Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878232

RESUMO

Mitochondrial dysfunctions are thought to contribute to muscle atrophy and weakness that develop during ageing and mechanical unloading caused by immobilization, bed rest and microgravity. Older adults are at greater risk of developing muscle and mitochondrial dysfunctions in response to unloading. Although exercise is well known to promote muscle and mitochondrial health, its protective effect during mechanical unloading in older adults remains largely unexplored. Here, we investigated the impact of 14 days of head-down tilt bed rest (HDBR) with and without a multimodal exercise countermeasure in older men and women (55-65 years). Leg muscle volume was assessed using magnetic resonance imaging. Biopsies of the vastus lateralis were performed to assess markers of mitochondrial content, respiration, reactive oxygen species (ROS) production and calcium retention capacity (mCRC). Indices of mitochondrial quality control (MQC), including markers of fusion (MFN1 and 2), fission (Drp1), mitophagy (Parkin) and autophagy (p62 and LC3I and II) were measured using immunoblots. Muscle cross-sections were stained for neural cell adhesion molecule (NCAM, a marker of denervation). HDBR triggered muscle atrophy, decreased mitochondrial content and respiration and increased mitochondrial ROS production. HDBR had no impact on mCRC or MQC markers but increased markers of autophagy and denervation. Exercise prevented the deleterious effects of HDBR on leg muscle volume, mitochondrial ROS production and markers of autophagy and denervation. Exercise also increased mitochondrial content and respiration without altering mCRC and MQC markers. Collectively, our results indicate that an exercise countermeasure that can be performed in bed is effective in protecting muscle and mitochondrial health during HDBR in older adults. KEY POINTS: Conditions associated with muscle unloading, such as immobilization, bed rest or microgravity, result in muscle atrophy and weakness, particularly in older adults. Mitochondrial dysfunctions are thought to contribute to muscle atrophy caused by unloading and ageing. However, whether exercise can counteract the deleterious effects of unloading in older adults remains largely unexplored. Here, we report that older adults exposed to 14 days of head-down tilt bed rest (HDBR) displayed upper leg muscle atrophy, a decrease in mitochondrial content and respiration, an increase in H2O2 emission, and an increase in autophagy and denervation markers. No impact of HDBR on mitochondrial quality control was observed. A multimodal exercise countermeasure prevented the deleterious effects of HDBR on upper leg muscle volume, mitochondrial reactive oxygen species emission, and markers of autophagy and denervation and increased mitochondrial content and respiration. These findings highlight the effectiveness of exercise in promoting muscle and mitochondrial health in older adults undergoing bed rest.

2.
J Physiol ; 602(12): 2823-2838, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748778

RESUMO

Skeletal muscle dysfunction is a major problem in critically ill patients suffering from sepsis. This condition is associated with mitochondrial dysfunction and increased autophagy in skeletal muscles. Autophagy is a proteolytic mechanism involved in eliminating dysfunctional cellular components, including mitochondria. The latter process, referred to as mitophagy, is essential for maintaining mitochondrial quality and skeletal muscle health. Recently, a fluorescent reporter system called mito-QC (i.e. mitochondrial quality control) was developed to specifically quantify mitophagy levels. In the present study, we used mito-QC transgenic mice and confocal microscopy to morphologically monitor mitophagy levels during sepsis. To induce sepsis, Mito-QC mice received Escherichia coli lipopolysaccharide (10 mg kg-1 i.p.) or phosphate-buffered saline and skeletal muscles (hindlimb and diaphragm) were excised 48 h later. In control groups, there was a negative correlation between the basal mitophagy level and overall muscle mitochondrial content. Sepsis increased general autophagy in both limb muscles and diaphragm but had no effect on mitophagy levels. Sepsis was associated with a downregulation of certain mitophagy receptors (Fundc1, Bcl2L13, Fkbp8 and Phbb2). The present study suggests that general autophagy and mitophagy can be dissociated from one another, and that the characteristic accumulation of damaged mitochondria in skeletal muscles under the condition of sepsis may reflect a failure of adequate compensatory mitophagy. KEY POINTS: There was a negative correlation between the basal level of skeletal muscle mitophagy and the mitochondrial content of individual muscles. Mitophagy levels in limb muscles and the diaphragm were unaffected by lipopolysaccharide (LPS)-induced sepsis. With the exception of BNIP3 in sepsis, LPS administration induced either no change or a downregulation of mitophagy receptors in skeletal muscles.


Assuntos
Camundongos Transgênicos , Mitofagia , Músculo Esquelético , Sepse , Animais , Sepse/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Mitocôndrias Musculares/metabolismo , Autofagia/fisiologia
3.
Am J Physiol Cell Physiol ; 324(2): C366-C376, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571445

RESUMO

Obesity is a major risk factor for developing various health problems, including insulin resistance and type 2 diabetes. Although controversial, accumulation of mitochondrial dysfunction, and notably an increase in mitochondrial reactive oxygen species (ROS) production, was proposed as a key contributor leading to obesity-induced insulin resistance. Here, our goal was to investigate whether Parkin overexpression, a key regulator of the removal of dysfunctional mitochondria through mitophagy, could confer protection against obesity-induced mitochondrial dysfunction. To this end, intramuscular injections of adeno-associated viruses (AAVs) were performed to overexpress Parkin in limb muscle of 6-mo-old mice fed a control diet (CD) or a high-fat diet (HFD) for 12 wk. An AAV-expressing the green fluorescent protein (GFP) was used as control. HFD increased fat mass, altered glycemia, and resulted in insulin resistance. Parkin overexpression resulted in an increase in muscle mass in both CD and HFD mice. In CD mice, Parkin overexpression increased maximal mitochondrial respiration and lowered H2O2 emission. HFD increased mitochondrial respiration and, surprisingly, also lowered H2O2 emission. Parkin overexpression did not significantly impact mitochondrial function in HFD mice. Taken altogether, our results indicate that Parkin overexpression positively impacts muscle and mitochondrial health under basal conditions and challenges the notion that intrinsic mitochondrial dysfunction is involved in the development of insulin resistance caused by high-fat feeding.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Resistência à Insulina , Músculo Esquelético , Obesidade , Ubiquitina-Proteína Ligases , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Peróxido de Hidrogênio/metabolismo , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
J Physiol ; 600(15): 3405-3421, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691026

RESUMO

Parkin is an E3 ubiquitin ligase mostly known for its role in regulating the removal of defective mitochondria via mitophagy. However, increasing experimental evidence that Parkin regulates several other aspects of mitochondrial biology in addition to its role in mitophagy has emerged over the past two decades. Indeed, Parkin has been shown to regulate mitochondrial biogenesis and dynamics and mitochondria-derived vesicle formation, suggesting that Parkin plays key roles in maintaining healthy mitochondria. While Parkin is commonly described as a cytosolic E3 ubiquitin ligase, it was also detected in other cellular compartments, including the nucleus, where it regulates transcription factors and acts as a transcription factor itself. New evidence also suggests that Parkin overexpression can be leveraged to delay ageing. In Drosophila, for example, Parkin overexpression extends lifespan. In mammals, Parkin overexpression delays hallmarks of ageing in several tissues and cell types. Parkin overexpression also confers protection in various models of cellular senescence and neurological disorders closely associated with ageing, such as Alzheimer's and Parkinson's diseases. Recently, Parkin overexpression has also been shown to suppress tumour growth. In this review, we discuss newly emerging biological roles of Parkin as a modulator of cellular homeostasis, survival and healthy ageing, and we explore potential mechanisms through which Parkin exerts its beneficial effects on cellular health.


Assuntos
Envelhecimento Saudável , Doença de Parkinson , Animais , Drosophila/metabolismo , Envelhecimento Saudável/genética , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R551-R561, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35411814

RESUMO

Patients with cystic fibrosis (CF) often suffer from skeletal muscle atrophy, most often attributed to physical inactivity and nutritional factors. CF is also characterized by abnormally elevated systemic inflammation. However, it is unknown whether the lack of a functional CF transmembrane conductance regulator (CFTR) gene predisposes to exaggerated inflammation-induced muscle proteolysis. CF mice (CFTR-/-) and their wild-type (WT = CFTR+/+) littermate controls were systemically injected with Pseudomonas-derived lipopolysaccharide (LPS). After 24 h, the diaphragm and limb muscles (fast-twitch tibialis anterior, and slow-twitch soleus) were assessed for induction of inflammatory cytokines (TNFα, IL1ß, and IL6), oxidative stress, canonical muscle proteolysis pathways (Calpain, Ubiquitin-Proteasome, Autophagy), muscle fiber histology, and diaphragm contractile function. At baseline, CF and WT muscles did not differ with respect to indices of inflammation, proteolysis, or contractile function. After LPS exposure, there was significantly greater induction of all proteolysis pathways (calpain activity; ubiquitin-proteasome: MuRF1 and Atrogin1; autophagy: LC3B, Gabarapl-1, and BNIP3) in CF mice for the diaphragm and tibialis anterior, but not the soleus. Proteolysis pathway upregulation and correlations with inflammatory cytokine induction were most prominent in the tibialis anterior. Diaphragm force normalized to muscle cross-sectional area was reduced by LPS to an equivalent degree in CF and WT mice. CF skeletal muscles containing a high proportion of fast-twitch fibers (diaphragm, tibialis anterior) exhibit abnormally exaggerated upregulation of multiple muscle wasting pathways after exposure to an acute inflammatory stimulus, but not under basal conditions.


Assuntos
Fibrose Cística , Diafragma , Animais , Calpaína/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo
6.
J Physiol ; 599(17): 4045-4063, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34269418

RESUMO

KEY POINTS: The maintenance of mitochondrial integrity is critical for skeletal muscle health. Mitochondrial dynamics play key roles in mitochondrial quality control; however, the exact role that mitochondrial fission plays in the muscle ageing process remains unclear. Here we report that both Drp1 knockdown and Drp1 overexpression late in life in mice is detrimental to skeletal muscle function and mitochondrial health. Drp1 knockdown in 18-month-old mice resulted in severe skeletal muscle atrophy, mitochondrial dysfunction, muscle degeneration/regeneration, oxidative stress and impaired autophagy. Overexpressing Drp1 in 18-month-old mice resulted in mild skeletal muscle atrophy and decreased mitochondrial quality. Our data indicate that silencing or overexpressing Drp1 late in life is detrimental to skeletal muscle integrity. We conclude that modulating Drp1 expression is unlikely to be a viable approach to counter the muscle ageing process. ABSTRACT: Sarcopenia, the ageing-related loss of skeletal muscle mass and function, is a debilitating process negatively impacting the quality of life of afflicted individuals. Although the mechanisms underlying sarcopenia are still only partly understood, impairments in mitochondrial dynamics, and specifically mitochondrial fission, have been proposed as an underlying mechanism. Importantly, conflicting data exist in the field and both excessive and insufficient mitochondrial fission were proposed to contribute to sarcopenia. In Drosophila melanogaster, enhancing mitochondrial fission in midlife through overexpression of dynamin-1-like protein (Drp1) extended lifespan and attenuated several key hallmarks of muscle ageing. Whether a similar outcome of Drp1 overexpression is observed in mammalian muscles remains unknown. In this study, we investigated the impact of knocking down and overexpressing Drp1 protein for 4 months in skeletal muscles of late middle-aged (18 months) mice using intra-muscular injections of adeno-associated viruses expressing shRNA targeting Drp1 or full Drp1 cDNA. We report that knocking down Drp1 expression late in life triggers severe muscle atrophy, mitochondrial dysfunctions, degeneration/regeneration, oxidative stress and impaired autophagy. Drp1 overexpression late in life triggered mild muscle atrophy and decreased mitochondrial quality. Taken altogether, our results indicate that both overexpression and silencing of Drp1 in late middle-aged mice negatively impact skeletal muscle mass and mitochondrial health. These data suggest that Drp1 content must remain within a narrow physiological range to preserve muscle and mitochondrial integrity during ageing. Altering Drp1 expression is therefore unlikely to be a viable target to counter sarcopenia.


Assuntos
Drosophila melanogaster , Dinâmica Mitocondrial , Animais , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Proteínas de Ligação ao GTP , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Qualidade de Vida
7.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L152-L157, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112187

RESUMO

The COVID-19 pandemic is associated with severe pneumonia and acute respiratory distress syndrome leading to death in susceptible individuals. For those who recover, post-COVID-19 complications may include development of pulmonary fibrosis. Factors contributing to disease severity or development of complications are not known. Using computational analysis with experimental data, we report that idiopathic pulmonary fibrosis (IPF)- and chronic obstructive pulmonary disease (COPD)-derived lung fibroblasts express higher levels of angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 entry and part of the renin-angiotensin system that is antifibrotic and anti-inflammatory. In preclinical models, we found that chronic exposure to cigarette smoke, a risk factor for both COPD and IPF and potentially for SARS-CoV-2 infection, significantly increased pulmonary ACE2 protein expression. Further studies are needed to understand the functional implications of ACE2 on lung fibroblasts, a cell type that thus far has received relatively little attention in the context of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , COVID-19/patologia , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Adulto , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores Virais/biossíntese , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/metabolismo , Fumaça/efeitos adversos
8.
Crit Care Med ; 49(2): 311-323, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332817

RESUMO

OBJECTIVES: In many jurisdictions, ethical concerns require surrogate humane endpoints to replace death in small animal models of acute lung injury. Heterogenous selection and reporting of surrogate endpoints render interpretation and generalizability of findings between studies difficult. We aimed to establish expert-guided consensus among preclinical scientists and laboratory animal veterinarians on selection and reporting of surrogate endpoints, monitoring of these models, and the use of analgesia. DESIGN: A three-round consensus process, using modified Delphi methodology, with researchers who use small animal models of acute lung injury and laboratory animal veterinarians who provide care for these animals. Statements on the selection and reporting of surrogate endpoints, monitoring, and analgesia were generated through a systematic search of MEDLINE and Embase. Participants were asked to suggest any additional potential statements for evaluation. SETTING: A web-based survey of participants representing the two stakeholder groups (researchers, laboratory animal veterinarians). Statements were rated on level of evidence and strength of support by participants. A final face-to-face meeting was then held to discuss results. SUBJECTS: None. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Forty-two statements were evaluated, and 29 were rated as important, with varying strength of evidence. The majority of evidence was based on rodent models of acute lung injury. Endpoints with strong support and evidence included temperature changes and body weight loss. Behavioral signs and respiratory distress also received support but were associated with lower levels of evidence. Participants strongly agreed that analgesia affects outcomes in these models and that none may be necessary following nonsurgical induction of acute lung injury. Finally, participants strongly supported transparent reporting of surrogate endpoints. A prototype composite score was also developed based on participant feedback. CONCLUSIONS: We provide a preliminary framework that researchers and animal welfare committees may adapt for their needs. We have identified knowledge gaps that future research should address.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Comitês de Cuidado Animal/organização & administração , Bem-Estar do Animal/normas , Animais de Laboratório , Consenso , Animais , Biomarcadores , Humanos , Modelos Animais , Médicos Veterinários/normas
9.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360946

RESUMO

The maintenance of mitochondrial integrity is critical for muscle health. Mitochondria, indeed, play vital roles in a wide range of cellular processes, including energy supply, Ca2+ homeostasis, retrograde signaling, cell death, and many others. All mitochondria-containing cells, including skeletal muscle cells, dispose of several pathways to maintain mitochondrial health, including mitochondrial biogenesis, mitochondrial-derived vesicles, mitochondrial dynamics (fusion and fission process shaping mitochondrial morphology), and mitophagy-the process in charge of the removal of mitochondria though autophagy. The loss of skeletal muscle mass (atrophy) is a major health problem worldwide, especially in older people. Currently, there is no treatment to counteract the progressive decline in skeletal muscle mass and strength that occurs with aging, a process termed sarcopenia. There is increasing data, including our own, suggesting that accumulation of dysfunctional mitochondria contributes to the development of sarcopenia. Impairments in mitochondrial dynamics and mitophagy were recently proposed to contribute to sarcopenia. This review summarizes the current state of knowledge on the role played by mitochondrial dynamics and mitophagy in skeletal muscle health and in the development of sarcopenia. We also highlight recent studies showing that enhancing mitophagy in skeletal muscle is a promising therapeutic target to prevent or even treat skeletal muscle dysfunction in the elderly.


Assuntos
Envelhecimento/metabolismo , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Mitofagia , Sarcopenia/metabolismo , Animais , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo
10.
J Physiol ; 598(17): 3691-3710, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32539155

RESUMO

KEY POINTS: The maintenance of optimal mitochondrial content and function is critical for muscle health. Mitochondrial dynamics play key roles in mitochondrial quality control; however, the exact role that mitochondrial fission plays in skeletal muscle health remains unclear. Here we report knocking down Drp1 (a protein regulating mitochondrial fission) for 4 months in adult mouse skeletal muscle resulted in severe muscle atrophy (40-50%). Drp1 knockdown also led to a reduction in ADP-stimulated respiration, an increase in markers of impaired autophagy and increased muscle regeneration, denervation, fibrosis and oxidative stress. Our data indicate that Drp1 is crucial for the maintenance of normal mitochondrial function and that Drp1 depletion severely impairs muscle health. ABSTRACT: Mitochondria play central roles in skeletal muscle physiology, including energy supply, regulation of energy-sensitive signalling pathways, reactive oxygen species production/signalling, calcium homeostasis and the regulation of apoptosis. The maintenance of optimal mitochondrial content and function is therefore critical for muscle cells. Mitochondria are now well known as highly dynamic organelles, able to change their morphology through fusion and fission processes. Solid experimental evidence indicates that mitochondrial dynamics play key roles in mitochondrial quality control, and alteration in the expression of proteins regulating mitochondrial dynamics have been reported in many conditions associated with muscle atrophy and wasting. However, the exact role that mitochondrial fission plays in skeletal muscle health remains unclear. To address this issue, we investigated the impact of Drp1 (a protein regulating mitochondrial fission) knockdown, introduced via intramuscular injection of adeno-associated virus (AAV) on adult mouse skeletal muscle. Knocking down Drp1 for 4 months resulted in very severe muscle atrophy (40-50%). Drp1 knockdown also led to a reduction in ADP-stimulated respiration and increases in markers of muscle regeneration, denervation, fibrosis, oxidative stress and impaired autophagy. Our findings indicate that Drp1 is essential for the maintenance of normal mitochondrial function and that Drp1 suppression severely impairs muscle health.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Animais , Autofagia , Denervação , Camundongos , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Atrofia Muscular/genética , Atrofia Muscular/patologia
11.
J Physiol ; 597(7): 1975-1991, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30614532

RESUMO

KEY POINTS: Recent evidence suggests that impaired mitophagy, a process in charge of removing damaged/dysfunctional mitochondria and in part regulated by Parkin, could contribute to the ageing-related loss of muscle mass and function. In the present study, we show that Parkin overexpression attenuates ageing-related loss of muscle mass and strength and unexpectedly causes hypertrophy in adult skeletal muscles. We also show that Parkin overexpression leads to increases in mitochondrial content and enzymatic activities. Finally, our results show that Parkin overexpression protects from ageing-related increases in markers of oxidative stress, fibrosis and apoptosis. Our findings place Parkin as a potential therapeutic target to attenuate sarcopenia and improve skeletal muscle health and performance. ABSTRACT: The ageing-related loss of muscle mass and strength, a process called sarcopenia, is one of the most deleterious hallmarks of ageing. Solid experimental evidence indicates that mitochondrial dysfunctions accumulate with ageing and are critical in the sarcopenic process. Recent findings suggest that mitophagy, the process in charge of the removal of damaged/dysfunctional mitochondria, is altered in aged muscle. Impaired mitophagy represents an attractive mechanism that could contribute to the accumulation of mitochondrial dysfunctions and sarcopenia. To test this hypothesis, we investigated the impact of Parkin overexpression in skeletal muscles of young and old mice. Parkin was overexpressed for 4 months in muscles of young (3 months) and late middle-aged (18 months) mice using i.m. injections of adeno-associated viruses. We show that Parkin overexpression increased muscle mass, fibre size and mitochondrial enzyme activities in both young and old muscles. In old mice, Parkin overexpression increased muscle strength, peroxisome proliferator­activated receptor gamma coactivator 1­alpha (PGC­1α) and mitochondrial density. Parkin overexpression also attenuated the ageing-related increase in 4-hydroxynonenal content (a marker of oxidative stress) and type I collagen content (a marker of fibrosis), as well as the number of terminal deoxynucleotidyl transferase dUTP nick-end labelling-positive myonuclei (a marker of apoptosis). Overall, our results indicate that Parkin overexpression attenuates sarcopenia and unexpectedly causes hypertrophy in adult muscles. They also show that Parkin overexpression leads to increases in mitochondrial content and enzymatic activities. Finally, our results show that Parkin overexpression protects against oxidative stress, fibrosis and apoptosis. These findings highlight that Parkin may be an attractive therapeutic target with respect to attenuating sarcopenia and improving skeletal muscle health and performance.


Assuntos
Envelhecimento , Força Muscular/fisiologia , Sarcopenia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aldeídos , Animais , Apoptose , Colágeno Tipo I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Força Muscular/genética , Músculo Esquelético/fisiologia , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ubiquitina-Proteína Ligases/genética
12.
Anesthesiology ; 131(3): 605-618, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31408447

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: Diaphragm dysfunction and atrophy develop during controlled mechanical ventilation. Although oxidative stress injures muscle during controlled mechanical ventilation, it is unclear whether it causes autophagy or fiber atrophy. WHAT THIS ARTICLE TELLS US THAT IS NEW: Pretreatment of rats undergoing 24 h of mechanical ventilation with N-acetylcysteine prevents decreases in diaphragm contractility, inhibits the autophagy and proteasome pathways, but has no influence on the development of diaphragm fiber atrophy. BACKGROUND: Diaphragm dysfunction and atrophy develop during prolonged controlled mechanical ventilation. Fiber atrophy has been attributed to activation of the proteasome and autophagy proteolytic pathways. Oxidative stress activates the proteasome during controlled mechanical ventilation, but it is unclear whether it also activates autophagy. This study investigated whether pretreatment with the antioxidant N-acetylcysteine affects controlled mechanical ventilation-induced diaphragm contractile dysfunction, fiber atrophy, and proteasomal and autophagic pathway activation. The study also explored whether proteolytic pathway activity during controlled mechanical ventilation is mediated by microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes. METHODS: Three groups of adult male rats were studied (n = 10 per group). The animals in the first group were anesthetized and allowed to spontaneously breathe. Animals in the second group were pretreated with saline before undergoing controlled mechanical ventilation for 24 h. The animals in the third group were pretreated with N-acetylcysteine (150 mg/kg) before undergoing controlled mechanical ventilation for 24 h. Diaphragm contractility and activation of the proteasome and autophagy pathways were measured. Expressions of microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes were measured with quantitative polymerase chain reaction. RESULTS: Controlled mechanical ventilation decreased diaphragm twitch force from 428 ± 104 g/cm (mean ± SD) to 313 ± 50 g/cm and tetanic force from 2,491 ± 411 g/cm to 1,618 ± 177 g/cm. Controlled mechanical ventilation also decreased diaphragm fiber size, increased expression of several autophagy genes, and augmented Atrogin-1, MuRF1, and Nedd4 expressions by 36-, 41-, and 8-fold, respectively. Controlled mechanical ventilation decreased the expressions of six microRNAs (miR-20a, miR-106b, miR-376, miR-101a, miR-204, and miR-93) that regulate autophagy genes. Pretreatment with N-acetylcysteine prevented diaphragm contractile dysfunction, attenuated protein ubiquitination, and downregulated E3 ligase and autophagy gene expression. It also reversed controlled mechanical ventilation-induced microRNA expression decreases. N-Acetylcysteine pretreatment had no affect on fiber atrophy. CONCLUSIONS: Prolonged controlled mechanical ventilation activates the proteasome and autophagy pathways in the diaphragm through oxidative stress. Pathway activation is accomplished, in part, through inhibition of microRNAs that negatively regulate autophagy-related genes.


Assuntos
Acetilcisteína/farmacologia , Diafragma/efeitos dos fármacos , Diafragma/fisiopatologia , Oxidantes/farmacologia , Proteólise/efeitos dos fármacos , Respiração Artificial/efeitos adversos , Animais , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Sequestradores de Radicais Livres/farmacologia , Masculino , Atrofia Muscular/fisiopatologia , Ratos , Ratos Wistar
13.
Pharmacol Res ; 139: 173-181, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414893

RESUMO

Angiopoietin-1 (Ang-1) is a ligand of Tie-2 receptors that promotes survival, migration, and differentiation of endothelial cells (ECs). Recent studies have identified several microRNA (miRNA) families that either promote or inhibit angiogenesis. To date, the nature and functional importance of miRNAs in Ang-1-induced angiogenesis are unknown. Microarray screening of known miRNAs in human umbilical vein endothelial cells (HUVECs) revealed that the expressions of miR-103b, miR-330-5p, miR-557, miR-575, miR-1287-5p, and miR-1468-5p significantly decrease following exposure to Ang-1 for 24 h. Exposure to the angiogenesis factors angiopoietin-2 (Ang-2), vascular endothelial growth factor, fibroblast growth factor 2, and transforming growth factor ß also inhibits miR-103b expression, but exerts varying effects on the other miRNAs. By overexpressing miR-103b, miR-330-5p, miR-557, miR-575, miR-1287-5p, and miR-1468-5p with selective mimics, we demonstrated that the pro-survival effects of Ang-1 are eliminated, Caspase-3 activity increases, and cell migration, proliferation, and capillary-like tube formation decreases. Conversely, transfection with selective miRNA inhibitors increases cell survival, inhibits Caspase-3 activity, and stimulates migration, proliferation and tube formation. miRNet miRNA-target gene network analyses revealed that miR-103, miR-330-5p, miR-557, miR-575, miR-1287-5p, and miR-1468-5p directly interact with 47, 95, 165, 108, 49, and 16 gene targets, respectively. Since many of these genes are positive regulators of angiogenic processes, we conclude that these miRNAs function as anti-angiogenic miRNAs and that their downregulation may be essential for Ang-1-induced angiogenesis to occur.


Assuntos
MicroRNAs/fisiologia , Neovascularização Fisiológica , Angiopoietina-1/farmacologia , Ciclo Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos
14.
Crit Care ; 23(1): 123, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992039

RESUMO

BACKGROUND: Diaphragm weakness occurs rapidly in adult animals treated with mechanical ventilation (MV), but the effects of MV on the neonatal diaphragm have not been determined. Furthermore, it is unknown whether co-existent lung disease exacerbates ventilator-induced diaphragmatic dysfunction (VIDD). We investigated the impact of MV (mean duration = 7.65 h), either with or without co-existent respiratory failure caused by surfactant deficiency, on the development of VIDD in newborn lambs. METHODS: Newborn lambs (1-4 days) were assigned to control (CTL, non-ventilated), mechanically ventilated (MV), and MV + experimentally induced surfactant deficiency (MV+SD) groups. Immunoblotting and quantitative PCR assessed inflammatory signaling, the ubiquitin-proteasome system, autophagy, and oxidative stress. Immunostaining for myosin heavy chain (MyHC) isoforms and quantitative morphometry evaluated diaphragm atrophy. Contractile function of the diaphragm was determined in isolated myofibrils ex vivo. RESULTS: Equal decreases (25-30%) in myofibrillar force generation were found in MV and MV+SD diaphragms compared to CTL. In comparison to CTL, both MV and MV+SD diaphragms also demonstrated increased STAT3 transcription factor phosphorylation. Ubiquitin-proteasome system (Atrogin1 and MuRF1) transcripts and autophagy indices (Gabarapl1 transcripts and the ratio of LC3B-II/LC3B-I protein) were greater in MV+SD relative to MV alone, but fiber type atrophy was not observed in any group. Protein carbonylation and 4-hydroxynonenal levels (indices of oxidative stress) also did not differ among groups. CONCLUSIONS: In newborn lambs undergoing controlled MV, there is a rapid onset of diaphragm dysfunction consistent with VIDD. Superimposed lung injury caused by surfactant deficiency did not influence the severity of early diaphragm weakness.


Assuntos
Diafragma/fisiopatologia , Debilidade Muscular/etiologia , Respiração Artificial/efeitos adversos , Análise de Variância , Animais , Atrofia/etiologia , Atrofia/fisiopatologia , Diafragma/lesões , Modelos Animais de Doenças , Debilidade Muscular/fisiopatologia , Estresse Oxidativo/fisiologia , Respiração Artificial/métodos , Ovinos , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
15.
J Physiol ; 596(13): 2565-2579, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682760

RESUMO

KEY POINTS: Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2-/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. ABSTRACT: Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2-/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2-/- mice display a slight but significant decrease in its specific force. Park2-/- muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2+/+ muscles, the mitochondrial function of Park2-/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2-/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles.


Assuntos
Mitocôndrias/patologia , Contração Muscular , Músculo Esquelético/patologia , Biogênese de Organelas , Estresse Oxidativo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Autofagia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Músculo Esquelético/metabolismo
16.
J Biol Chem ; 292(5): 1899-1909, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28011640

RESUMO

Autophagy involves the lysosomal degradation of cytoplasmic contents for regeneration of anabolic substrates during nutritional or inflammatory stress. Its initiation occurs rapidly after inactivation of the protein kinase mammalian target of rapamycin (mTOR) (or mechanistic target of rapamycin), leading to dephosphorylation of Unc-51-like kinase 1 (ULK1) and autophagosome formation. Recent studies indicate that mTOR can, in parallel, regulate the activity of stress transcription factors, including signal transducer and activator of transcription-1 (STAT1). The current study addresses the role of STAT1 as a transcriptional suppressor of autophagy genes and autophagic activity. We show that STAT1-deficient human fibrosarcoma cells exhibited enhanced autophagic flux as well as its induction by pharmacological inhibition of mTOR. Consistent with enhanced autophagy initiation, ULK1 mRNA and protein levels were increased in STAT1-deficient cells. By chromatin immunoprecipitation, STAT1 bound a putative regulatory sequence in the ULK1 5'-flanking region, the mutation of which increased ULK1 promoter activity, and rendered it unresponsive to mTOR inhibition. Consistent with an anti-apoptotic effect of autophagy, rapamycin-induced apoptosis and cytotoxicity were blocked in STAT1-deficient cells but restored in cells simultaneously exposed to the autophagy inhibitor ammonium chloride. In vivo, skeletal muscle ULK1 mRNA and protein levels as well as autophagic flux were significantly enhanced in STAT1-deficient mice. These results demonstrate a novel mechanism by which STAT1 negatively regulates ULK1 expression and autophagy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/biossíntese , Autofagia/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Fator de Transcrição STAT1/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/fisiologia , Fator de Transcrição STAT1/genética , Sirolimo/farmacologia
17.
Muscle Nerve ; 57(3): 442-448, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28786111

RESUMO

INTRODUCTION: Patients with Duchenne muscular dystrophy (DMD) frequently undergo mechanical ventilation (MV) for treatment of hypoventilation, but the susceptibility of the dystrophic diaphragm to ventilator-induced diaphragmatic dysfunction (VIDD) has not been examined. METHODS: Dystrophic mice (mdx-genetic homolog of DMD) were assigned to non-ventilated control (CTL) and MV (for 6 hours) groups. Biochemical markers of oxidative/cellular stress, metabolism, and proteolysis were compared along with ex-vivo diaphragmatic force production. RESULTS: MV significantly depressed maximal diaphragmatic force production compared with baseline values. In addition, MV triggered oxidative stress responses, STAT3 phosphorylation, and an upregulation of cellular pathways associated with muscle proteolysis and/or wasting (autophagy, E3 ubiquitin ligases, and myostatin). DISCUSSION: Short-term MV induces rapid diaphragmatic force loss and biochemical changes consistent with VIDD in mdx mice. This may have implications for the optimal use of intermittent MV in DMD patients. Muscle Nerve 57: 442-448, 2018.


Assuntos
Diafragma/fisiopatologia , Contração Muscular/fisiologia , Estresse Oxidativo/fisiologia , Respiração Artificial/efeitos adversos , Ventiladores Mecânicos/efeitos adversos , Animais , Autofagia/fisiologia , Diafragma/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Fosforilação , Fator de Transcrição STAT3/metabolismo
20.
Crit Care Med ; 45(9): e971-e979, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28538438

RESUMO

OBJECTIVES: Skeletal muscle fiber atrophy develops in response to severe sepsis, but it is unclear as to how the proteolytic pathways that are involved in its development are differentially regulated. We investigated the link between sepsis-induced fiber atrophy and activation of the proteasome and autophagy pathways and whether the degree of activation is more severe and sustained in limb muscles than it is in the diaphragm. DESIGN: Randomized controlled experiment. SETTING: Animal research laboratory. SUBJECTS: Adult male C57/BL6 mice. INTERVENTIONS: Two groups of animals were studied. The sepsis group was subjected to a cecal ligation and perforation technique, whereas the control (sham) group was subjected to abdominal surgery without cecal ligation and perforation. Measurements for both groups were performed 24, 48, and 96 hours after the surgical procedure. MEASUREMENTS AND MAIN RESULTS: Atrophy was quantified in the diaphragm and tibialis anterior by measuring fiber diameter. Autophagy was evaluated using electron microscopic detection of autophagosomes and by measuring LC3B protein lipidation and autophagy-related protein expressions. Proteasomal degradation was quantified by measuring chymotrypsin-like activity of the 26S proteasome and messenger RNA expressions of muscle-specific E3 ligases. Sepsis triggered transient fiber atrophy in the diaphragm that lasted for 24 hours and prolonged atrophy in the tibialis anterior that persisted for 96 hours. The autophagy and proteasome pathways were activated in both muscles at varying intensities over the time course of sepsis. Activation was more pronounced in the tibialis anterior than in the diaphragm. Sepsis inhibited the V-Akt thymoma viral oncogene homolog 1 and complex 1 of the mammalian target of rapamycin pathways and stimulated the AMP-activated protein kinase pathway in both muscles. CONCLUSIONS: Sepsis triggers more severe and sustained muscle fiber atrophy in limb muscles when compared with respiratory muscle. This response is associated with enhanced proteasomal and autophagic proteolytic pathway activities and is triggered by inhibition of the AKT and complex 1 of the mammalian target of rapamycin pathways and activation of the AMPK pathway.


Assuntos
Autofagia/fisiologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Sepse/fisiopatologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Distribuição Aleatória , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA