Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Biol Sci ; 291(2025): 20240256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889786

RESUMO

Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.


Assuntos
Fenótipo , Tetrahymena thermophila , Tetrahymena thermophila/fisiologia , Temperatura , Adaptação Fisiológica
2.
Proc Biol Sci ; 291(2021): 20240220, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654642

RESUMO

Climate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard (Zootoca vivipara) over three years. While the strength of effects varied over the years, we found that a 2°C warmer climate decreases lizard gut microbiome diversity in isolated habitats. However, enabling connectivity among habitats with warmer and cooler climates offset or even reversed warming effects. The warming effects and the association between host dispersal behaviour and microbiome diversity appear to be a potential driver of this interplay. This study suggests that preserving habitat connectivity will play a key role in mitigating climate change impacts, including the diversity of the gut microbiome, and calls for more studies combining multiple anthropogenic stressors when predicting the persistence of species and communities through global changes.


Assuntos
Mudança Climática , Ecossistema , Microbioma Gastrointestinal , Lagartos , Animais , Lagartos/fisiologia , Lagartos/microbiologia , Biodiversidade
3.
J Anim Ecol ; 93(2): 221-230, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38192091

RESUMO

Intraspecific trait variation (ITV), potentially driven by genetic and non-genetic mechanisms, can underlie variability in resource acquisition, individual fitness and ecological interactions. Impacts of ITV at higher levels of biological organizations are hence likely, but up-scaling our knowledge about ITV importance to communities and comparing its relative effects at population and community levels has rarely been investigated. Here, we tested the effects of genetic and non-genetic ITV on morphological traits in microcosms of protist communities by contrasting the effects of strains showing different ITV levels (i.e. trait averages and variance) on population growth, community composition and biomass production. We found that genetic and non-genetic ITV can lead to different effects on populations and communities across several generations. Furthermore, the effects of ITV declined across levels of biological organization: ITV directly altered population performance, with cascading but indirect consequences for community composition and biomass productivity. Overall, these results show that the drivers of ITV can have distinct effects on populations and communities, with cascading impacts on higher levels of biological organization that might mediate biodiversity-ecosystem functioning relationships.


Assuntos
Biodiversidade , Ecossistema , Animais , Biomassa , Fenótipo , Variação Biológica da População
4.
Am Nat ; 201(3): 363-375, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848519

RESUMO

AbstractDispersal is a key process mediating ecological and evolutionary dynamics. Its effects on the dynamics of spatially structured systems, population genetics, and species range distribution can depend on phenotypic differences between dispersing and nondispersing individuals. However, scaling up the importance of resident-disperser differences to communities and ecosystems has rarely been considered, in spite of intraspecific phenotypic variability being an important factor mediating community structure and productivity. Here, we used the ciliate Tetrahymena thermophila, in which phenotypic traits are known to differ between residents and dispersers, to test (i) whether these resident-disperser differences affect biomass and composition in competitive communities composed of four other Tetrahymena species and (ii) whether these effects are genotype dependent. We found that dispersers led to a lower community biomass compared with residents. This effect was highly consistent across the 20 T. thermophila genotypes used, despite intraspecific variability in resident-disperser phenotypic differences. We also found a significant genotypic effect on biomass production, showing that intraspecific variability has consequences for communities. Our study suggests that individual dispersal strategy can scale up to community productivity in a predictable way, opening new perspectives to the functioning of spatially structured ecosystems.


Assuntos
Evolução Biológica , Ecossistema , Humanos , Biomassa , Genótipo , Fenótipo
5.
Ecol Lett ; 25(11): 2410-2421, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36198081

RESUMO

Dispersal plasticity, when organisms adjust their dispersal decisions depending on their environment, can play a major role in ecological and evolutionary dynamics, but how it relates to fitness remains scarcely explored. Theory predicts that high dispersal plasticity should evolve when environmental gradients have a strong impact on fitness. Using microcosms, we tested in five species of the genus Tetrahymena whether dispersal plasticity relates to differences in fitness sensitivity along three environmental gradients. Dispersal plasticity was species- and environment-dependent. As expected, dispersal plasticity was generally related to fitness sensitivity, with higher dispersal plasticity when fitness is more affected by environmental gradients. Individuals often preferentially disperse out of low fitness environments, but leaving environments that should yield high fitness was also commonly observed. We provide empirical support for a fundamental, but largely untested, assumption in dispersal theory: the extent of dispersal plasticity correlates with fitness sensitivity to the environment.


Assuntos
Evolução Biológica , Humanos
6.
Ecol Lett ; 25(12): 2675-2687, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36223413

RESUMO

Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.


Assuntos
Evolução Biológica , Ecossistema , Animais , Síndrome , Fenótipo
7.
Proc Biol Sci ; 288(1953): 20210428, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34187192

RESUMO

Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.


Assuntos
Adaptação Fisiológica , Ecossistema , Fenótipo
8.
Proc Natl Acad Sci U S A ; 115(47): 11988-11993, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397109

RESUMO

Limited dispersal is classically considered as a prerequisite for ecological specialization to evolve, such that generalists are expected to show greater dispersal propensity compared with specialists. However, when individuals choose habitats that maximize their performance instead of dispersing randomly, theory predicts dispersal with habitat choice to evolve in specialists, while generalists should disperse more randomly. We tested whether habitat choice is associated with thermal niche specialization using microcosms of the ciliate Tetrahymena thermophila, a species that performs active dispersal. We found that thermal specialists preferred optimal habitats as predicted by theory, a link that should make specialists more likely to track suitable conditions under environmental changes than expected under the random dispersal assumption. Surprisingly, generalists also performed habitat choice but with a preference for suboptimal habitats. Since this result challenges current theory, we developed a metapopulation model to understand under which circumstances such a preference for suboptimal habitats should evolve. We showed that competition between generalists and specialists may favor a preference for niche margins in generalists under environmental variability. Our results demonstrate that the behavioral dimension of dispersal-here, habitat choice-fundamentally alters our predictions of how dispersal evolve with niche specialization, making dispersal behaviors crucial for ecological forecasting facing environmental changes.


Assuntos
Biota/fisiologia , Comportamento Competitivo/fisiologia , Tetrahymena thermophila/fisiologia , Animais , Evolução Biológica , Cilióforos/fisiologia , Ecossistema , Especialização , Especificidade da Espécie , Temperatura , Territorialidade
9.
Proc Biol Sci ; 287(1919): 20192818, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31992166

RESUMO

Habitat fragmentation is expected to reduce dispersal movements among patches as a result of increased inter-patch distances. Furthermore, since habitat fragmentation is expected to raise the costs of moving among patches in the landscape, it should hamper the ability or tendency of organisms to perform informed dispersal decisions. Here, we used microcosms of the ciliate Tetrahymena thermophila to test experimentally whether habitat fragmentation, manipulated through the length of corridors connecting patches differing in temperature, affects habitat choice. We showed that a twofold increase of inter-patch distance can as expected hamper the ability of organisms to choose their habitat at immigration. Interestingly, it also increased their habitat choice at emigration, suggesting that organisms become choosier in their decision to either stay or leave their patch when obtaining information about neighbouring patches gets harder. This study points out that habitat fragmentation might affect not only dispersal rate but also the level of non-randomness of dispersal, with emigration and immigration decisions differently affected. These consequences of fragmentation might considerably modify ecological and evolutionary dynamics of populations facing environmental changes.


Assuntos
Cilióforos/fisiologia , Ecossistema , Temperatura , Territorialidade
10.
Am Nat ; 194(5): 613-626, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31613674

RESUMO

Evolutionary ecology studies have increasingly focused on the impact of intraspecific variability on population processes. However, the role such variation plays in the dynamics of spatially structured populations and how it interacts with environmental changes remains unclear. Here we experimentally quantify the relative importance of intraspecific variability in dispersal-related traits and spatiotemporal variability of environmental conditions for the dynamics of two-patch metapopulations using clonal genotypes of a ciliate in connected microcosms. We demonstrate that in our simple two-patch microcosms, differences among genotypes are at least as important as spatiotemporal variability of resources for metapopulation dynamics. Furthermore, we show that an important proportion of this effect results from variability of dispersal syndromes. These syndromes can therefore be as important for metapopulation dynamics as spatiotemporal variability of environmental conditions. This study demonstrates that intraspecific variability in dispersal syndromes can be key in the functioning of metapopulations facing environmental changes.


Assuntos
Análise Espaço-Temporal , Tetrahymena thermophila/fisiologia , Ecossistema , Genótipo , Modelos Biológicos , Dinâmica Populacional , Tetrahymena thermophila/genética
11.
Proc Biol Sci ; 286(1914): 20192227, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662087

RESUMO

Species interactions are central in predicting the impairment of biodiversity with climate change. Trophic interactions may be altered through climate-dependent changes in either predator food preferences or prey communities. Yet, climate change impacts on predator diet remain surprisingly poorly understood. We experimentally studied the consequences of 2°C warmer climatic conditions on the trophic niche of a generalist lizard predator. We used a system of semi-natural mesocosms housing a variety of invertebrate species and in which climatic conditions were manipulated. Lizards in warmer climatic conditions ate at a greater predatory to phytophagous invertebrate ratio and had smaller individual dietary breadths. These shifts mainly arose from direct impacts of climate on lizard diets rather than from changes in prey communities. Dietary changes were associated with negative changes in fitness-related traits (body condition, gut microbiota) and survival. We demonstrate that climate change alters trophic interactions through top-predator dietary shifts, which might disrupt eco-evolutionary dynamics.


Assuntos
Mudança Climática , Dieta , Cadeia Alimentar , Animais , Biodiversidade , Evolução Biológica , Comportamento Predatório
12.
Mol Ecol ; 27(7): 1727-1738, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29533479

RESUMO

The microbiota has a broad range of impacts on host physiology and behaviour, pointing out the need to improve our comprehension of the drivers of host-microbiota composition. Of particular interest is whether the microbiota is acquired passively, or whether and to what extent hosts themselves shape the acquisition and maintenance of their microbiota. In birds, the uropygial gland produces oily secretions used to coat feathers that have been suggested to act as an antimicrobial defence mechanism regulating body feather microbiota. However, our comprehension of this process is still limited. In this study, we for the first time coupled high-throughput sequencing of the microbiota of both body feathers and the direct environment (i.e., the nest) in great tits with chemical analyses of the composition of uropygial gland secretions to examine whether host chemicals have either specific effects on some bacteria or nonspecific broad-spectrum effects on the body feather microbiota. Using a network approach investigating the patterns of co-occurrence or co-exclusions between chemicals and bacteria within the body feather microbiota, we found no evidence for specific promicrobial or antimicrobial effects of uropygial gland chemicals. However, we found that one group of chemicals was negatively correlated to bacterial richness on body feathers, and a higher production of these chemicals was associated with a poorer body feather bacterial richness compared to the nest microbiota. Our study provides evidence that chemicals produced by the host might function as a nonspecific broad-spectrum antimicrobial defence mechanism limiting colonization and/or maintenance of bacteria on body feathers, providing new insight about the drivers of the host's microbiota composition in wild organisms.


Assuntos
Animais Selvagens/microbiologia , Plumas/química , Plumas/microbiologia , Microbiota , Passeriformes/microbiologia , Animais , Animais Selvagens/anatomia & histologia , Biodiversidade , Meio Ambiente , Feminino , Masculino , Comportamento de Nidação , Passeriformes/anatomia & histologia
13.
J Anim Ecol ; 87(6): 1738-1748, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101503

RESUMO

Coexistence between great tits Parus major and blue tits Cyanistes caeruleus, but also other hole-nesting taxa, constitutes a classic example of species co-occurrence resulting in potential interference and exploitation competition for food and for breeding and roosting sites. However, the spatial and temporal variations in coexistence and its consequences for competition remain poorly understood. We used an extensive database on reproduction in nest boxes by great and blue tits based on 87 study plots across Europe and Northern Africa during 1957-2012 for a total of 19,075 great tit and 16,729 blue tit clutches to assess correlative evidence for a relationship between laying date and clutch size, respectively, and density consistent with effects of intraspecific and interspecific competition. In an initial set of analyses, we statistically controlled for a suite of site-specific variables. We found evidence for an effect of intraspecific competition on blue tit laying date (later laying at higher density) and clutch size (smaller clutch size at higher density), but no evidence of significant effects of intraspecific competition in great tits, nor effects of interspecific competition for either species. To further control for site-specific variation caused by a range of potentially confounding variables, we compared means and variances in laying date and clutch size of great and blue tits among three categories of difference in density between the two species. We exploited the fact that means and variances are generally positively correlated. If interspecific competition occurs, we predicted a reduction in mean and an increase in variance in clutch size in great tit and blue tit when density of heterospecifics is higher than the density of conspecifics, and for intraspecific competition, this reduction would occur when density of conspecifics is higher than the density of heterospecifics. Such comparisons of temporal patterns of means and variances revealed evidence, for both species, consistent with intraspecific competition and to a smaller extent with interspecific competition. These findings suggest that competition associated with reproductive behaviour between blue and great tits is widespread, but also varies across large spatial and temporal scales.


Assuntos
Passeriformes , África do Norte , Animais , Tamanho da Ninhada , Europa (Continente) , Feminino , Reprodução
14.
J Anim Ecol ; 84(5): 1373-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25902764

RESUMO

1. Dispersal is increasingly recognized as being an informed process, based on information organisms obtain about the landscape. While local conditions are often found to drive dispersal decisions, local context is not always a reliable predictor of conditions in neighbouring patches, making the use of local information potentially useless or even maladaptive. In this case, using social information gathered by immigrants might allow adjusting dispersal decisions without paying the costs of prospecting. However, this hypothesis has been largely neglected despite its major importance for ecological and evolutionary processes. 2. We investigated three fundamental questions about immigrant-informed dispersal: Do immigrants convey information that influences dispersal, do organisms use multiple cues from immigrants, and is immigrant-informed dispersal genotype dependent? 33. Using Tetrahymena thermophila ciliates in microcosms, we manipulated the number of immigrants arriving, the density of congeners, the resource quality in neighbouring patches, matrix characteristics and the level of cooperation of individuals in the neighbouring populations. 4. We provide the first experimental evidence that immigrants convey a number of different cues about neighbouring patches and matrix (patch quality, matrix characteristics and cooperation in neighbouring populations) in this relatively simple organism. Furthermore, we demonstrate genotype-dependent immigrant-informed dispersal decisions about patch quality and matrix characteristics. 5. Multiple cues from immigrants and genotype-dependent use of cues have major implications for theoretical metapopulation dynamics and the potential for local adaptation.


Assuntos
Tetrahymena thermophila/fisiologia , Genótipo , Dinâmica Populacional , Tetrahymena thermophila/genética
15.
BMC Evol Biol ; 14: 134, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24938652

RESUMO

BACKGROUND: Parasites exert important selective pressures on host life history traits. In birds, feathers are inhabited by numerous microorganisms, some of them being able to degrade feathers or lead to infections. Preening feathers with secretions of the uropygial gland has been found to act as an antimicrobial defence mechanism, expected to regulate feather microbial communities and thus limit feather abrasion and infections. Here, we used an experimental approach to test whether Great tits (Parus major) modify their investment in the uropygial gland in response to differences in environmental microorganisms. RESULTS: We found that males, but not females, modified the size of their gland when exposed to higher bacterial densities on feathers. We also identified 16 wax esters in the uropygial gland secretions. The relative abundance of some of these esters changed in males and females, while the relative abundance of others changed only in females when exposed to greater bacterial loads on feathers. CONCLUSION: Birds live in a bacterial world composed of commensal and pathogenic microorganisms. This study provides the first experimental evidence for modifications of investment in the defensive trait that is the uropygial gland in response to environmental microorganisms in a wild bird.


Assuntos
Plumas/microbiologia , Microbiota , Passeriformes/microbiologia , Glândulas Sebáceas/anatomia & histologia , Glândulas Sebáceas/fisiologia , Animais , Animais Selvagens , Feminino , Masculino , Comportamento de Nidação , Tamanho do Órgão , Passeriformes/anatomia & histologia , Passeriformes/fisiologia
16.
Naturwissenschaften ; 101(11): 929-38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25228345

RESUMO

Parasites are known to exert selective pressures on host life history traits since the energy and nutrients needed to mount an immune response are no longer available to invest in other functions. Bird feathers harbour numerous microorganisms, some of which are able to degrade feather keratin (keratinolytic microorganisms) and affect feather integrity and colouration in vitro. Although named "feather-degrading" microorganisms, experimental evidence for their effects on feathers of free-living birds is still lacking. Here, we tested whether (i) keratinolytic microorganisms can degrade feathers in vivo and thus modify the colour of feathers during the nesting period and (ii) whether feather microorganisms have a long-term effect on the investment in colouration of newly moulted feathers. We designed treatments to either favour or inhibit bacterial growth, thus experimentally modifying plumage bacterial communities, in a wild breeding population of great tits (Parus major). Our analyses revealed no significant effects of the treatments on feather colours. Moreover, we found that differences in bacterial exposure during nesting did not significantly affect the colouration of newly moulted feathers. Our results suggest that significant feather degradation obtained during in vitro studies could have led to an overestimation of the potential of keratinolytic microorganisms to shape feather colouration in free-living birds.


Assuntos
Bactérias/metabolismo , Plumas/microbiologia , Passeriformes/microbiologia , Pigmentação/fisiologia , Animais , Feminino , Masculino , Microbiota , Fatores Sexuais
17.
Ecol Evol ; 14(4): e11291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660468

RESUMO

In freshwater habitats, aerobic animals and microorganisms can react to oxygen deprivation by a series of behavioural and physiological changes, either as a direct consequence of hindered performance or as adaptive responses towards hypoxic conditions. Since oxygen availability can vary throughout the water column, different strategies exist to avoid hypoxia, including that of active 'flight' from low-oxygen sites. Alternatively, some organisms may invest in slower movement, saving energy until conditions return to more favourable levels, which may be described as a 'sit-and-wait' strategy. Here, we aimed to determine which, if any, of these strategies could be used by the freshwater ciliate Tetrahymena thermophila when faced with decreasing levels of oxygen availability in the culture medium. We manipulated oxygen flux into clonal cultures of six strains (i.e. genotypes) and followed their growth kinetics for several weeks using automated image analysis, allowing to precisely quantify changes in density, morphology and movement patterns. Oxygen effects on demography and morphology were comparable across strains: reducing oxygen flux decreased the growth rate and maximal density of experimental cultures, while greatly expanding the duration of their stationary phase. Cells sampled during their exponential growth phase were larger and had a more elongated shape under hypoxic conditions, likely mirroring a shift in resource investment towards individual development rather than frequent divisions. In addition to these general patterns, we found evidence for intraspecific variability in movement responses to oxygen limitation. Some strains showed a reduction in swimming speed, potentially associated with a 'sit-and-wait' strategy; however, the frequent alteration of movement paths towards more linear trajectories also suggests the existence of an inducible 'flight response' in this species. Considering the inherent costs of turns associated with non-linear movement, such a strategy may allow ciliates to escape suboptimal environments at a low energetic cost.

18.
Trends Ecol Evol ; 39(1): 41-51, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37718228

RESUMO

Phenotypic plasticity can allow organisms to cope with environmental changes. Although reaction norms are commonly used to quantify plasticity along gradients of environmental conditions, they often miss the temporal dynamics of phenotypic change, especially the speed at which it occurs. Here, we argue that studying the rate of phenotypic plasticity is a crucial step to quantify and understand its adaptiveness. Iteratively measuring plastic traits allows us to describe the actual dynamics of phenotypic changes and avoid quantifying reaction norms at times that do not truly reflect the organism's capacity for plasticity. Integrating the temporal component in how we describe, quantify, and conceptualise phenotypic plasticity can change our understanding of its diversity, evolution, and consequences.


Assuntos
Evolução Biológica , Meio Ambiente , Adaptação Fisiológica , Fenótipo
19.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230137, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913055

RESUMO

Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Temperatura , Ecossistema , Biota , Tetrahymena/fisiologia , Fenótipo
20.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206129

RESUMO

The extent of intraspecific genomic variation is key to understanding species evolutionary history, including recent adaptive shifts. Intraspecific genomic variation remains poorly explored in eukaryotic micro-organisms, especially in the nuclear dimorphic ciliates, despite their fundamental role as laboratory model systems and their ecological importance in many ecosystems. We sequenced the macronuclear genome of 22 laboratory strains of the oligohymenophoran Tetrahymena thermophila, a model species in both cellular biology and evolutionary ecology. We explored polymorphisms at the junctions of programmed eliminated sequences, and reveal their utility to barcode very closely related cells. As for other species of the genus Tetrahymena, we confirm micronuclear centromeres as gene diversification centres in T. thermophila, but also reveal a two-speed evolution in these regions. In the rest of the genome, we highlight recent diversification of genes coding for extracellular proteins and cell adhesion. We discuss all these findings in relation to this ciliate's ecology and cellular characteristics.


Assuntos
Tetrahymena thermophila , Tetrahymena thermophila/genética , Ecossistema , Genômica , Eucariotos , Laboratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA