Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7986): 397-405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914940

RESUMO

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Assuntos
Encéfalo , Colesterol , Células-Tronco Pluripotentes Induzidas , Microglia , Células-Tronco Neurais , Neurogênese , Organoides , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Microglia/metabolismo , Organoides/citologia , Organoides/metabolismo , Colesterol/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Axônios , Proliferação de Células , Ésteres/metabolismo , Gotículas Lipídicas/metabolismo
2.
Annu Rev Neurosci ; 41: 139-161, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29618286

RESUMO

The addition of new neurons and oligodendroglia in the postnatal and adult mammalian brain presents distinct forms of gray and white matter plasticity. Substantial effort has been devoted to understanding the cellular and molecular mechanisms controlling postnatal neurogenesis and gliogenesis, revealing important parallels to principles governing the embryonic stages. While during central nervous system development, scripted temporal and spatial patterns of neural and glial progenitor proliferation and differentiation are necessary to create the nervous system architecture, it remains unclear what driving forces maintain and sustain postnatal neural stem cell (NSC) and oligodendrocyte progenitor cell (OPC) production of new neurons and glia. In recent years, neuronal activity has been identified as an important modulator of these processes. Using the distinct properties of neurotransmitter ionotropic and metabotropic channels to signal downstream cellular events, NSCs and OPCs share common features in their readout of neuronal activity patterns. Here we review the current evidence for neuronal activity-dependent control of NSC/OPC proliferation and differentiation in the postnatal brain, highlight some potential mechanisms used by the two progenitor populations, and discuss future studies that might advance these research areas further.


Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Neurogênese , Neuroglia/fisiologia , Neurônios/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Células-Tronco Neurais , Neurotransmissores/metabolismo , Células Precursoras de Oligodendrócitos
3.
Semin Cell Dev Biol ; 116: 10-15, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293232

RESUMO

Neuron-glial interactions shape neural circuit establishment, refinement and function. One of the key neuron-glial interactions takes place between axons and oligodendroglial precursor cells. Interactions between neurons and oligodendrocyte precursor cells (OPCs) promote OPC proliferation, generation of new oligodendrocytes and myelination, shaping myelin development and ongoing adaptive myelin plasticity in the brain. Communication between neurons and OPCs can be broadly divided into paracrine and synaptic mechanisms. Following the Nobel mini-symposium "The Dark Side of the Brain" in late 2019 at the Karolinska Institutet, this mini-review will focus on the bright and dark sides of neuron-glial interactions and discuss paracrine and synaptic interactions between neurons and OPCs and their malignant counterparts.


Assuntos
Bainha de Mielina/fisiologia , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Humanos
5.
EMBO J ; 33(18): 2020-39, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25063673

RESUMO

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5' tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage.


Assuntos
Regulação da Expressão Gênica , Metiltransferases/metabolismo , Doenças do Sistema Nervoso/congênito , Doenças do Sistema Nervoso/patologia , RNA de Transferência/metabolismo , Animais , Encéfalo/patologia , Perfilação da Expressão Gênica , Humanos , Metilação , Metiltransferases/genética , Camundongos , Estresse Oxidativo , Ribonuclease Pancreático/metabolismo
6.
Glia ; 65(2): 309-321, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27796063

RESUMO

Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10-positive oligodendrocytes, that endogenously released GABA, acting on GABAA receptors, greatly reduces the number of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myelination but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lineage cell number when applied alone, it was able to completely abolish the effect of blocking GABAA receptors, suggesting that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast, block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that, during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction velocity of action potentials within the CNS. GLIA 2017;65:309-321.


Assuntos
Axônios/fisiologia , Córtex Cerebral/citologia , Bainha de Mielina/metabolismo , Oligodendroglia/fisiologia , Organogênese/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Córtex Cerebral/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Transgênicos , Bainha de Mielina/ultraestrutura , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/ultraestrutura , Técnicas de Cultura de Órgãos , Organogênese/efeitos dos fármacos , Quinoxalinas/farmacologia , Receptores de GABA/genética , Receptores de GABA/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/farmacologia
7.
PLoS Biol ; 11(12): e1001743, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24391468

RESUMO

Myelination is essential for rapid impulse conduction in the CNS, but what determines whether an individual axon becomes myelinated remains unknown. Here we show, using a myelinating coculture system, that there are two distinct modes of myelination, one that is independent of neuronal activity and glutamate release and another that depends on neuronal action potentials releasing glutamate to activate NMDA receptors on oligodendrocyte lineage cells. Neuregulin switches oligodendrocytes from the activity-independent to the activity-dependent mode of myelination by increasing NMDA receptor currents in oligodendrocyte lineage cells 6-fold. With neuregulin present myelination is accelerated and increased, and NMDA receptor block reduces myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. In vivo, we demonstrate that remyelination after white matter damage is NMDA receptor-dependent. These data resolve controversies over the signalling regulating myelination and suggest novel roles for neuregulin in schizophrenia and in remyelination after white matter damage.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Bainha de Mielina/fisiologia , Neurregulinas/fisiologia , Oligodendroglia/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Cocultura/métodos , Feminino , Neuregulina-1/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
8.
Brain ; 138(Pt 11): 3345-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26220942

RESUMO

Tauopathies, such as Alzheimer's disease, some cases of frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy, are characterized by aggregates of the microtubule-associated protein tau, which are linked to neuronal death and disease development and can be caused by mutations in the MAPT gene. Six tau isoforms are present in the adult human brain and they differ by the presence of 3(3R) or 4(4R) C-terminal repeats. Only the shortest 3R isoform is present in foetal brain. MAPT mutations found in human disease affect tau binding to microtubules or the 3R:4R isoform ratio by altering exon 10 splicing. We have differentiated neurons from induced pluripotent stem cells derived from fibroblasts of controls and patients with N279K and P301L MAPT mutations. Induced pluripotent stem cell-derived neurons recapitulate developmental tau expression, showing the adult brain tau isoforms after several months in culture. Both N279K and P301L neurons exhibit earlier electrophysiological maturation and altered mitochondrial transport compared to controls. Specifically, the N279K neurons show abnormally premature developmental 4R tau expression, including changes in the 3R:4R isoform ratio and AT100-hyperphosphorylated tau aggregates, while P301L neurons are characterized by contorted processes with varicosity-like structures, some containing both alpha-synuclein and 4R tau. The previously unreported faster maturation of MAPT mutant human neurons, the developmental expression of 4R tau and the morphological alterations may contribute to disease development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Proteínas tau/genética , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Recém-Nascido , Masculino , Microscopia Confocal , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/patologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tauopatias , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
9.
Eur J Neurosci ; 42(7): 2372-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286226

RESUMO

The transition to scientific independence as a principal investigator (PI) can seem like a daunting and mysterious process to postdocs and students - something that many aspire to while at the same time wondering how to achieve this goal and what being a PI really entails. The FENS Kavli Network of Excellence (FKNE) is a group of young faculty who have recently completed this step in various fields of neuroscience across Europe. In a series of opinion pieces from FKNE scholars, we aim to demystify this process and to offer the next generation of up-and-coming PIs some advice and personal perspectives on the transition to independence, starting here with guidance on how to get hired to your first PI position. Rather than providing an exhaustive overview of all facets of the hiring process, we focus on a few key aspects that we have learned to appreciate in the quest for our own labs: What makes a research programme exciting and successful? How can you identify great places to apply to and make sure your application stands out? What are the key objectives for the job talk and the interview? How do you negotiate your position? And finally, how do you decide on a host institute that lets you develop both scientifically and personally in your new role as head of a lab?


Assuntos
Pesquisa Biomédica , Escolha da Profissão , Neurociências , Seleção de Pessoal , Pesquisadores , Europa (Continente) , Guias como Assunto , Humanos
10.
J Neurosci ; 33(30): 12407-22, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884946

RESUMO

Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Feto/citologia , Células-Tronco Neurais/citologia , Células Neuroepiteliais/citologia , Rombencéfalo/citologia , Animais , Transplante de Tecido Encefálico/métodos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Cerebelo/citologia , Técnicas de Cocultura , Fator de Crescimento Epidérmico/farmacologia , Células Alimentadoras , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Masculino , Camundongos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco/métodos
11.
Sci Rep ; 14(1): 4091, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374232

RESUMO

In the central nervous system, oligodendrocyte precursor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes throughout life, allowing for ongoing myelination and myelin repair. With age, differentiation efficacy decreases and myelin repair fails; therefore, recent therapeutic efforts have focused on enhancing differentiation. Many cues are thought to regulate OPC differentiation, including neuronal activity, which OPCs can sense and respond to via their voltage-gated ion channels and glutamate receptors. However, OPCs' density of voltage-gated ion channels and glutamate receptors differs with age and brain region, and correlates with their proliferation and differentiation potential, suggesting that OPCs exist in different functional cell states, and that age-associated states might underlie remyelination failure. Here, we use whole-cell patch-clamp to investigate whether clemastine and metformin, two pro-remyelination compounds, alter OPC membrane properties and promote a specific OPC state. We find that clemastine and metformin extend the window of NMDAR surface expression, promoting an NMDAR-rich OPC state. Our findings highlight a possible mechanism for the pro-remyelinating action of clemastine and metformin, and suggest that OPC states can be modulated as a strategy to promote myelin repair.


Assuntos
Metformina , Células Precursoras de Oligodendrócitos , Células Precursoras de Oligodendrócitos/metabolismo , Clemastina , Receptores de N-Metil-D-Aspartato/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia
12.
Cell Rep Med ; 4(9): 101175, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37652017

RESUMO

Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-ß plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.


Assuntos
Doença de Alzheimer , Microglia , Animais , Humanos , Camundongos , Astrócitos , Ingestão de Alimentos , Sinapses
13.
Nat Neurosci ; 11(4): 450-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18311136

RESUMO

A defining feature of glial cells has been their inability to generate action potentials. We show here that there are two distinct types of morphologically identical oligodendrocyte precursor glial cells (OPCs) in situ in rat CNS white matter. One type expresses voltage-gated sodium and potassium channels, generates action potentials when depolarized and senses its environment by receiving excitatory and inhibitory synaptic input from axons. The other type lacks action potentials and synaptic input. We found that when OPCs suffered glutamate-mediated damage, as occurs in cerebral palsy, stroke and spinal cord injury, the action potential-generating OPCs were preferentially damaged, as they expressed more glutamate receptors, and received increased spontaneous glutamatergic synaptic input in ischemia. These data challenge the idea that only neurons generate action potentials in the CNS and imply that the development of therapies for demyelinating disorders will require defining which OPC type can carry out remyelination.


Assuntos
Potenciais de Ação/fisiologia , Comunicação Celular/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/classificação , Transmissão Sináptica/fisiologia , Animais , Antígenos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Glutamatos/farmacologia , Técnicas In Vitro , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteoglicanas/metabolismo , Ratos , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Canais de Sódio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
14.
Neuroscientist ; 28(2): 144-162, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33567971

RESUMO

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes which myelinate axons in the central nervous system. Although classically thought to be a homogeneous population, OPCs are reported to have different developmental origins and display regional and temporal diversity in their transcriptome, response to growth factors, and physiological properties. Similarly, evidence is accumulating that myelinating oligodendrocytes display transcriptional heterogeneity. Analyzing this reported heterogeneity suggests that OPCs, and perhaps also myelinating oligodendrocytes, may exist in different functional cell states. Here, we review the evidence indicating that OPCs and oligodendrocytes are diverse, and we discuss the implications of functional OPC states for myelination in the adult brain and for myelin repair.


Assuntos
Bainha de Mielina , Oligodendroglia , Axônios/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula , Sistema Nervoso Central , Humanos , Bainha de Mielina/fisiologia , Oligodendroglia/metabolismo
15.
Front Cell Dev Biol ; 10: 968341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247014

RESUMO

Focalised hypoxia is widely prevalent in diseases such as stroke, cardiac arrest, and dementia. While in some cases hypoxia improves cellular functions, it mostly induces or exacerbates pathological changes. The lack of methodologies that can simulate focal acute hypoxia, in either animal or cell culture, impedes our understanding of the cellular consequences of hypoxia. To address this gap, an electrochemical localised oxygen scavenging system (eLOS), is reported, providing an innovative platform for spatiotemporal in vitro hypoxia modulation. The electrochemical system is modelled showing O2 flux patterns and localised O2 scavenging and hypoxia regions, as a function of distance from the electrode and surrounding flux barriers, allowing an effective focal hypoxia tool to be designed for in vitro cell culture study. O2 concentration is reduced in an electrochemically defined targeted area from normoxia to hypoxia in about 6 min depending on the O2-flux boundaries. As a result, a cell culture-well was designed, where localised O2 scavenging could be induced. The impact of localised hypoxia was demonstrated on human neural progenitor cells (hNPCs) and it was shown that miniature focal hypoxic insults can be induced, that evoke time-dependent HIF-1α transcription factor accumulation. This transcription is "patterned" across the culture according to the electrochemically induced spatiotemporal hypoxia gradient. A basic lacunar infarct model was also developed through the application of eLOS in a purpose designed microfluidic device. Miniature focal hypoxic insults were induced in cellular processes of fully oxygenated cell bodies, such as the axons of human cortical neurons. The results demonstrate experimentally that localised axonal hypoxic stress can lead to significant increase of neuronal death, despite the neurons remaining at normoxia. This suggests that focal hypoxic insult to axons alone is sufficient to impact surrounding neurons and may provide an in vitro model to study the impact of microinfarcts occurring in the deep cerebral white matter, as well as providing a promising tool for wider understanding of acute hypoxic insults with potential to uncover its pathophysiology in multiple diseases.

16.
Front Cell Dev Biol ; 10: 1118466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684444

RESUMO

[This corrects the article DOI: 10.3389/fcell.2022.968341.].

17.
J Comp Neurol ; 530(6): 871-885, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34599848

RESUMO

Myelination allows for the regulation of conduction velocity, affecting the precise timing of neuronal inputs important for the development and function of brain circuits. In turn, myelination may be altered by changes in experience, neuronal activity, and vesicular release, but the links between sensory experience, corresponding neuronal activity, and resulting alterations in myelination require further investigation. We thus studied the development of myelination in the Xenopus laevis tadpole, a classic model for studies of visual system development and function because it is translucent and visually responsive throughout the formation of its retinotectal system. We begin with a systematic characterization of the timecourse of early myelin ensheathment in the Xenopus retinotectal system using immunohistochemistry of myelin basic protein (MBP) along with third harmonic generation (THG) microscopy, a label-free structural imaging technique. Based on the mid-larval developmental progression of MBP expression in Xenopus, we identified an appropriate developmental window in which to assess the effects of early temporally patterned visual experience on myelin ensheathment. We used calcium imaging of axon terminals in vivo to characterize the responses of retinal ganglion cells over a range of stroboscopic stimulation frequencies. Strobe frequencies that reliably elicited robust versus dampened calcium responses were then presented to animals for 7 d, and differences in the amount of early myelin ensheathment at the optic chiasm were subsequently quantified. This study provides evidence that it is not just the presence but also to the specific temporal properties of sensory stimuli that are important for myelin plasticity.


Assuntos
Larva/crescimento & desenvolvimento , Bainha de Mielina/fisiologia , Retina/crescimento & desenvolvimento , Teto do Mesencéfalo/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Animais , Proteína Básica da Mielina/metabolismo , Células Ganglionares da Retina/fisiologia , Proteínas de Xenopus/metabolismo , Xenopus laevis
18.
Nat Commun ; 13(1): 2844, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606347

RESUMO

The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-ß1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.


Assuntos
Quinase 3 da Glicogênio Sintase , Células Neuroepiteliais , Diferenciação Celular/fisiologia , Córtex Cerebral , Humanos , Células-Tronco , Telencéfalo
19.
J Physiol ; 589(Pt 3): 559-73, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21098009

RESUMO

In the central nervous system, electrical signals passing along nerve cells are speeded by cells called oligodendrocytes, which wrap the nerve cells with a fatty layer called myelin. This layer is important for rapid information processing, and is often lost in disease, causing mental or physical impairment in multiple sclerosis, stroke, cerebral palsy and spinal cord injury. The myelin speeds the information flow in two ways, by decreasing the capacitance of the nerve cell and by increasing its membrane resistance, but little is known about the latter aspect of myelin function. By recording electrically from oligodendrocytes and imaging their morphology we characterised the geometry and, for the first time, the resistance of myelin in the brain. This revealed differences between the properties of oligodendrocytes in two brain areas and established that the resistance of myelin is sufficiently high to prevent significant slowing of the nerve electrical signal by current leakage through the myelin.


Assuntos
Cerebelo/fisiologia , Corpo Caloso/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Cerebelo/citologia , Simulação por Computador , Corpo Caloso/citologia , Capacitância Elétrica , Impedância Elétrica , Sinapses Elétricas/fisiologia , Modelos Neurológicos , Bainha de Mielina/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA