RESUMO
In the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and 2,6-lutidine, α,α-disubstituted aldehydes condense with electron-rich aromatic aldehydes to yield ß,ß-disubstituted styrenes. More electron-rich aromatic aldehydes react more rapidly and in higher yield. Preliminary results suggest that the reaction may proceed via the ionization and formal deformylation of an aldol intermediate.
RESUMO
BACKGROUND: Germinal matrix hemorrhage-intraventricular hemorrhage is among the most common intracranial complications in premature infants. Early detection is important to guide clinical management for improved patient prognosis. OBJECTIVE: The purpose of this study was to assess whether a convolutional neural network (CNN) can be trained via transfer learning to accurately diagnose germinal matrix hemorrhage on head ultrasound. MATERIALS AND METHODS: Over a 10-year period, 400 head ultrasounds performed in patients ages 6 months or younger were reviewed. Key sagittal images at the level of the caudothalamic groove were obtained from 200 patients with germinal matrix hemorrhage and 200 patients without hemorrhage; all images were reviewed by a board-certified pediatric radiologist. One hundred cases were randomly allocated from the total for validation and an additional 100 for testing of a CNN binary classifier. Transfer learning and data augmentation were used to train the model. RESULTS: The median age of patients was 0 weeks old with a median gestational age of 30 weeks. The final trained CNN model had a receiver operating characteristic area under the curve of 0.92 on the validation set and accuracy of 0.875 on the test set, with 95% confidence intervals of [0.86, 0.98] and [0.81, 0.94], respectively. CONCLUSION: A CNN trained on a small set of images with data augmentation can detect germinal matrix hemorrhage on head ultrasounds with strong accuracy.
Assuntos
Aprendizado Profundo , Algoritmos , Humanos , Lactente , Recém-Nascido , Redes Neurais de Computação , Curva ROC , UltrassonografiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of COVID-19, resulting in cases of mild to severe respiratory distress and significant mortality. The global outbreak of this novel coronavirus has now infected >20 million people worldwide, with >5 million cases in the United States (11 August 2020). The development of diagnostic and research tools to determine infection and vaccine efficacy is critically needed. We have developed multiple serologic assays using newly designed SARS-CoV-2 reagents for detecting the presence of receptor-binding antibodies in sera. The first assay is surface plasmon resonance (SPR) based and can quantitate both antibody binding to the SARS-CoV-2 spike protein and blocking to the Angiotensin-converting enzyme 2 (ACE2) receptor in a single experiment. The second assay is enzyme-linked immunosorbent assay (ELISA) based and can measure competition and blocking of the ACE2 receptor to the SARS-CoV-2 spike protein with antispike antibodies. The assay is highly versatile, and we demonstrate the broad utility of the assay by measuring antibody functionality of sera from small animals and nonhuman primates immunized with an experimental SARS-CoV-2 vaccine. In addition, we employ the assay to measure receptor blocking of sera from SARS-CoV-2-infected patients. The assay is shown to correlate with pseudovirus neutralization titers. This type of rapid, surrogate neutralization diagnostic can be employed widely to help study SARS-CoV-2 infection and assess the efficacy of vaccines.
Assuntos
Anticorpos Bloqueadores/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/diagnóstico , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Cobaias , Humanos , Imunoglobulina G/sangue , Camundongos , Testes de Neutralização , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Primatas , Coelhos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Ressonância de Plasmônio de Superfície , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologiaRESUMO
Latent Kaposi's sarcoma-associated herpesvirus (KSHV) episomes are coated with viral latency-associated nuclear antigen (LANA). In contrast, LANA rapidly disassociates from episomes during reactivation. Lytic KSHV expresses polyadenylated nuclear RNA (PAN RNA), a long noncoding RNA (lncRNA). We report that PAN RNA promotes LANA-episome disassociation through an interaction with LANA which facilitates LANA sequestration away from KSHV episomes during reactivation. These findings suggest that KSHV may have evolved an RNA aptamer to regulate latent protein function.
Assuntos
Antígenos Virais/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , RNA Viral/metabolismo , Antígenos Virais/genética , Herpesvirus Humano 8/genética , Humanos , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , RNA Viral/genética , Ativação ViralRESUMO
The small ubiquitin-like modifier (SUMO) is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL) which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif) and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML) and K-bZIP. PML-NBs (nuclear bodies) or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate unique gene regulatory programs.
Assuntos
Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Replicação Viral/fisiologia , Motivos de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células HEK293 , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/genética , Humanos , Proteínas Imediatamente Precoces/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica , Estrutura Terciária de Proteína , Proteólise , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/genética , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Kaposi's sarcoma-associated herpesvirus (KSHV) latent genomes are tethered to host histones to form a minichromosome also known as an "episome." Histones, which are core components of chromatin, are heavily modified by various histone-targeting enzymes. Posttranslational modifications of histones significantly influence accessibility of transcriptional factors and thus have profound effects on gene expression. Recent studies showed that epigenetic marks on the KSHV episome are well organized, exemplified by the absence of histone H3 lysine 9 (H3K9) methylation, a heterochromatic histone mark, from immediate early and latent gene promoters in naturally infected cells. The present study revealed a mechanistic insight into KSHV epigenome regulation via a complex consisting of LANA and the H3K9me1/2 histone demethylase JMJD1A/KDM3A. This complex was isolated from HeLa cell nuclear extracts stably expressing LANA and was verified by coimmunoprecipitation analyses and with purified proteins. LANA recruitment sites on the KSHV genome inversely correlated with H3K9me2 histone marks in naturally infected cells, and methylation of H3K9 significantly inhibited LANA binding to the histone H3 tail. Chromatin immunoprecipitation coupled with KSHV tiling arrays identified the recruitment sites of the complex, while depletion of LANA expression or overexpression of a KDM3A binding-deficient mutant decreased KDM3A recruitment to the KSHV genome. Finally, ablation of KDM3A expression from latently KSHV-infected cells significantly inhibited KSHV gene expression, leading to decreased KSHV replication during reactivation. Taken together, our results suggest that LANA may play a role in regulation of epigenetic marks on the KSHV genome, which is in part through association with the histone demethylase KDM3A.
Assuntos
Antígenos Virais/metabolismo , Epigênese Genética , Regulação Viral da Expressão Gênica/genética , Genoma Viral , Herpesvirus Humano 8/fisiologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Antígenos Virais/genética , Imunoprecipitação da Cromatina , Replicação do DNA , Células HEK293 , Células HeLa , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Latência ViralRESUMO
The Kaposi sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a multifunctional protein with roles in gene regulation and maintenance of viral latency. Post-translational modification of LANA is important for functional diversification. Here, we report that LANA is subject to arginine methylation by protein arginine methyltransferase 1 in vitro and in vivo. The major arginine methylation site in LANA was mapped to arginine 20. This site was mutated to either phenylalanine (bulky hydrophobic, constitutive methylated mimetic) or lysine (positively charged, non-arginine methylatable) residues. The significance of the methylation in LANA function was examined in both the isolated form and in the context of the viral genome through the generation of recombinant KSHV. In addition, authentic LANA binding sites on the KSHV episome in naturally infected cells were identified using a whole genome KSHV tiling array. Although mutation of the methylation site resulted in no significant difference in KSHV LANA subcellular localization, we found that the methylation mimetic mutation resulted in augmented histone binding in vitro and increased LANA occupancy at identified LANA target promoters in vivo. Moreover, a cell line carrying the methylation mimetic mutant KSHV showed reduced viral gene expression relative to controls both in latency and in the course of reactivation. These results suggest that residue 20 is important for modulation of a subset of LANA functions and properties of this residue, including the hydrophobic character induced by arginine methylation, may contribute to the observed effects.
Assuntos
Antígenos Virais/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Antígenos Virais/química , Antígenos Virais/genética , Arginina/metabolismo , Sequência de Bases , Sítios de Ligação , Cromatina/metabolismo , Engenharia Genética , Genoma Viral/genética , Células HEK293 , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Histonas/química , Histonas/metabolismo , Humanos , Espaço Intracelular/metabolismo , Metilação , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Transcrição Gênica , Latência ViralRESUMO
AAV gene transfer is a promising treatment for many patients with life-threatening genetic diseases. However, host immune response to the vector poses a significant challenge for the durability and safety of AAV-mediated gene therapy. Here, we characterize the innate immune response to AAV in human whole blood. We identified neutrophils, monocyte-related dendritic cells, and monocytes as the most prevalent cell subsets able to internalize AAV particles, while conventional dendritic cells were the most activated in terms of the CD86 co-stimulatory molecule upregulation. Although low titers (≤1:10) of AAV neutralizing antibodies (NAb) in blood did not have profound effects on the innate immune response to AAV, higher NAb titers (≥1:100) significantly increased pro-inflammatory cytokine/chemokine secretion, vector uptake by antigen presenting cells (APCs) and complement activation. Interestingly, both full and empty viral particles were equally potent in inducing complement activation and cytokine secretion. By using a compstatin-based C3 and C3b inhibitor, APL-9, we demonstrated that complement pathway inhibition lowered CD86 levels on APCs, AAV uptake, and cytokine/chemokine secretion in response to AAV. Together these results suggest that the pre-existing humoral immunity to AAV may contribute to trigger adverse immune responses observed in AAV-based gene therapy, and that blockade of complement pathway may warrant further investigation as a potential strategy for decreasing immunogenicity of AAV-based therapeutics.
Assuntos
Dependovirus , Vetores Genéticos , Anticorpos Neutralizantes , Citocinas/genética , Dependovirus/genética , Vetores Genéticos/genética , Humanos , Imunidade HumoralRESUMO
PURPOSE: To determine the effect of discontinuing routine oral contrast material on emergency department (ED) length of stay (LOS), time from order to CT completion, and preliminary report turnaround time (TAT). METHODS: A HIPAA-compliant, IRB-waived, single-institution, retrospective cohort study was conducted on adult patients presenting with abdominal pain to the ED from October 2015 to April 2019. Routine oral contrast material was administered prior to July 2018 and discontinued thereafter. CT workflow (ED LOS, exam completion time, report TAT) data were analyzed in a univariate analysis before and after discontinuation of oral contrast. Pre- versus post-policy data were compared with 2-sided t tests. The primary outcome was ED LOS. Data were analyzed on a process control chart and confidence limits were adjusted using established criteria. RESULTS: There were 5020 included abdominopelvic CTs. After routine oral contrast material was discontinued, ED LOS (13.4 h vs 10.7 h, p < 0.001) and time from CT order to CT completion (2.7 h vs 2.1 h, p < 0.001) declined. However, control chart analysis revealed improvement in overall LOS preceded the policy change by 9 months, while improvement in time to CT completion coincided with the policy change. Preliminary report TAT increased by 4 min after the policy change (29 min vs. 33 min, p < 0.001). CONCLUSIONS: Discontinuation of routine oral contrast material in the ED accelerated time to CT completion but had a minor non-significant effect on overall ED LOS. Much of the reduction in overall LOS likely was due to unrelated process improvements.
Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Adulto , Serviço Hospitalar de Emergência , Humanos , Tempo de Internação , Estudos RetrospectivosRESUMO
Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.
Assuntos
Infecções por Coronavirus/veterinária , Macaca mulatta/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas de DNA/uso terapêutico , Vacinas Virais/uso terapêutico , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina , Injeções Intradérmicas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genéticaRESUMO
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.
Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Pulmão/virologia , Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/uso terapêutico , Feminino , Injeções Intradérmicas , Macaca mulatta , Masculino , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/uso terapêutico , Carga ViralRESUMO
BACKGROUND: A vaccine against SARS-CoV-2 is of high urgency. Here the safety and immunogenicity induced by a DNA vaccine (INO-4800) targeting the full length spike antigen of SARS-CoV-2 are described. METHODS: INO-4800 was evaluated in two groups of 20 participants, receiving either 1.0 mg or 2.0 mg of vaccine intradermally followed by CELLECTRA® EP at 0 and 4 weeks. Thirty-nine subjects completed both doses; one subject in the 2.0 mg group discontinued trial participation prior to receiving the second dose. ClinicalTrials.gov identifier: NCT04336410. FINDINGS: The median age was 34.5, 55% (22/40) were men and 82.5% (33/40) white. Through week 8, only 6 related Grade 1 adverse events in 5 subjects were observed. None of these increased in frequency with the second administration. No serious adverse events were reported. All 38 subjects evaluable for immunogenicity had cellular and/or humoral immune responses following the second dose of INO-4800. By week 6, 95% (36/38) of the participants seroconverted based on their responses by generating binding (ELISA) and/or neutralizing antibodies (PRNT IC50), with responder geometric mean binding antibody titers of 655.5 [95% CI (255.6, 1681.0)] and 994.2 [95% CI (395.3, 2500.3)] in the 1.0 mg and 2.0 mg groups, respectively. For neutralizing antibody, 78% (14/18) and 84% (16/19) generated a response with corresponding geometric mean titers of 102.3 [95% CI (37.4, 280.3)] and 63.5 [95% CI (39.6, 101.8)], in the respective groups. By week 8, 74% (14/19) and 100% (19/19) of subjects generated T cell responses by IFN-É£ ELISpot assay with the median SFU per 106 PBMC of 46 [95% CI (21.1, 142.2)] and 71 [95% CI (32.2, 194.4)] in the 1.0 mg and 2.0 mg groups, respectively. Flow cytometry demonstrated a T cell response, dominated by CD8+ T cells co-producing IFN-É£ and TNF-α, without increase in IL-4. INTERPRETATION: INO-4800 demonstrated excellent safety and tolerability and was immunogenic in 100% (38/38) of the vaccinated subjects by eliciting either or both humoral or cellular immune responses. FUNDING: Coalition for Epidemic Preparedness Innovations (CEPI).
RESUMO
The need for a malaria vaccine is indisputable. A single vaccine for Plasmodium pre-erythrocytic stages targeting the major sporozoite antigen circumsporozoite protein (CSP) has had partial success. Additionally, CD8+ T cells targeting liver-stage (LS) antigens induced by live attenuated sporozoite vaccines were associated with protection in human challenge experiments. To further evaluate protection mediated by LS antigens, we focused on exported pre-erythrocytic proteins (exported protein 1 (EXP1), profilin (PFN), exported protein 2 (EXP2), inhibitor of cysteine proteases (ICP), transmembrane protein 21 (TMP21), and upregulated in infective sporozoites-3 (UIS3)) expressed in all Plasmodium species and designed optimized, synthetic DNA (synDNA) immunogens. SynDNA antigen cocktails were tested with and without the molecular adjuvant plasmid IL-33. Immunized animals developed robust T cell responses including induction of antigen-specific liver-localized CD8+ T cells, which were enhanced by the co-delivery of plasmid IL-33. In total, 100% of mice in adjuvanted groups and 71%-88% in non-adjuvanted groups were protected from blood-stage disease following Plasmodium yoelii sporozoite challenge. This study supports the potential of synDNA LS antigens as vaccine components for malaria parasite infection.
RESUMO
The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.
Assuntos
Antígenos Virais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Mapeamento de Epitopos , Cobaias , Imunidade Humoral , Imunoglobulina G/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio , Modelos Animais , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Vacinas Virais/químicaRESUMO
BACKGROUND: Middle East respiratory syndrome (MERS) coronavirus causes a highly fatal lower-respiratory tract infection. There are as yet no licensed MERS vaccines or therapeutics. This study (WRAIR-2274) assessed the safety, tolerability, and immunogenicity of the GLS-5300 MERS coronavirus DNA vaccine in healthy adults. METHODS: This study was a phase 1, open-label, single-arm, dose-escalation study of GLS-5300 done at the Walter Reed Army Institute for Research Clinical Trials Center (Silver Spring, MD, USA). We enrolled healthy adults aged 18-50 years; exclusion criteria included previous infection or treatment of MERS. Eligible participants were enrolled sequentially using a dose-escalation protocol to receive 0·67 mg, 2 mg, or 6 mg GLS-5300 administered by trained clinical site staff via a single intramuscular 1 mL injection at each vaccination at baseline, week 4, and week 12 followed immediately by co-localised intramuscular electroporation. Enrolment into the higher dose groups occurred after a safety monitoring committee reviewed the data following vaccination of the first five participants at the previous lower dose in each group. The primary outcome of the study was safety, assessed in all participants who received at least one study treatment and for whom post-dose study data were available, during the vaccination period with follow-up through to 48 weeks after dose 3. Safety was measured by the incidence of adverse events; administration site reactions and pain; and changes in safety laboratory parameters. The secondary outcome was immunogenicity. This trial is registered at ClinicalTrials.gov (number NCT02670187) and is completed. FINDINGS: Between Feb 17 and July 22, 2016, we enrolled 75 individuals and allocated 25 each to 0·67 mg, 2 mg, or 6 mg GLS-5300. No vaccine-associated serious adverse events were reported. The most common adverse events were injection-site reactions, reported in 70 participants (93%) of 75. Overall, 73 participants (97%) of 75 reported at least one solicited adverse event; the most common systemic symptoms were headache (five [20%] with 0·67 mg, 11 [44%] with 2 mg, and seven [28%] with 6 mg), and malaise or fatigue (five [20%] with 0·67 mg, seven [28%] with 2 mg, and two [8%] with 6 mg). The most common local solicited symptoms were administration site pain (23 [92%] with all three doses) and tenderness (21 [84%] with all three doses). Most solicited symptoms were reported as mild (19 [76%] with 0·67 mg, 20 [80%] with 2 mg, and 17 [68%] with 6 mg) and were self-limiting. Unsolicited symptoms were reported for 56 participants (75%) of 75 and were deemed treatment-related for 26 (35%). The most common unsolicited adverse events were infections, occurring in 27 participants (36%); six (8%) were deemed possibly related to study treatment. There were no laboratory abnormalities of grade 3 or higher that were related to study treatment; laboratory abnormalities were uncommon, except for 15 increases in creatine phosphokinase in 14 participants (three participants in the 0·67 mg group, three in the 2 mg group, and seven in the 6 mg group). Of these 15 increases, five (33%) were deemed possibly related to study treatment (one in the 2 mg group and four in the 6 mg group). Seroconversion measured by S1-ELISA occurred in 59 (86%) of 69 participants and 61 (94%) of 65 participants after two and three vaccinations, respectively. Neutralising antibodies were detected in 34 (50%) of 68 participants. T-cell responses were detected in 47 (71%) of 66 participants after two vaccinations and in 44 (76%) of 58 participants after three vaccinations. There were no differences in immune responses between dose groups after 6 weeks. At week 60, vaccine-induced humoral and cellular responses were detected in 51 (77%) of 66 participants and 42 (64%) of 66, respectively. INTERPRETATION: The GLS-5300 MERS coronavirus vaccine was well tolerated with no vaccine-associated serious adverse events. Immune responses were dose-independent, detected in more than 85% of participants after two vaccinations, and durable through 1 year of follow-up. The data support further development of the GLS-5300 vaccine, including additional studies to test the efficacy of GLS-5300 in a region endemic for MERS coronavirus. FUNDING: US Department of the Army and GeneOne Life Science.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , DNA Viral/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas Virais/imunologia , Adulto , Fadiga/induzido quimicamente , Feminino , Cefaleia/induzido quimicamente , Humanos , Imunidade Celular , Reação no Local da Injeção , Masculino , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Adulto JovemRESUMO
BACKGROUND: Translabial ultrasound (TUS) can provide an inexpensive alternative imaging modality for evaluating pelvic floor structures and synthetic slings as mesh can be difficult to identify on pelvic exam or cystoscopy, patients may be unable to provide an accurate history of previous pelvic surgery, and cross-sectional imaging with computed tomography and magnetic resonance imaging can be inadequate for evaluating synthetic slings. OBJECTIVE: To demonstrate the use of TUS in the evaluation of female pelvic floor structures and mesh. METHODS: Translabial ultrasound can be used in the Urology clinic or intraoperative setting using a curvilinear transducer. Following identification of anatomic landmarks in the various planes of the pelvic floor, TUS can evaluate for pelvic floor disorders and the type and location of synthetic mesh material. Artifacts, such as air pockets in the vagina or rectum and the hypoechoic pubic symphysis, are also considered. RESULTS: Real-time imaging allows for dynamic examination of pelvic organ prolapse and urethral hypermobility that can contribute to pelvic exam findings. Bladder ultrasound can help evaluate for lesions, calculi, and even mesh erosion. Translabial ultrasound can also be used to differentiate hyperechoic retropubic and transobturator slings by identifying the position of sling arms and the appearance of the sling at different planes. Evaluation with TUS can demonstrate sling disruption, folding, urethral impingement, and erosion into pelvic floor structures. This can be particularly useful in patients presenting with pain, recurrent infections, or voiding dysfunction in which problems with mesh may not be easily identified on pelvic exam or cystoscopy. This imaging modality can complement a patient's history, aid in preoperative planning, and enable intraoperative identification of mesh slings. CONCLUSION: Translabial ultrasound provides a quick, readily available, and easy-to-learn imaging modality for evaluating pelvic floor structures and mesh in the office or intraoperative setting.
RESUMO
The retinoblastoma protein (pRb/p105) tumor suppressor plays a pivotal role in cell cycle regulation by blockage of the G1-to-S-phase transition. pRb tumor suppressor activity is governed by a variety of posttranslational modifications, most notably phosphorylation by cyclin-dependent kinase (Cdk) complexes. Here we report a novel regulation of pRb through protein arginine methyltransferase 4 (PRMT4)-mediated arginine methylation, which parallels phosphorylation. PRMT4 specifically methylates pRb at the pRb C-terminal domain (pRb C(term)) on arginine (R) residues R775, R787, and R798 in vitro and R787 in vivo. Arginine methylation is important for efficient pRb C(term) phosphorylation, as manifested by the reduced phosphorylation of a methylation-impaired mutant, pRb (R3K). A methylmimetic form of pRb, pRb (R3F), disrupts the formation of the E2F-1/DP1-pRb complex in cells as well as in an isolated system. Finally, studies using a Gal4-E2F-1 reporter system show that pRb (R3F) expression reduces the ability of pRb to repress E2F-1 transcriptional activation, while pRb (R3K) expression further represses E2F-1 transcriptional activation relative to that for cells expressing wild-type pRb. Together, our results suggest that arginine methylation negatively regulates the tumor suppressor function of pRb during cell cycle control, in part by creating a better substrate for Cdk complex phosphorylation and disrupting the interaction of pRb with E2F-1.
Assuntos
Arginina/metabolismo , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína do Retinoblastoma/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Metilação , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismoRESUMO
Lung cancer is the leading cause of cancer mortality. Great advances in non-small cell lung cancer therapy have been seen in the last decade, beginning with the success in treating lung cancer harboring EGFR mutations and ALK-gene rearrangements. The potential of these biomarker-driven therapies has propelled research in biomarker targeted approaches to the forefront of lung cancer research. The successful development of immunotherapeutic agents targeting PD-L1 and PD-1 with an associated non-genomic biomarker has opened a new front in the effort for targeted approaches. Although early-phase lung cancer studies have hinted at the potential to use biomarkers to select patients for allocation to treatment in the conduct of clinical trials, data from late-phase studies have tempered expectations. The data leave unclear the wisdom of routinely restricting enrollment on lung cancer clinical trials to biomarker restricted populations, particularly non-genomic biomarkers.