Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(2): 99, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089423

RESUMO

Angiotensin II (AngII) has potent cardiac hypertrophic effects mediated through activation of hypertrophic signaling like Wnt/ß-Catenin signaling. In the current study, we examined the role of protein arginine methyltransferase 7 (PRMT7) in cardiac function. PRMT7 was greatly decreased in hypertrophic hearts chronically infused with AngII and cardiomyocytes treated with AngII. PRMT7 depletion in rat cardiomyocytes resulted in hypertrophic responses. Consistently, mice lacking PRMT7 exhibited the cardiac hypertrophy and fibrosis. PRMT7 overexpression abrogated the cellular hypertrophy elicited by AngII, while PRMT7 depletion exacerbated the hypertrophic response caused by AngII. Similar with AngII treatment, the cardiac transcriptome analysis of PRMT7-deficient hearts revealed the alteration in gene expression profile related to Wnt signaling pathway. Inhibition of PRMT7 by gene deletion or an inhibitor treatment enhanced the activity of ß-catenin. PRMT7 deficiency decreases symmetric dimethylation of ß-catenin. Mechanistic studies reveal that methylation of arginine residue 93 in ß-catenin decreases the activity of ß-catenin. Taken together, our data suggest that PRMT7 is important for normal cardiac function through suppression of ß-catenin activity.


Assuntos
Cardiomegalia/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , beta Catenina/genética , Angiotensinas , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Fibrose , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/patologia , Proteína-Arginina N-Metiltransferases/deficiência , RNA-Seq/métodos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298484

RESUMO

We investigated the role of TONSL, a mediator of homologous recombination repair (HRR), in stalled replication fork double-strand breaks (DSBs) in cancer. Publicly available clinical data (tumors from the ovary, breast, stomach and lung) were analyzed through KM Plotter, cBioPortal and Qomics. Cancer stem cell (CSC)-enriched cultures and bulk/general mixed cell cultures (BCCs) with RNAi were employed to determine the effect of TONSL loss in cancer cell lines from the ovary, breast, stomach, lung, colon and brain. Limited dilution assays and ALDH assays were used to quantify the loss of CSCs. Western blotting and cell-based homologous recombination assays were used to identify DNA damage derived from TONSL loss. TONSL was expressed at higher levels in cancer tissues than in normal tissues, and higher expression was an unfavorable prognostic marker for lung, stomach, breast and ovarian cancers. Higher expression of TONSL is partly associated with the coamplification of TONSL and MYC, suggesting its oncogenic role. The suppression of TONSL using RNAi revealed that it is required in the survival of CSCs in cancer cells, while BCCs could frequently survive without TONSL. TONSL dependency occurs through accumulated DNA damage-induced senescence and apoptosis in TONSL-suppressed CSCs. The expression of several other major mediators of HRR was also associated with worse prognosis, whereas the expression of error-prone nonhomologous end joining molecules was associated with better survival in lung adenocarcinoma. Collectively, these results suggest that TONSL-mediated HRR at the replication fork is critical for CSC survival; targeting TONSL may lead to the effective eradication of CSCs.


Assuntos
Neoplasias , Reparo de DNA por Recombinação , Feminino , Humanos , Dano ao DNA , Reparo do DNA/genética , Replicação do DNA/genética , Recombinação Homóloga , Células-Tronco Neoplásicas
3.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955819

RESUMO

The skin acts as a mechanical barrier that protects the body from the exterior environment, and skin barrier function is attributed to the stratum corneum (SC), which is composed of keratinocytes and skin lipids. Skin barrier homeostasis is maintained by a delicate balance between the differentiation and exfoliation of keratinocytes, and keratinocyte desquamation is regulated by members of the serine protease kalikrein (KLK) family and their endogenous inhibitor SPINK5/LEKTI (serine protease inhibitor Kazal type 5/lympho-epithelial Kazal-type-related inhibitor). Furthermore, SPINK5/LEKTI deficiency is involved in impaired skin barrier function caused by KLK over-activation. We sought to determine whether increased SPINK5/LEKTI expression ameliorates atopic dermatitis (AD) by strengthening skin barrier function using the ethanol extract of Lobelia chinensis (LCE) and its active compound, diosmetin, by treating human keratinocytes with UVB and using a DNCB-induced murine model of atopic dermatitis. LCE or diosmetin dose-dependently increased the transcriptional activation of SPINK5 promoter and prevented DNCB-induced skin barrier damage by modulating events downstream of SPINK5, that is, KLK, PAR2 (protease activated receptor 2), and TSLP (thymic stromal lymphopoietin). LCE or diosmetin normalized immune response in DNCB treated SKH-1 hairless mice as determined by reductions in serum immunoglobulin E and interleukin-4 levels and numbers of lesion-infiltrating mast cells. Our results suggest that LCE and diosmetin are good candidates for the treatment of skin barrier-disrupting diseases such as Netherton syndrome or AD, and that they do so by regulating SPINK5/LEKTI.


Assuntos
Dermatite Atópica , Lobelia , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno , Flavonoides , Humanos , Lobelia/metabolismo , Camundongos , Proteínas Secretadas Inibidoras de Proteinases/farmacologia
4.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293180

RESUMO

Protein arginine methyltransferase 7 (PRMT7) regulates various cellular responses, including gene expression, cell migration, stress responses, and stemness. In this study, we investigated the biological role of PRMT7 in cell cycle progression and DNA damage response (DDR) by inhibiting PRMT7 activity with either SGC8158 treatment or its specific siRNA transfection. Suppression of PRMT7 caused cell cycle arrest at the G1 phase, resulting from the stabilization and subsequent accumulation of p21 protein. In addition, PRMT7 activity is closely associated with DNA repair pathways, including both homologous recombination and non-homologous end-joining. Interestingly, SGC8158, in combination with doxorubicin, led to a synergistic increase in both DNA damage and cytotoxicity in MCF7 cells. Taken together, our data demonstrate that PRMT7 is a critical modulator of cell growth and DDR, indicating that it is a promising target for cancer treatment.


Assuntos
Dano ao DNA , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Interferente Pequeno/genética , Movimento Celular , Doxorrubicina/farmacologia
5.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36077570

RESUMO

The activation and degranulation of immune cells play a pivotal role in allergic inflammation, a pathological condition that includes anaphylaxis, pruritus, and allergic march-related diseases. In this study, trifuhalol A, a phlorotannin isolated from Agarum cribrosum, inhibited the degranulation of immune cells and the biosynthesis of IL-33 and IgE in differentiated B cells and keratinocytes, respectively. Additionally, trifuhalol A suppressed the IL-33 and IgE-mediated activation of RBL-2H3 cells through the regulation of the TAK1 and MK2 pathways. Hence, the effect of trifuhalol A on allergic inflammation was evaluated using a Compound 48/80-induced systemic anaphylaxis mouse model and a house dust mite (HDM)-induced atopic dermatitis (AD) mouse model. Trifuhalol A alleviated anaphylactic death and pruritus, which appeared as an early-phase reaction to allergic inflammation in the Compound 48/80-induced systemic anaphylaxis model. In addition, trifuhalol A improved symptoms such as itching, edema, erythema, and hyperkeratinization in HDM-induced AD mice as a late-phase reaction. Moreover, the expression of IL-33 and thymic stromal lymphopoietin, inflammatory cytokines secreted from activated keratinocytes, was significantly reduced by trifuhalol A administration, resulting in the reduced infiltration of immune cells into the skin and a reduction in the blood levels of IgE and IL-4. In summarizing the above results, these results confirm that trifuhalol A is a potential therapeutic candidate for the regulation of allergic inflammation.


Assuntos
Anafilaxia , Dermatite Atópica , Anafilaxia/tratamento farmacológico , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Imunoglobulina E , Inflamação/patologia , Interleucina-33/metabolismo , Mastócitos/metabolismo , Camundongos , Prurido/metabolismo , Pyroglyphidae , p-Metoxi-N-metilfenetilamina/farmacologia
6.
Biochem Biophys Res Commun ; 510(4): 621-628, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30739791

RESUMO

Previous reports have shown that PPARß/δ agonists ameliorate insulin resistance associated with type 2 diabetes mellitus (T2DM). To determine the role of PPARß/δ in tumor necrosis factor α (TNFα)-mediated insulin resistance, we investigated expression levels of adiponectin and insulin receptor (IR) in response to treatment with the PPARß/δ agonist GW501516 with or without TNFα, a proinflammatory cytokine, in differentiated 3T3-L1 adipocytes. GW501516 induced adipocyte differentiation and the expression of adiponectin in a dose-dependent manner in differentiated adipocytes. TNFα treatment reduced adiponectin expression at the end of differentiation. This effect was reversed by GW501516 co-treatment with TNFα. TNFα treatment decreased adipogenic marker genes such as PPARγ, aP2, resistin, and GLUT4, and GW501516 reversed the effects of TNFα. GW501516 treatment increased the expression of insulin receptor and inhibited TNFα-mediated repression of insulin receptor. Our results showed that GW501516 abrogated TNFα-induced insulin resistance. In summary, our study demonstrated that the PPARß/δ agonist, GW501516 reversed TNFα-induced decreases in adipocyte differentiation and adiponectin expression, and improved insulin sensitivity by increasing the expression of insulin receptor. Therefore, PPARδ may be a promising therapeutic target for treatment of insulin resistance in patients with T2DM.


Assuntos
Adiponectina/metabolismo , PPAR delta/agonistas , PPAR beta/agonistas , Receptor de Insulina/metabolismo , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Resistência à Insulina , Camundongos , PPAR delta/metabolismo , PPAR beta/metabolismo
7.
Biochem Biophys Res Commun ; 496(2): 508-514, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29353040

RESUMO

Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is the main lipophilic flavonoid obtained from the Artemisia species. Eupatilin has been reported to have anti-apoptotic, anti-oxidative and anti-inflammatory activities. Previously, we found that eupatilin increases transcriptional activity and expression of peroxisome proliferator-activated receptor α (PPARα) in a keratinocyte cell line and acts as an agonist of PPARα. PPARα agonists ameliorate atopic dermatitis (AD) and restore the skin barrier function. In this study, we confirmed that the effects of eupatilin improved AD-like symptoms in an oxazolone-induced AD-like mouse model. Furthermore, we found that eupatilin suppressed the levels of serum immunoglobulin E (IgE), interleukin-4 (IL-4), and AD involved cytokines, such as tumor necrosis factor α (TNFα), interferon-γ (IFN-γ), IL-1ß, and thymic stromal lymphopoietin (TSLP), IL-33, IL-25 and increased the levels of filaggrin and loricrin in the oxazolone-induced AD-like mouse model. Taken together, our data suggest that eupatilin is a potential candidate for the treatment of AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Fármacos Dermatológicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , PPAR alfa/genética , Animais , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/imunologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Relação Dose-Resposta a Droga , Feminino , Proteínas Filagrinas , Regulação da Expressão Gênica , Imunoglobulina E/sangue , Imunoglobulina E/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-33/genética , Interleucina-33/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucinas/genética , Interleucinas/imunologia , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Oxazolona , PPAR alfa/imunologia , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Linfopoietina do Estroma do Timo
8.
Biochem Biophys Res Commun ; 493(1): 220-226, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28899779

RESUMO

Eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone) is a flavonoid compound exhibiting several beneficial biological activities, including neuroprotection, anti-cancer, antinociception, chondroprotection, anti-oxidation, and anti-inflammation. Our previous study demonstrated that eupatilin specifically activates peroxisome proliferator-activated receptor alpha (PPARα) through direct binding. The PPAR subfamily includes ligand-dependent transcription factors that consist of three isotypes: PPARα, PPARß/δ, and PPARγ. All isotypes are involved in inflammation, epidermal proliferation/differentiation and skin barrier function. Among them, PPARα regulates lipid and glucose metabolism and skin homeostasis. In this study, we confirm that the ability of eupatilin as a PPARα activator significantly inhibited tumor necrosis factor-alpha (TNFα)-induced matrix metalloproteinase (MMP)-2/-9 expression and proteolytic activity in HaCaT human epidermal keratinocytes. Furthermore, we found that eupatilin subsequently suppressed IκBα phosphorylation, blocked NF-κB p65 nuclear translocation and down-regulated MAPK/AP-1 signaling via PPARα activation. Taken together, our data suggest that eupatilin inhibits TNFα-induced MMP-2/-9 expression by suppressing NF-κB and MAPK/AP-1 pathways via PPARα. Our findings suggest the usefulness of eupatilin for preventing skin aging.


Assuntos
Flavonoides/administração & dosagem , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , NF-kappa B/metabolismo , PPAR alfa/agonistas , Fator de Necrose Tumoral alfa/administração & dosagem , Linhagem Celular , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , PPAR alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
Biochem Biophys Res Commun ; 493(1): 765-772, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28851651

RESUMO

Pectolinarin and pectolinarigenin have been reported to be major compounds in Cirsium setidens. In the present study, we demonstrated inhibitory effects of pectolinarin and pectolinarigenin from C. setidens on melanogenesis. Melanin synthesis was decreased in both pectolinarin- and pectolinarigenin-treated melan-a cells and in a reconstructed human skin model. However, pectolinarigenin treatment showed more potent inhibitory activity of melanin synthesis than did pectolinarin treatment. The concentrations of pectolinarin and pectolinarigenin in C. setidens water extracts were determined by HPLC. Unfortunately, the amount of pectolinarigenin of C. setidens water extract was lower than that of pectolinarin. To increase the pectolinarigenin content in C. setidens water extract, several component conversion methods were studied. Consequently, we identified that microwave irradiation under 1% acetic acid was an optimum sugar elimination method.


Assuntos
Cromonas/administração & dosagem , Cirsium/química , Melaninas/biossíntese , Pele/efeitos dos fármacos , Pele/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Iridoides/administração & dosagem , Extratos Vegetais/administração & dosagem , Pele/citologia
10.
Biochem Biophys Res Commun ; 470(1): 157-162, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26768366

RESUMO

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARß/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARß/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARß/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARß/δ enhances myoblast differentiation through activation of promyogenic signaling pathways.


Assuntos
Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , PPAR gama/metabolismo , PPAR beta/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , PPAR gama/agonistas , PPAR beta/agonistas , Tiazóis/administração & dosagem
11.
Biochem Biophys Res Commun ; 456(1): 471-5, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25482443

RESUMO

The activation of MyoD family transcription factors is critical for myogenic differentiation, which is fundamental to the regeneration of skeletal muscle after injury. Kazinol-P (KP) from Broussonetia kazinoki (B. kazinoki), a natural compound, has been reported to possess an anti-oxidant function. In a screen of natural compounds for agonists of the MyoD activity, we identified KP and examined its effect on myoblast differentiation. Consistently, KP enhanced the myotube formation, accompanied with upregulation of myogenic markers such as MHC, Myogenin and Troponin-T. KP treatment in C2C12 myoblasts led to strong activation of a key promyogenic kinase p38MAPK in a dose, and time-dependent manner. Furthermore, KP treatment enhanced the MyoD-mediated trans-differentiation of 10T1/2 fibroblasts into myoblasts. Taken together, KP promotes myogenic differentiation through activation of p38MAPK and MyoD transcription activities. Thus KP may be a potential therapeutic candidate to prevent fibrosis and improve muscle regeneration and repair.


Assuntos
Antioxidantes/farmacologia , Broussonetia/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Músculo Esquelético/efeitos dos fármacos , Proteína MyoD/metabolismo , Extratos Vegetais/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibrose/tratamento farmacológico , Camundongos , Desenvolvimento Muscular , Mioblastos/efeitos dos fármacos , Miogenina , Regeneração , Transdução de Sinais
12.
Exp Dermatol ; 24(2): 140-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25496486

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and consist of three isotypes: PPARα, PPARß/δ and PPARγ. PPARs are expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, these receptors are highly studied in dermato-endocrine research, and their ligands are targets for the treatment of various skin disorders, such as photoageing and chronological ageing of skin. Intensive studies have revealed that PPARα/γ functions in photoageing and age-related inflammation by regulating matrix metalloproteinases (MMPs) via nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). However, the detailed mechanism of PPARα/γ's role in photoageing has not yet been elucidated. In this study, we confirmed that abietic acid (AA) is a PPARα/γ dual ligand and significantly decreased UVB-induced MMP-1 expression by downregulating UVB-induced MAPK signalling and downstream transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in Hs68 human dermal fibroblast cells. Treatment of cells with AA and GW6471 or bisphenol A diglycidyl ether (BADGE), PPARα or PPARγ antagonists, respectively, reversed the effect on UVB-induced MMP-1 expression and inflammatory signalling pathway activation. Taken together, our data suggest that AA acts as a PPARα/γ dual activator to inhibit UVB-induced MMP-1 expression and age-related inflammation by suppressing NF-κB and the MAPK/AP-1 pathway and can be a useful agent for improving skin photoageing.


Assuntos
Abietanos/química , Fibroblastos/citologia , Metaloproteinase 1 da Matriz/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , Pele/metabolismo , Fator de Transcrição AP-1/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Inflamação , Ligantes , Luz , Transdução de Sinais , Pele/efeitos dos fármacos , Envelhecimento da Pele , Fenômenos Fisiológicos da Pele , Fator de Transcrição RelA/metabolismo , Raios Ultravioleta
14.
Biochem Biophys Res Commun ; 450(4): 1553-9, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25019995

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ's role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.


Assuntos
Alcenos/farmacologia , Benzoquinonas/farmacologia , NF-kappa B/metabolismo , PPAR alfa/agonistas , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Fosforilação
15.
Biochem Biophys Res Commun ; 455(3-4): 147-52, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25450677

RESUMO

Myoblast differentiation is fundamental to the development and regeneration of skeletal muscle after injury or disease. MyoD family transcription factors play a key role to promote myoblast differentiation. In a screen for MyoD activators, we identified tetrahydropalmatine (THP), a natural compound isolated from Corydalis turtschaninovii. The treatment of C2C12 myoblasts with THP enhanced the level of MyoD, Myogenin and myosin heavy chain (MHC) proteins and the formation of larger multinucleated myotubes, compared to the control treatment. The THP treatment dramatically enhanced the activities of p38MAPK and Akt, the key promyogenic kinases which activate MyoD. The enhanced myoblast differentiation by THP treatment can be blocked by inhibition of p38MAPK or Akt by SB203580 or LY294002, respectively. In addition, THP treatment restored myotube formation of Cdo-depleted C2C12 cells through activation of p38MAPK. Moreover, THP enhanced the efficiency of trans-differentiation of 10T1/2 fibroblasts into myoblasts mediated by MyoD. These results indicate that THP has a promyogenic effect by upregulation of p38MAPK and Akt resulting in enhanced MyoD activation. Our findings suggest that THP has a potential as a therapeutic candidate to prevent fibrosis and improve muscle regeneration and repair.


Assuntos
Alcaloides de Berberina/química , Diferenciação Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Comunicação Celular , Cromonas/química , Ativação Enzimática , Fibroblastos/citologia , Fibrose/patologia , Imidazóis/química , Camundongos , Morfolinas/química , Mioblastos/metabolismo , Miogenina/metabolismo , Piridinas/química , Regeneração , Sarcopenia/metabolismo , Transdução de Sinais
16.
Blood ; 120(24): 4892-902, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23074279

RESUMO

In cancer, VEGF-induced increase in vascular permeability results in increased interstitial pressure, reducing perfusion and increasing hypoxia, which reduce delivery of chemotherapeutic agents and increase resistance to ionizing radiation. Here, we show that both TIMP-2 and Ala + TIMP-2, a TIMP-2 mutant without matrix metalloproteinase inhibitory activity, antagonize the VEGF-A-induced increase in vascular permeability, both in vitro and in vivo. Like other agents known to preserve endothelial barrier function, TIMP-2 elevates cytosolic levels of cAMP and increases cytoskeletal-associated vascular endothelial cadherin in human microvascular endothelial cells. All of these effects are completely ablated by selective knockdown of integrin α3ß1 expression, expression of a dominant negative protein tyrosine phosphatase Shp-1 mutant, administration of the protein tyrosine phosphatase inhibitor orthovanadate, or the adenylate cyclase inhibitor SQ22536. This TIMP-2-mediated inhibition of vascular permeability involves an integrin α3ß1-Shp-1-cAMP/protein kinase A-dependent vascular endothelial cadherin cytoskeletal association, as evidenced by using siRNAs to integrin α3ß1 and Shp-1, or treatment with Shp-1 inhibitor NSC87877 and protein kinase A inhibitor H89. Our results demonstrate the potential utility for TIMP-2 in cancer therapy through "normalization" of vascular permeability in addition to previously described antiangiogenic effects.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Antígenos CD/metabolismo , Western Blotting , Caderinas/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Antagonismo de Drogas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Integrina alfa3beta1/genética , Integrina alfa3beta1/metabolismo , Isoquinolinas/farmacologia , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Mutação , Ligação Proteica/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Interferência de RNA , Sulfonamidas/farmacologia , Inibidor Tecidual de Metaloproteinase-2/genética , Vanadatos/farmacologia
17.
Redox Biol ; 73: 103212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838552

RESUMO

The dynamic regulation of mitochondria through fission and fusion is essential for maintaining cellular homeostasis. In this study, we discovered a role of coactivator-associated arginine methyltransferase 1 (CARM1) in mitochondrial dynamics. CARM1 methylates specific residues (R403 and R634) on dynamin-related protein 1 (DRP1). Methylated DRP1 interacts with mitochondrial fission factor (Mff) and forms self-assembly on the outer mitochondrial membrane, thereby triggering fission, reducing oxygen consumption, and increasing reactive oxygen species (ROS) production. This sets in motion a feedback loop that facilitates the translocation of CARM1 from the nucleus to the cytoplasm, enhancing DRP1 methylation and ROS production through mitochondrial fragmentation. Consequently, ROS reinforces the CARM1-DRP1-ROS axis, resulting in cellular senescence. Depletion of CARM1 or DRP1 impedes cellular senescence by reducing ROS accumulation. The uncovering of the above-described mechanism fills a missing piece in the vicious cycle of ROS-induced senescence and contributes to a better understanding of the aging process.


Assuntos
Senescência Celular , Citoplasma , Dinaminas , Dinâmica Mitocondrial , Proteína-Arginina N-Metiltransferases , Espécies Reativas de Oxigênio , Dinaminas/metabolismo , Dinaminas/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Metilação , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Membrana
18.
Biochem Biophys Res Commun ; 441(3): 655-60, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24284282

RESUMO

The purpose of this study was to identify conditions that will increase the sensitivity of resistant cancer cells to anti-mitotic drugs. Currently, atovaquine (ATO), chloroquine (CHL), primaquine (PRI), mefloquine (MEF), artesunate (ART), and doxycycline (DOY) are the most commonly used anti-malarial drugs. Herein, we tested whether anti-malarial drugs can sensitize drug-resistant KBV20C cancer cells. None of the six tested anti-malarial drugs was found to better sensitize the drug-resistant cells compared to the sensitive KB cells. With an exception of DOY, all other anti-malarial drugs tested could sensitize both KB and KBV20C cells to a similar extent, suggesting that anti-malarial drugs could be used for sensitive as well as resistant cancer cells. Furthermore, we examined the effects of anti-malarial drugs in combination with an antimitotic drug, vinblastine (VIN) on the sensitisation of resistant KBV20C cells. Using viability assay, microscopic observation, assessment of cleaved PARP, and Hoechst staining, we identified that two anti-malarial drugs, PRI and MEF, highly sensitized KBV20C-resistant cells to VIN treatment. Moreover, PRI- or MEF-induced sensitisation was not observed in VIN-treated sensitive KB parent cells, suggesting that the observed effect is specific to resistant cancer cells. We demonstrated that the PRI and MEF sensitisation mechanism mainly depends on the inhibition of p-glycoprotein (P-gp). Our findings may contribute to the development of anti-malarial drug-based combination therapies for patients resistant to anti-mitotic drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antimaláricos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mefloquina/farmacologia , Primaquina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Artesunato , Linhagem Celular Tumoral , Cloroquina/farmacologia , Doxiciclina/farmacologia , Humanos , Verapamil/farmacologia , Vimblastina/farmacologia
19.
Biochem Biophys Res Commun ; 432(1): 60-5, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23380452

RESUMO

In this study, we investigate the molecular mechanism by which protein arginine methyltransferase 6 (PRMT6) exerts anti-invasiveness effect against breast cancer cells and prostate cancer cells. PRMT6 has been known to be responsible for asymmetric dimethylation of histone H3 at R2 (H3R2me2a). To investigate the biological role of PRMT6, we first established stable cell lines expressing GFP-PRMT6 with MCF7 and PC3 cells. Growth rates and colony forming abilities of PRMT6-overexpressing cells were significantly retarded compared to control GFP expressing cells. This growth retardation seems to be associated with p21(WAF1) induction. In addition, our data show that migration and invasion of prostate cancer cells was strongly suppressed by PRMT6 overexpression. In parallel, the levels of thrombospondin-1 (TSP-1), a potent natural inhibitor of angiogenesis, were highly up-regulated in both PRMT6-overexpressing cells. Furthermore, this suppression of migration and invasion by PRMT6 overexpression was significantly rescued by specific knock-down of TSP-1. Concomitantly, down-regulations of MMP-2 and -9 were observed in PRMT6-overexpressing cells. Taken together, our data demonstrate that PRMT6 overexpression is associated with regulation of motility and invasion through up-regulation of TSP-1 and down-regulation of MMPs in human cancer cells.


Assuntos
Neoplasias da Mama/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Nucleares/biossíntese , Neoplasias da Próstata/patologia , Proteína-Arginina N-Metiltransferases/biossíntese , Trombospondina 1/biossíntese , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Masculino , Invasividade Neoplásica , Proteínas Nucleares/genética , Neoplasias da Próstata/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Trombospondina 1/genética
20.
Biochem Biophys Res Commun ; 432(1): 73-9, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376064

RESUMO

Peroxisome proliferator-activated receptors (PPARs) have been considered as desirable targets for metabolic syndrome treatments, even though their specific agonists have several side effects, including body weight gain, edema, and tissue failure. The effects of amorphastilbol (APH) on glucose- and lipid metabolism were investigated with in vitro 3T3-L1 adipocyte systems and in vivo db/db mice model. APH selectively stimulates the transcriptional activities of both PPARα and PPARγ, which are able to enhance fatty acid oxidation and glucose utilization. Furthermore, APH improves glucose and lipid impairment in db/db mice. More importantly, there are no significant side effects, such as weight gain or hepatomegaly, in APH-treated animals, implying that APH do not adversely affect liver or lipid metabolism. All our data suggest that APH can be used as potential therapeutic agents against type 2 diabetes and related metabolic disorders, including obesity, by enhancing glucose and lipid metabolism.


Assuntos
Canabinoides/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , PPAR alfa/agonistas , PPAR gama/agonistas , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Glicemia/efeitos dos fármacos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA