Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 2678-2691, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175550

RESUMO

The availability of hydrogen energy from water splitting through the electrocatalytic route is strongly dependent on the efficiency, durability, and cost of the electrocatalysts. Herein, a novel Bi2S3-covered Sm2O3 (Bi2S3-Sm2O3) nanocomposite electrocatalyst was developed by a hydrothermal route for the oxygen evolution reaction (OER). The electrochemical properties were studied in 1.00 mol KOH solution after coating the target material on the stainless-steel substrate (SS). Physical analysis via XRD, FTIR, IV, TEM/EDX, and XPS revealed that the Bi2S3-Sm2O3 composite possesses metallic surface states, thereby displaying unconventional electron dynamics and purity of phases. The Bi2S3-Sm2O3 composite shows outstanding OER activity with a low overpotential of 197 mV and a Tafel slope of 74 mV dec-1 at a 10 mA cm-2 current density as compared to pure Bi2S3 and Sm2O3. Meanwhile, the composite catalyst retains high stability even after 100 h of the chronoamperometry test. Thus, this work unveils a new avenue for the speedy flow of electrons, which is attributed to the synergetic effect between Bi2S3 and Sm2O3, as well as enriched interfacial defects, which exhibit greater oxygen adsorption capability with improved electronic assemblies in the active interfacial region. In addition, the introduced porous structure in core-shell Bi2S3-Sm2O3 provides extraordinary electrical properties. Thus, this article offers a realistic framework for electrochemical energy generation.

2.
Environ Res ; 247: 118219, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253197

RESUMO

This study presents a novel approach to design and optimize a sodium alginate-based hydrogel (SAH) for efficient adsorption of the model water pollutant methylene blue (MB) dye. Utilizing density functional theory (DFT) calculations, sodium alginate-g-poly (acrylamide-co-itaconic acid) was identified with the lowest adsorption energy (Eads) for MB dye among 14 different clusters. SAHs were prepared using selected monomers and sodium alginate combinations through graft co-polymerization, and swelling studies were conducted to optimize grafting conditions. Advanced characterization techniques, including FTIR, XRD, XPS, SEM, EDS, and TGA, were employed, and the process was optimized using statistical and machine learning tools. Screening tests demonstrated that Eads serves as an effective predicting indicator for adsorption capacity (qe) and MB removal efficiency (RRMB,%), with reasonable agreement between Eads and both responses under given conditions. Process modeling and optimization revealed that 5 mg of selected SAH achieves a maximum qe of 3244 mg g-1 at 84.4% RRMB under pH 8.05, 98.8 min, and MB concentration of 383.3 mg L-1, as identified by the desirability function approach. Moreover, SAH effectively eliminated various contaminants from aqueous solutions, including sulfasalazine (SFZ) and dibenzothiophene (DBT). MB adsorption onto selected SAH was exothermic, spontaneous, and followed the pseudo-first-order and Langmuir-Freundlich isotherm models. The remarkable ability of SAH to adsorb MB is attributed to its well-designed structure predicted through DFT and optimal operational conditions achieved by AI-based parametric optimization. By integrating DFT-based computations and machine-learning tools, this study contributes to the efficient design of adsorbent materials and optimization of adsorption processes, also showcasing the potential of SAH as an efficient adsorbent for the abatement of aqueous pollution.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Hidrogéis/química , Águas Residuárias , Corantes/química , Alginatos/química , Poluentes Químicos da Água/química , Água , Adsorção , Azul de Metileno/química , Cinética , Concentração de Íons de Hidrogênio
3.
Environ Res ; 260: 119622, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39019141

RESUMO

Rapid urbanization worldwide, poses numerous environmental challenges between escalating land use land cover (LULC) changes and groundwater quality dynamics. The main objective of this study was to investigate the dynamics of groundwater quality and LULC changes in Sargodha district, Punjab, Pakistan. Groundwater hydrochemistry reveals acceptable pH levels (<8) but total dissolved solids (TDS), electrical conductivity (EC) and HCO3- showed dynamic fluctuations by exceeding WHO limits. Piper diagrams, indicated dominance by magnesium and bicarbonate types, underscoring the influence of natural processes and anthropogenic activities. Major ion relationships in 2010, 2015, and 2021 showed a high correlation (R2 > 0.85) between Na+ and Cl-, suggesting salinization. whereas, the poor correlation (<0.17) between Ca2+ and HCO3- does not support calcite dissolution as the primary process affecting groundwater composition. The examination of nitrate contamination in groundwater across the years 2010, 2015, and 2021 was found to be high in the municipal sewage zone, suggesting a prevailing issue of nitrate contamination attributed to urban activities. The Nitrate Pollution Index (NPI) reveals a concerning trend, with a higher proportion of samples classified under moderate to high pollution categories in 2015 and 2021 compared to 2010. The qualitative assessment of nitrate concentration on spatiotemporal scale showed lower values in 2010 while a consistent rise from 2015 to 2021 in north-east and western parts of district. Likewise, NPI was high in the north-eastern and south-western regions in 2010, then reduced in subsequent years, which may be attributed to effective waste management practices and alterations in agricultural practices. The health risk assessment of 2010 indicated Total Health Hazard Quotient (THQ) within the standard limit, while in 2015 and 2021, elevated health risk was observed. This study emphasizes the need to use multiple approaches to groundwater management for sustainable land use planning and regulations that prioritize groundwater quality conservation.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Urbanização , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/química , Água Subterrânea/análise , Paquistão , Poluentes Químicos da Água/análise , Nitratos/análise
4.
Chem Biodivers ; 21(8): e202400195, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837651

RESUMO

Weed species many times possess allelochemicals as a part of their survival strategy. These metabolites can be potential targets in search of natural phytotoxins. This study aims to evaluate the phytotoxic ability of fatty aldehyde-rich essential oil from spiny coriander (Eryngium foetidum) leaves, also known as fitweed or spiritweed and to further identify the active phytotoxins. This oil dose-dependently inhibited the wheatgrass coleoptile and radicle growth in multiple bioassays with half maximal inhibitory concentration (IC50) 30.6-56.7 µg/mL, while exhibiting a less pronounced effect on the germination (IC50 181.8 µg/mL). The phytotoxicity assessment of two oil constituents identified eryngial (trans-2-dodecenal), exclusively major fatty aldehydic constituent as the potent growth inhibitor with IC50 in the range 20.8-36.2 µg/mL during an early phase of wheatgrass emergence. Eryngial-inspired screening of eleven saturated fatty aldehydes and alcohols did not find a significantly higher phytotoxic potency. In an open vessel, eryngial as the supplementation in agar medium, dose-dependently inhibited the growth of pre-germinated seeds of one monocot (bermudagrass) and one dicot (green amaranth) weed species with IC50 in the range 23.8-65.4 µg/mL. The current study identified eryngial, an α,ß-unsaturated fatty aldehyde of coriander origin to be a promising phytotoxic candidate for weed control.


Assuntos
Aldeídos , Eryngium , Óleos Voláteis , Aldeídos/química , Aldeídos/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eryngium/química , Eryngium/metabolismo , Relação Dose-Resposta a Droga , Germinação/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Estrutura Molecular
5.
Environ Monit Assess ; 196(9): 778, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096409

RESUMO

Urban planning is essential for managing the diverse impacts of urban green spaces, such as public access, stormwater control, urban life quality, and landscape aesthetics, promoting sustainable urban development and urban residents' well-being by integrating green space considerations into city planning. The aim of this study is to use graph-based metrics to calculate the connectivity of UGS across the main municipal zones of Ardabil city over consecutive periods under different population growth rates. Another objective of this study is to compare the connectivity values of UGS in the four municipal zones and to evaluate changes in the connectivity indices at various distance thresholds of UGS patches. After identifying UGS in different periods, the changes in graph-based connectivity indices at various distance thresholds of UGS patches were analyzed. Additionally, the changes in connectivity indices over different periods and across various municipal zones were compared and analyzed. The findings reveal that UGS areas were larger in the past but have recently had smaller patch sizes. Connectivity between UGS nodes (dNL) decreased at various distances over the study years, showing a declining trend in different connectivity indices. UGS connectivity decreased in municipal zones 1, 2, and 3 but increased in recent years after a decline until 2012 across all four zones of Ardabil city. Zone 4 had the highest UGS connectivity due to newly developed urban areas and well-allocated UGSs. Integrating the ecological impacts of UGS connectivity in urban development and design will enhance trade-offs between conservation, public health, and social equity. New urban areas should allocate sufficient land for UGS and parks, ensuring accessibility to support health and leisure through municipal planning. The study highlights the need for sustainable urban development policies that prioritize the allocation and maintenance of UGSs.


Assuntos
Cidades , Planejamento de Cidades , Monitoramento Ambiental , Irã (Geográfico) , Monitoramento Ambiental/métodos , Parques Recreativos , Humanos , Conservação dos Recursos Naturais/métodos
6.
Small ; : e2309032, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072791

RESUMO

Porous graphitic carbon nitride microsphere with large specific surface area and controllable energy band structure is synthesized via a simple method with the supermolecule polymer of melamine-cyanuric acid (MCA) as the intermediates. The energy band structure and morphology of carbon nitride are closely correlative to the calcination time. And the CN-20 catalyst fabricated by calcination for 20 h exhibit superior photocatalytic activity of hydrogen evolution reaction (HER) under visible-light (λ ≥ 420 nm) irradiation. The photocatalytic and photoelectrochemical test results indicate that Pt is the optimum cocatalyst candidate compared with Pd, Ru, and Ag. Meanwhile, the time-dependent process of the intermediate pyrolysis to carbon nitride and the internal mechanism of photogenerated charge transfer between semiconductors and cocatalyst is investigated and supplemented by theoretical calculations. This work provides a novel and energy band structure controllable manufacture strategy for porous carbon nitride semiconductor with satisfying visible-light photocatalytic reduction performance.

7.
Small ; 19(8): e2205881, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504329

RESUMO

Two-dimensional layered transition metal dichalcogenides have emerged as promising materials for supercapacitors and hydrogen evolution reaction (HER) applications. Herein, the molybdenum sulfide (MoS2 )@vanadium sulfide (VS2 ) and tungsten sulfide (WS2 )@VS2  hybrid nano-architectures prepared via a facile one-step hydrothermal approach is reported. Hierarchical hybrids lead to rich exposed active edge sites, tuned porous nanopetals-decorated morphologies, and high intrinsic activity owing to the strong interfacial interaction between the two materials. Fabricated supercapacitors using MoS2 @VS2  and WS2 @VS2  electrodes exhibit high specific capacitances of 513 and 615 F g- 1 , respectively, at an applied current of 2.5 A g- 1  by the three-electrode configuration. The asymmetric device fabricated using WS2 @VS2  electrode exhibits a high specific capacitance of 222 F g- 1  at an applied current of 2.5 A g- 1  with the specific energy of 52 Wh kg- 1  at a specific power of 1 kW kg- 1 . For HER, the WS2 @VS2  catalyst shows noble characteristics with an overpotential of 56 mV to yield 10 mA cm- 2 , a Tafel slope of 39 mV dec-1 , and an exchange current density of 1.73 mA cm- 2 . In addition, density functional theory calculations are used to evaluate the durable heterostructure formation and adsorption of hydrogen atom on the various accessible sites of MoS2 @VS2  and WS2 @VS2  heterostructures.

8.
Environ Res ; 216(Pt 1): 114346, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36170902

RESUMO

The disproportionate potency of dyes in textile wastewater is a global concern that needs to be contended. The present study comprehensively investigates the adsorption of Navy-Blue dye (NB) onto bentonite clay based geopolymer/Fe3O4 nanocomposite (GFC) using novel statistical and machine learning frameworks in the following steps; (1) synthesis and characterization of GFC, (2) experimental testing and modelling of NB adsorption onto GFC following Box-Behnken design and three response surface prediction models namely stepwise regression analysis (SRA), Support vector regression (SVR) and Kriging (KR), (3) parametric, sensitivity, thermodynamic and kinetic analysis of pH, GFC dose and contact time on adsorption performance, and (4) finding global parametric solution of the process using Latin Hypercube, Sobol and Taguchi orthogonal array sampling and combining SRA-SVR-KR predictions with novel hybrid simulated annealing (SA)-desirability function (DF) approach. Under the given testing range, parametric/sensitivity analysis revealed the critical role of pH over others accounting ∼37% relative effect and primarily derived the NB adsorption. The statistical evaluation of models revealed that all models could be utilized for elucidating and predicting the NB removal using GFC, however, SVR accuracy was better among others for this particular work, as the overall computed root mean squared error was only 0.55 while the error frequency counts remained <1 for 90% predictions. GFC showed 86.29% NB removal for the given experimental matrix which can be elevated to 96.25% under optimum conditions. The NB adsorption was found to be physical, spontaneous, favorable and obeyed pseudo-2nd order kinetics. The results demonstrate the suitability of GFC as the promising cost-effective and efficient alternative for the decolourization of urban and drinking water streams and elucidate the potential of machine learning models for accurate prediction & elevation of adsorption processes with less experimentation in water purification applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cinética , Poluentes Químicos da Água/química , Purificação da Água/métodos , Corantes , Termodinâmica , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio
9.
An Acad Bras Cienc ; 95(3): e20221023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055498

RESUMO

In the current study, the solubility and permeability of Osthole-loaded microemulsion were enhanced, which increased bioavailability. In addition, Carbomer 940 was added for prolonged drug delivery. The microemulsion was prepared after the screening of Kukui oil, Labrasol (surfactant), and transcutol-P (co-surfactant). Pseudoternary phase diagrams were employed to find the microemulsion region. Box Behnken Design (BBD) was employed for optimizing microemulsions. Variables were related and compared using mathematical equations and response surface plots (RSP). MEBG was then compared with control gel on the basis of stability studies, drug permeation, skin irritation studies, and anti-inflammatory studies. Microemulsion preparations depicted a pH of 5.27 - 5.80, a conductivity of 139 - 185 µS/cm, a poly-dispersity index of 0.116 - 0.388, a refractive index of 1.330 - 1.427, an average droplet size of 64 - 89 nm, homogeneity, spherical shape, viscosity 52 - 185 cP. Predicted values of Optimized microemulsions showed more reasonable agreement than experimental values. The microemulsion was stable and non-irritating on Rabbit skin. MEBG showed a significant difference from control gel for percent edema inhibition from the standard. The permeation enhancing capability of MEBG using a suitable viscosity fabricates it promising carrier for transdermal delivery of Osthole.


Assuntos
Absorção Cutânea , Pele , Animais , Coelhos , Administração Cutânea , Tensoativos/metabolismo , Emulsões/metabolismo
10.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298240

RESUMO

In recent years, infections caused by multidrug-resistant (MDR) bacteria have greatly threatened human health and imposed a burden on global public health. To overcome this crisis, there is an urgent need to seek effective alternatives to single antibiotic therapy to circumvent drug resistance and prevent MDR bacteria. According to previous reports, cinnamaldehyde exerts antibacterial activity against drug-resistant Salmonella spp. This study was conducted to investigate whether cinnamaldehyde has a synergistic effect on antibiotics when used in combination, we found that cinnamaldehyde enhanced the antibacterial activity of ceftriaxone sodium against MDR Salmonella in vitro by significantly reduced the expression of extended-spectrum beta-lactamase, inhibiting the development of drug resistance under ceftriaxone selective pressure in vitro, damaging the cell membrane, and affecting its basic metabolism. In addition, it restored the activity of ceftriaxone sodium against MDR Salmonella in vivo and inhibited peritonitis caused by ceftriaxone resistant strain of Salmonella in mice. Collectively, these results revealed that cinnamaldehyde can be used as a novel ceftriaxone adjuvant to prevent and treat infections caused by MDR Salmonella, mitigating the possibility of producing further mutant strains.


Assuntos
Antibacterianos , Ceftriaxona , Humanos , Animais , Camundongos , Ceftriaxona/farmacologia , Antibacterianos/farmacologia , Salmonella , Acroleína/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
11.
Environ Geochem Health ; 45(1): 41-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35124755

RESUMO

Understanding and prediction of mercury (Hg) phytoavailability in vegetable-soil systems is essential for controlling food chain contamination and safe vegetable production as Hg-contaminated soils pose a serious threat to human health. In this study, four typical Chinese soils (Heilongjiang, Chongqing, Yunnan, and Jilin) with varied physicochemical properties were spiked with HgCl2 to grow sweet pepper (Capsicum annuum L.) in a pot experiment under greenhouse condition. The chemical fractionation revealed a significant decrease in exchangeable Hg, while an increase in organically bound Hg in the rhizosphere soil (RS) compared to bulk soil (BS). This observation strongly highlights the vital role of organic matter on the rhizospheric Hg transformation irrespective of contamination levels and soil properties. Stepwise multiple linear regression (SMLR) analysis between Hg concentration in plants, Hg fractions in RS and BS, and soil properties showed that Hg in plant parts was significantly influenced by soil total Hg (THg) (R2 = 0.90), soil clay (R2 = 0.99), amorphous manganese oxides (amorphous Mn) (R2 = 0.97), amorphous iron oxides (amorphous Fe) (R2 = 0.70), and available Hg (R2 = 0.97) in BS. Nevertheless, in the case of RS, Hg accumulation in plants was affected by soil THg (R2 = 0.99), amorphous Mn (R2 = 0.97), amorphous Fe oxides (R2 = 0.66), soil pH, and organically bound Hg fraction (R2 = 0.96). Among all the evaluated soils (n = 04), metal (mercury) concentration in terms of plant uptake was reported highest in the Jilin soil. Based on SMLR analysis, the results suggested that the phytoavailability of Hg was mainly determined by THg and metal oxides regardless of the rhizospheric effect. These findings facilitate the estimation of Hg phytoavailability and ecological risk that may exist from Hg-contaminated areas where pepper is the dominant vegetable.


Assuntos
Mercúrio , Poluentes do Solo , Disponibilidade Biológica , China , Mercúrio/análise , Óxidos/análise , Solo/química , Poluentes do Solo/análise , Verduras/metabolismo
12.
Small ; 18(14): e2107284, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35199455

RESUMO

Metal organic frameworks (MOFs), which constitute a new class of porous organic-inorganic hybrid materials, have gained considerable attention in the fields of electrochemical energy storage and conversion devices owing to their open topological structures, large surface areas, tunable morphologies, and extreme redox activity. A synthesis protocol that comprises coprecipitation followed by controlled calcination processes to design a battery-type electrode is used. This electrode consists of three-dimensional (3D), ant cave-like polyhedrons of nickel-cobalt alloy on graphitic carbon (GC; NiCo@GC) nanostructures; trimesic acid is used as a potential MOF-linker. The developed NiCo@GC sample exhibits mesoporous characteristics with the maximum surface area of 94.08 m2 g-1 at 77 K. In addition, the redox activity at different sweep rates reveals the battery-type charge storage behavior of the NiCo@GC electrode; its three-electrode assembly provides 444 C g-1 specific capacity at 2 A g-1 with long-term capacity retention. The constructed supercapattery (SC) devices (i.e., AC//NiCo@GC) achieved capacity, specific energy, and specific power are 74.3 mAh g-1 , 39.5 Wh kg-1 , and 665 W kg-1 , respectively. Owing to its reasonable electrochemical characteristics, the prepared NiCo@GC material is a promising candidate for supercapattery electrodes for portable electronic devices.


Assuntos
Estruturas Metalorgânicas , Eletroquímica , Eletrodos , Níquel , Oxirredução
13.
Small ; 18(13): e2104216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146911

RESUMO

The interface architectures of inorganic-organic halide perovskite-based devices play key roles in achieving high performances with these devices. Indeed, the perovskite layer is essential for synergistic interactions with the other practical modules of these devices, such as the hole-/electron-transfer layers. In this work, a heterostructure geometry comprising transition-metal dichalcogenides (TMDs) of molybdenum dichalcogenides (MoX2  = MoS2 , MoSe2 , and MoTe2 ) and perovskite- or hole-transfer layers is prepared to achieve improved device characteristics of perovskite solar cells (PSCs), X-ray detectors, and photodetectors. A superior efficiency of 11.36% is realized for the active layer with MoTe2 in the PSC device. Moreover, X-ray detectors using modulated MoTe2 nanostructures in the active layers achieve 296 nA cm-2 , 3.12 mA (Gy cm2 )-1 and 3.32 × 10-4 cm2 V-1 s-1 of collected current density, sensitivity, and mobility, respectively. The fabricated photodetector produces a high photoresponsivity of 956 mA W-1 for a visible light source, with an excellent external quantum efficiency of 160% for the perovskite layer containing MoSe2 nanostructures. Density functional theory calculations are made for pure and MoX2 doped perovskites' geometrical, density of states and optical properties variations evidently. Thus, the present study paves the way for using perovskite-based devices modified by TMDs to develop highly efficient semiconductor devices.

14.
Environ Res ; 207: 112190, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624269

RESUMO

Mercury (Hg) contamination and accumulation in food crops is a global threat posing potential health risk to humans. However, Hg phytoavailability in soil-pepper system and its influencing factors largely remain unknown. In this study, a greenhouse pot experiment was conducted to grow peppers using 21 Chinese agricultural soils with varied soil properties and aged Hg levels. Mercury concentration in pepper leaves and fruits ranged from 0.021 to 0.057 mg kg-1 and 0.005-0.022 mg kg-1 respectively, while fruit Hg content in three soils (Anhui, Hubei, Beijing) exceeded the safety limit. Fruit Hg concentration was better positively correlated with soil Mg(NO3)2-extractable Hg content (r = 0.7, P < 0.0001) than soil total Hg content (r = 0.45, P < 0.0001). Highest bioconcentration factor (BCF, ratio of Hg plant to Hg soil) yielded in acidic soils, while the lowest BCF occurred in alkaline soils. Path analysis indicated available-Hg (R2 = 0.40) and total-Hg (R2 = 0.40) had direct positive effects on the pepper fruit Hg concentration, while direct negative effects including pH (R2 = -0.86), organic matter (R2 = -0.7), crystalline-Fe (R2 = -0.68). Those agreed with the stepwise multiple linear regression analysis which yielded a regression predictive model (R2 = 0.73, P < 0.0001). Soil available-Hg, total-Hg, pH, organic matter and crystalline-Fe & Mn were the most influencing factors of Hg phytoavailability. These results provide new insights into the phytoavailability of Hg in soil-pepper system, thus facilitating the management of pepper cultivation in Hg-enriched soils.


Assuntos
Mercúrio , Poluentes do Solo , Idoso , Produtos Agrícolas , Humanos , Mercúrio/análise , Metais/análise , Solo/química , Poluentes do Solo/análise
15.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501741

RESUMO

A study of the behavior of NB-IoT wireless communication in an industrial indoor environment was conducted in this paper. With Wireless Insite software, a scenario in the industrial sector was simulated and modeled. Our research examined how this scenario or environment affected the communication parameters of NB-IoT's physical layer. In this context, throughput levels among terminals as well as between terminals and transceiver towers, the power received at signal destination points, signal-to-noise ratios (SNRs) in the environment, and distances between terminals and transceivers are considered. These simulated results are also compared with the calculated or theoretical values of these parameters. The results show the effect of the industrial setting on wireless communication. The differences between the theoretical and simulated values are also established.

16.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591019

RESUMO

Designing an ultra-wideband array antenna for fifth generation (5G) is challenging for the antenna designing community because of the highly fragmented electromagnetic spectrum. To overcome bandwidth limitations, several millimeter-wave bands for 5G and beyond applications are considered; as a result, many antenna arrays have been proposed during the past decades. This paper aims to explore recent developments and techniques regarding a specific type of phased array antenna used in 5G applications, called current sheet array (CSA). CSA consists of capacitively coupled elements placed over a ground plane, with mutual coupling intentionally introduced in a controlled manner between the elements. CSA concept evolved and led to the realization of new array antennas with multiple octaves of bandwidth. In this review article, we provide a comprehensive overview of the existing works in this line of research. We analyze and discuss various aspects of the proposed array antennas with the wideband and wide-scan operation. Additionally, we discuss the significance of the phased array antenna in 5G communication. Moreover, we describe the current research challenges and future directions for CSA-based phased array antennas.

17.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499593

RESUMO

A first-principles calculation based on DFT investigations on the structural, optoelectronic, and thermoelectric characteristics of the newly designed pyrochlore oxides La2Tm2O7 (Tm = Hf, Zr) is presented in this study. The main quest of the researchers working in the field of renewable energy is to manufacture suitable materials for commercial applications such as thermoelectric and optoelectronic devices. From the calculated structural properties, it is evident that La2Hf2O7 is more stable compared to La2Zr2O7. La2Hf2O7 and La2Zr2O7 are direct bandgap materials having energy bandgaps of 4.45 and 4.40 eV, respectively. No evidence regarding magnetic moment is obtained from the spectra of TDOS, as a similar overall profile for both spin channels can be noted. In the spectra of ε2(ω), it is evident that these materials absorb maximum photons in the UV region and are potential candidates for photovoltaic device applications. La2Tm2O7 (Tm = Hf, Zr) are also promising candidates for thermoelectric device applications, as these p-type materials possess ZT values of approximately 1, which is the primary criterion for efficient thermoelectric materials.


Assuntos
Comércio , Óxidos , Fenômenos Físicos , Fótons , Energia Renovável
18.
J Food Sci Technol ; 59(8): 3296-3306, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35876768

RESUMO

The effect of Aloe vera (AV) gel coating was studied on antioxidant enzymes activities, oxidative stress, softening and associated quality attributes of persimmon fruits. The fruits were coated with 0 and 50% AV-gel coating and stored for 20 days at 20 ± 1 ºC. AV-gel coated fruits exhibited considerably less weight loss, hydrogen peroxide level, electrolyte leakage and malondialdehyde content. AV-gel coated fruits had significantly higher ascorbate peroxidase, peroxidase, superoxide dismutase and catalase activities. In addition, AV-gel coating suppressed pectin methylesterase, polygalacturonase and cellulase activities and showed higher ascorbic acid, DPPH scavenging antioxidants and phenolics, and lower sugars and carotenoids. To the best of our knowledge, these results are the first evidence that AV-gel coating modulates the activities of cell wall degrading enzymes to delay ripening in climacteric fruits. So, AV-gel coating prohibited the onset of senescence by activating enzymatic antioxidant system, accumulating bioactive compounds and suppressing cell wall degradation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05412-5.

19.
Environ Res ; 201: 111587, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181921

RESUMO

Water contamination by hazardous organic pollutants poses an extreme threat to the environment and globally endangers aquatic life and human health. Hence, the removal of toxic organic effluents from water sources is necessary to ensure a healthy green environment. To this end, a new class of emerging, visible-light-driven Zn- and Ni-based ternary metal-selenide (Zn1-xNixSe) nanophotocatalysts, with tunable nanostructures via regulation of the stoichiometric ratios of Zn and Ni, were synthesized for efficient water purification by a facile one-pot hydrothermal process. These catalysts exhibit outstanding porous properties, with large surface areas and average particle sizes of around 80 ± 10 nm. The as-prepared ternary Zn1-xNixSe catalysts enable improved optical properties, intrinsic conductivity, bandgap reductions, and large numbers of active sites compared with pristine materials, thereby exhibiting outstanding degradation properties against various dye molecules, including Congo red, methyl orange, and chrome-IV upon visible light irradiation. The improved photodegradation capabilities of the Zn1-xNixSe catalysts may be attributed to the synergistic combinations of Zn and Ni selenides, which in turn minimize the recombination rates of the photogenerated carriers compared to their individual constituents. These findings clearly demonstrate that the proposed ternary Zn1-xNixSe catalysts could be potentially used to remove toxic organic contaminants from industrial wastewater.


Assuntos
Vermelho Congo , Nanoestruturas , Compostos Azo , Corantes , Humanos , Águas Residuárias , Zinco
20.
An Acad Bras Cienc ; 93(suppl 4): e20201561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34878046

RESUMO

The purpose of present study was to prepare transdermal therapeutic system that could enhance dissolution of poorly aqueous soluble drug Celecoxib and thus increase its skin permeation. Solubility studies screened triacetin as oil, cremophor RH 40 as surfactant and Polyethylene Glycol 400 as co-surfactant. Pseudoternary phase diagrams were constructed to find out microemulsion region. Independent variables (oil, Smix and water) concentration was used at high (+1) and low levels (-1) that would generate 17 different combinations of microemulsions. Microemulsions were characterized, optimized and evaluated. pH, viscosity, conductivities, refractive index, droplet size and poly-dispersity-index was investigated. Prepared microemulsions were oil in water, thermodynamically stable, isotropic, transparent, deflocculated and within narrow range of size. Mathematical equations and response surface plots related the independent and dependent variables. Optimum microemulsion ME6 was further incorporated with carbomer 940 gel base to produce microemulsion based gel. ME6 and its gel showed significant difference (p<0.05) from control gel. Stability studies showed prepared MEBG of celecoxib was stable during storage period. Skin irritation studies found the gel was safe and non-irritating to skin. Anti-inflammatory studies showed significant difference (p<0.05) compared to control gel. Thus, the therapeutic system was successfully developed and optimized using Box Behnken statistical design.


Assuntos
Artrite Reumatoide , Absorção Cutânea , Administração Cutânea , Celecoxib , Emulsões , Humanos , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA