotes guard cell expansion, which opens stomatal pores to facilitate leaf cooling. How the high-temperature signal is perceived and transmitted to regulate stomatal aperture is, however, unknown. Here, we used a reverse-genetics approach to understand high temperature-mediated stomatal opening in Arabidopsis (Arabidopsis thaliana). Our findings reveal that high temperature-induced guard cell movement requires components involved in blue light-mediated stomatal opening, suggesting cross talk between light and temperature signaling pathways. The molecular players involved include phototropin photoreceptors, plasma membrane H+-ATPases, and multiple members of the 14-3-3 protein family. We further show that phototropin-deficient mutants display impaired rosette evapotranspiration and leaf cooling at high temperatures. Blocking the interaction of 14-3-3 proteins with their client proteins severely impairs high temperature-induced stomatal opening but has no effect on the induction of heat-sensitive guard cell transcripts, supporting the existence of an additional intracellular high-temperature response pathway in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Temperatura
7.
New Phytol ; 222(1): 335-348, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30372534

RESUMO

Plants have evolved an array of responses that provide them with protection from attack by microorganisms and other predators. Many of these mechanisms depend upon interactions between the plant hormones jasmonate (JA) and ethylene (ET). However, the molecular basis of these interactions is insufficiently understood. Gene expression and physiological assays with mutants were performed to investigate the role of Arabidopsis BIG gene in stress responses. BIG transcription is downregulated by methyl JA (MeJA), necrotrophic infection or mechanical injury. BIG deficiency promotes JA-dependent gene induction, increases JA production but restricts the accumulation of both ET and salicylic acid. JA-induced anthocyanin accumulation and chlorophyll degradation are enhanced and stomatal immunity is impaired by BIG disruption. Bacteria- and lipopolysaccaride (LPS)-induced stomatal closure is reduced in BIG gene mutants, which are hyper-susceptible to microbial pathogens with different lifestyles, but these mutants are less attractive to phytophagous insects. Our results indicate that BIG negatively and positively regulate the MYC2 and ERF1 arms of the JA signalling pathway. BIG warrants recognition as a new and distinct regulator that regulates JA responses, the synergistic interactions of JA and ET, and other hormonal interactions that reconcile the growth and defense dilemma in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Imunidade Vegetal , Estômatos de Plantas/imunologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Regulação para Baixo/genética , Etilenos , Regulação da Expressão Gênica de Plantas , Mutação/genética , Ácido Salicílico/metabolismo
9.
New Phytol ; 218(1): 232-241, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29292834

RESUMO

We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO2 -mediated control of stomatal development. In the control of stomatal aperture by CO2 , BIG is only required in elevated CO2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO2 -mediated responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a Calmodulina/metabolismo , Dióxido de Carbono/farmacologia , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bicarbonatos/metabolismo , Proteínas de Ligação a Calmodulina/genética , Genes de Plantas , Loci Gênicos , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/metabolismo , Mutação/genética , Estômatos de Plantas/efeitos dos fármacos
10.
New Phytol ; 215(3): 1059-1067, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28636198

RESUMO

Stomata respond to darkness by closing to prevent excessive water loss during the night. Although the reorganisation of actin filaments during stomatal closure is documented, the underlying mechanisms responsible for dark-induced cytoskeletal arrangement remain largely unknown. We used genetic, physiological and cell biological approaches to show that reorganisation of the actin cytoskeleton is required for dark-induced stomatal closure. The opal5 mutant does not close in response to darkness but exhibits wild-type (WT) behaviour when exposed to abscisic acid (ABA) or CaCl2 . The mutation was mapped to At5g18410, encoding the PIR/SRA1/KLK subunit of the ArabidopsisSCAR/WAVE complex. Stomata of an independent allele of the PIR gene (Atpir-1) showed reduced sensitivity to darkness and F1 progenies of the cross between opal5 and Atpir-1 displayed distorted leaf trichomes, suggesting that the two mutants are allelic. Darkness induced changes in the extent of actin filament bundling in WT. These were abolished in opal5. Disruption of filamentous actin using latrunculin B or cytochalasin D restored wild-type stomatal sensitivity to darkness in opal5. Our findings suggest that the stomatal response to darkness is mediated by reorganisation of guard cell actin filaments, a process that is finely tuned by the conserved SCAR/WAVE-Arp2/3 actin regulatory module.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Escuridão , Complexos Multiproteicos/metabolismo , Mutação/genética , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cloreto de Cálcio/farmacologia , Citocalasina D/farmacologia , Genes de Plantas , Modelos Biológicos , Fenótipo , Estômatos de Plantas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Tiazolidinas/farmacologia
11.
J Exp Bot ; 68(5): 885-898, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338736

RESUMO

Evidence is accumulating for molecular microcompartments formed when proteins interact in localized domains with the cytoskeleton, organelle surfaces, and intracellular membranes. To understand the potential functional significance of protein microcompartmentation in plants, we studied the interaction of the glycolytic enzyme fructose bisphosphate aldolase with actin in Arabidopsis thaliana. Homology modelling of a major cytosolic isozyme of aldolase, FBA8, suggested that the tetrameric holoenzyme has two actin binding sites and could therefore act as an actin-bundling protein, as was reported for animal aldolases. This was confirmed by in vitro measurements of an increase in viscosity of F-actin polymerized in the presence of recombinant FBA8. Simultaneously, interaction with F-actin caused non-competitive inhibition of aldolase activity. We did not detect co-localization of an FBA8-RFP fusion protein, expressed in an fba8-knockout background, with the actin cytoskeleton using confocal laser-scanning microscopy. However, we did find evidence for a low level of interaction using FRET-FLIM analysis of FBA8-RFP co-expressed with the actin-binding protein GFP-Lifeact. Furthermore, knockout of FBA8 caused minor alterations of guard cell actin cytoskeleton morphology and resulted in a reduced rate of stomatal closure in response to decreased humidity. We conclude that cytosolic aldolase can be microcompartmented in vivo by interaction with the actin cytoskeleton and may subtly modulate guard cell behaviour as a result.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Frutose-Bifosfato Aldolase/genética , Proteínas de Plantas/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Citosol/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Proteínas de Plantas/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(17): E1806-14, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733919

RESUMO

Stomatal movements rely on alterations in guard cell turgor. This requires massive K(+) bidirectional fluxes across the plasma and tonoplast membranes. Surprisingly, given their physiological importance, the transporters mediating the energetically uphill transport of K(+) into the vacuole remain to be identified. Here, we report that, in Arabidopsis guard cells, the tonoplast-localized K(+)/H(+) exchangers NHX1 and NHX2 are pivotal in the vacuolar accumulation of K(+) and that nhx1 nhx2 mutant lines are dysfunctional in stomatal regulation. Hypomorphic and complete-loss-of-function double mutants exhibited significantly impaired stomatal opening and closure responses. Disruption of K(+) accumulation in guard cells correlated with more acidic vacuoles and the disappearance of the highly dynamic remodelling of vacuolar structure associated with stomatal movements. Our results show that guard cell vacuolar accumulation of K(+) is a requirement for stomatal opening and a critical component in the overall K(+) homeostasis essential for stomatal closure, and suggest that vacuolar K(+) fluxes are also of decisive importance in the regulation of vacuolar dynamics and luminal pH that underlie stomatal movements.


Assuntos
Arabidopsis/fisiologia , Membranas Intracelulares/metabolismo , Estômatos de Plantas/fisiologia , Potássio/metabolismo , Vacúolos/metabolismo , Ácidos/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Cátions/metabolismo , Forma Celular/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Imageamento Tridimensional , Raios Infravermelhos , Movimento , Mutação/genética , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Solo , Termografia , Vacúolos/efeitos dos fármacos , Vacúolos/genética , Água
14.
Plant Cell ; 24(5): 2031-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22570440

RESUMO

Guard cell actin reorganization has been observed in stomatal responses to a wide array of stimuli. However, how the guard cell signaling machinery regulates actin dynamics is poorly understood. Here, we report the identification of an allele of the Arabidopsis thaliana ACTIN-RELATED PROTEIN C2/DISTORTED TRICHOMES2 (ARPC2) locus (encoding the ARPC2 subunit of the ARP2/3 complex) designated high sugar response3 (hsr3). The hsr3 mutant showed increased transpirational water loss that was mainly due to a lesion in stomatal regulation. Stomatal bioassay analyses revealed that guard cell sensitivity to external stimuli, such as abscisic acid (ABA), CaCl(2), and light/dark transition, was reduced or abolished in hsr3. Analysis of a nonallelic mutant of the ARP2/3 complex suggested no pleiotropic effect of ARPC2 beyond its function in the complex in regard to stomatal regulation. When treated with ABA, guard cell actin filaments underwent fast disruption in wild-type plants, whereas those in hsr3 remained largely bundled. The ABA insensitivity phenotype of hsr3 was rescued by cytochalasin D treatment, suggesting that the aberrant stomatal response was a consequence of bundled actin filaments. Our work indicates that regulation of actin reassembly through ARP2/3 complex activity is crucial for stomatal regulation.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estômatos de Plantas/metabolismo , Proteína 2 Relacionada a Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína 3 Relacionada a Actina/genética , Actinas/genética , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estômatos de Plantas/genética
15.
New Phytol ; 203(2): 462-468, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24758561

RESUMO

Two-component signalling (TCS) systems play important roles in cytokinin and ethylene signalling in Arabidopsis thaliana. Although the involvement of histidine kinases (AHKs) in drought stress responses has been described, their role and that of histidine phosphotransferases (AHPs) in guard cell signalling remain to be fully elucidated. Here, we investigated the roles of TCS genes, the histidine phosphotransferase AHP2 and the histidine kinases AHK2 and AHK3, previously reported to play roles in cytokinin and abscisic acid (ABA) signalling. We show that AHP2 is present in the nucleus and the cytoplasm, and is involved in light-induced opening. We also present evidence that there is some redistribution of AHP2 from the nucleus to the cytoplasm on addition of ABA. In addition, we provide data to support a role for the cytokinin receptors AHK2 and AHK3 in light-induced stomatal opening and, by inference, in controlling the stomatal sensitivity to ABA. Our results provide new insights into the operation of TCS in plants, cross-talk in stomatal signalling and, in particular, the process of light-induced stomatal opening.


Assuntos
Arabidopsis/fisiologia , Estômatos de Plantas/fisiologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Histidina Quinase , Luz , Fosfotransferases/genética , Fosfotransferases/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais
16.
Plant J ; 71(6): 948-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22563867

RESUMO

Changes in gene expression form a key component of the molecular mechanisms by which plants adapt and respond to environmental stresses. There is compelling evidence for the role of stimulus-specific Ca(2+) signatures in plant stress responses. However, our understanding of how they orchestrate the differential expression of stress-induced genes remains fragmentary. We have undertaken a global study of changes in the Arabidopsis transcriptome induced by the pollutant ozone in order to establish a robust transcriptional response against which to test the ability of Ca(2+) signatures to encode stimulus-specific transcriptional information. We show that the expression of a set of co-regulated ozone-induced genes is Ca(2+)-dependent and that abolition of the ozone-induced Ca(2+) signature inhibits the induction of these genes by ozone. No induction of this set of ozone-regulated genes was observed in response to H(2)O(2), one of the reactive oxygen species (ROS) generated by ozone, or cold stress, which also generates ROS, both of which stimulate changes in [Ca(2+)](cyt). These data establish unequivocally that the Ca(2+)-dependent changes in gene expression observed in response to ozone are not simply a consequence of an ROS-induced increase in [Ca(2+) ](cyt) per se. The magnitude and temporal dynamics of the ozone, H(2)O(2) , and cold Ca(2+) signatures all differ markedly. This finding is consistent with the hypothesis that stimulus-specific transcriptional information can be encoded in the spatiotemporal dynamics of complex Ca(2+) signals in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ozônio/farmacologia , Transdução de Sinais/fisiologia , Equorina/genética , Apoproteínas/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/análise , Análise por Conglomerados , Temperatura Baixa , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética , Proteínas Recombinantes/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Estresse Fisiológico , Fatores de Tempo
18.
Nat Ecol Evol ; 6(11): 1634-1643, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175544

RESUMO

The origin of plants and their colonization of land fundamentally transformed the terrestrial environment. Here we elucidate the basis of this formative episode in Earth history through patterns of lineage, gene and genome evolution. We use new fossil calibrations, a relative clade age calibration (informed by horizontal gene transfer) and new phylogenomic methods for mapping gene family origins. Distinct rooting strategies resolve tracheophytes (vascular plants) and bryophytes (non-vascular plants) as monophyletic sister groups that diverged during the Cambrian, 515-494 million years ago. The embryophyte stem is characterized by a burst of gene innovation, while bryophytes subsequently experienced an equally dramatic episode of reductive genome evolution in which they lost genes associated with the elaboration of vasculature and the stomatal complex. Overall, our analyses reveal that extant tracheophytes and bryophytes are both highly derived from a more complex ancestral land plant. Understanding the origin of land plants requires tracing character evolution across a diversity of modern lineages.


Assuntos
Embriófitas , Traqueófitas , Evolução Biológica , Embriófitas/genética , Filogenia , Plantas/genética , Fósseis
19.
Curr Biol ; 32(11): R539-R553, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671732

RESUMO

The acquisition of stomata is one of the key innovations that led to the colonisation of the terrestrial environment by the earliest land plants. However, our understanding of the origin, evolution and the ancestral function of stomata is incomplete. Phylogenomic analyses indicate that, firstly, stomata are ancient structures, present in the common ancestor of land plants, prior to the divergence of bryophytes and tracheophytes and, secondly, there has been reductive stomatal evolution, especially in the bryophytes (with complete loss in the liverworts). From a review of the evidence, we conclude that the capacity of stomata to open and close in response to signals such as ABA, CO2 and light (hydroactive movement) is an ancestral state, is present in all lineages and likely predates the divergence of the bryophytes and tracheophytes. We reject the hypothesis that hydroactive movement was acquired with the emergence of the gymnosperms. We also conclude that the role of stomata in the earliest land plants was to optimise carbon gain per unit water loss. There remain many other unanswered questions concerning the evolution and especially the origin of stomata. To address these questions, it will be necessary to: find more fossils representing the earliest land plants, revisit the existing early land plant fossil record in the light of novel phylogenomic hypotheses and carry out more functional studies that include both tracheophytes and bryophytes.


Assuntos
Briófitas , Embriófitas , Evolução Biológica , Briófitas/fisiologia , Embriófitas/genética , Fósseis , Filogenia , Estômatos de Plantas/fisiologia
20.
Nat Commun ; 13(1): 6050, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229435

RESUMO

Faced with terrestrial threats, land plants seal their aerial surfaces with a lipid-rich cuticle. To breathe, plants interrupt their cuticles with adjustable epidermal pores, called stomata, that regulate gas exchange, and develop other specialised epidermal cells such as defensive hairs. Mechanisms coordinating epidermal features remain poorly understood. Addressing this, we studied two loci whose allelic variation causes both cuticular wax-deficiency and misarranged stomata in barley, identifying the underlying genes, Cer-g/ HvYDA1, encoding a YODA-like (YDA) MAPKKK, and Cer-s/ HvBRX-Solo, encoding a single BREVIS-RADIX (BRX) domain protein. Both genes control cuticular integrity, the spacing and identity of epidermal cells, and barley's distinctive epicuticular wax blooms, as well as stomatal patterning in elevated CO2 conditions. Genetic analyses revealed epistatic and modifying relationships between HvYDA1 and HvBRX-Solo, intimating that their products participate in interacting pathway(s) linking epidermal patterning with cuticular properties in barley. This may represent a mechanism for coordinating multiple adaptive features of the land plant epidermis in a cultivated cereal.


Assuntos
Hordeum , Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Epiderme Vegetal/metabolismo , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA