Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 87: 1-21, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925256

RESUMO

My initial research experience involved studying how bacteria synthesize nucleotide sugars, the donors for the formation of cell wall polysaccharides. During this time, I became aware that mammalian cells also have a surface coat of sugars and was intrigued as to whether these sugars might be arranged in specific sequences that function as information molecules in biologic processes. Thus began a long journey that has taken me from glycan structural analysis and determination of plant lectin-binding preferences to the biosynthesis of Asn-linked oligosaccharides and the mannose 6-phosphate (Man-6-P) lysosomal enzyme targeting pathway. The Man-6-P system represents an early example of a glycan serving as an information molecule in a fundamental cellular function. The remarkable advances in the field of glycobiology since I entered have uncovered scores of additional examples of oligosaccharide-lectin interactions mediating critical biologic processes. It has been a rewarding experience to participate in the efforts that have established a central role for glycans in biology.


Assuntos
Glicômica/história , Proteínas Adaptadoras de Transporte Vesicular/história , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , História do Século XX , História do Século XXI , Humanos , Manosefosfatos/história , Manosefosfatos/metabolismo , Redes e Vias Metabólicas , Diester Fosfórico Hidrolases/história , Diester Fosfórico Hidrolases/metabolismo , Receptor IGF Tipo 2/história , Receptor IGF Tipo 2/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/história , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Estados Unidos
2.
Proc Natl Acad Sci U S A ; 115(36): 8984-8989, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30126980

RESUMO

The glycosyltransferases of the mammalian Golgi complex must recycle between the stacked cisternae of that organelle to maintain their proper steady-state localization. This trafficking is mediated by COPI-coated vesicles, but how the glycosyltransferases are incorporated into these transport vesicles is poorly understood. Here we show that the N-terminal cytoplasmic tails (N-tails) of a number of cis Golgi glycosyltransferases which share a ϕ-(K/R)-X-L-X-(K/R) sequence bind directly to the δ- and ζ-subunits of COPI. Mutations of this N-tail motif impair binding to the COPI subunits, leading to mislocalization of the transferases to lysosomes. The physiological importance of these interactions is illustrated by mucolipidosis III patients with missense mutations in the N-tail of GlcNAc-1-phosphotransferase that cause the transferase to be rapidly degraded in lysosomes. These studies establish that direct binding of the N-tails of mammalian cis Golgi glycosyltransferases with COPI subunits is essential for recycling within the Golgi.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/enzimologia , Glucosiltransferases/metabolismo , Complexo de Golgi/enzimologia , Motivos de Aminoácidos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Glucosiltransferases/genética , Complexo de Golgi/genética , Células HEK293 , Células HeLa , Humanos , Mucolipidoses/enzimologia , Mucolipidoses/genética , Mutação de Sentido Incorreto , Domínios Proteicos
3.
Hum Mutat ; 41(7): 1321-1328, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220096

RESUMO

Transport of newly synthesized lysosomal enzymes to the lysosome requires tagging of these enzymes with the mannose 6-phosphate moiety by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), encoded by two genes, GNPTAB and GNPTG. GNPTAB encodes the α and ß subunits, which are initially synthesized as a single precursor that is cleaved by Site-1 protease in the Golgi. Mutations in this gene cause the lysosomal storage disorders mucolipidosis II (MLII) and mucolipidosis III αß (MLIII αß). Two recent studies have reported the first patient mutations within the N-terminal transmembrane domain (TMD) of the α subunit of GlcNAc-1-phosphotransferase that cause either MLII or MLIII αß. Here, we demonstrate that two of the MLII missense mutations, c.80T>A (p.Val27Asp) and c.83T>A (p.Val28Asp), prevent the cotranslational insertion of the nascent GlcNAc-1-phosphotransferase polypeptide chain into the endoplasmic reticulum. The remaining four mutations, one of which is associated with MLII, c.100G>C (p.Ala34Pro), and the other three with MLIII αß, c.70T>G (p.Phe24Val), c.77G>A (p.Gly26Asp), and c.107A>C (p.Glu36Pro), impair retention of the catalytically active enzyme in the Golgi with concomitant mistargeting to endosomes/lysosomes. Our results uncover the basis for the disease phenotypes of these patient mutations and establish the N-terminal TMD of GlcNAc-1-phosphotransferase as an important determinant of Golgi localization.


Assuntos
Mutação de Sentido Incorreto , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Retículo Endoplasmático , Complexo de Golgi , Células HEK293 , Células HeLa , Humanos , Mucolipidoses/genética , Fenótipo
4.
J Biol Chem ; 291(15): 8295-307, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26833567

RESUMO

The Golgi enzyme UDP-GlcNAc:lysosomal enzymeN-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), an α2ß2γ2hexamer, mediates the initial step in the addition of the mannose 6-phosphate targeting signal on newly synthesized lysosomal enzymes. This tag serves to direct the lysosomal enzymes to lysosomes. A key property of GlcNAc-1-phosphotransferase is its unique ability to distinguish the 60 or so lysosomal enzymes from the numerous non-lysosomal glycoproteins with identical Asn-linked glycans. In this study, we demonstrate that the two Notch repeat modules and the DNA methyltransferase-associated protein interaction domain of the α subunit are key components of this recognition process. Importantly, different combinations of these domains are involved in binding to individual lysosomal enzymes. This study also identifies the γ-binding site on the α subunit and demonstrates that in the majority of instances the mannose 6-phosphate receptor homology domain of the γ subunit is required for optimal phosphorylation. These findings serve to explain how GlcNAc-1-phosphotransferase recognizes a large number of proteins that lack a common structural motif.


Assuntos
Lisossomos/enzimologia , Manosefosfatos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Sequência de Aminoácidos , Deleção de Genes , Células HeLa , Humanos , Lisossomos/metabolismo , Dados de Sequência Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Receptores Notch/química , Receptores Notch/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
5.
Proc Natl Acad Sci U S A ; 111(9): 3532-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550498

RESUMO

The lysosomal storage disorder mucolipidosis III αß is caused by mutations in the αß subunits of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (phosphotransferase). This Golgi-localized enzyme mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases, and loss of function results in impaired lysosomal targeting of these acid hydrolases and decreased lysosomal degradation. Here we show that two patient missense mutations, Lys4Gln and Ser15Tyr, in the N-terminal cytoplasmic tail of the α subunit of phosphotransferase impair retention of the catalytically active enzyme in the Golgi complex. This results in mistargeting of the mutant phosphotransferases to lysosomes, where they are degraded, or to the cell surface and release into the medium. The finding that mislocalization of active phosphotransferase is the basis for mucolipidosis III αß in a subset of patients shows the importance of single residues in the cytoplasmic tail of a Golgi-resident protein for localization to this compartment.


Assuntos
Complexo de Golgi/metabolismo , Mucolipidoses/enzimologia , Mucolipidoses/etiologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência , Mutação de Sentido Incorreto/genética , Proteólise
6.
Hum Mutat ; 37(7): 623-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27038293

RESUMO

The lysosomal storage disorder ML III γ is caused by defects in the γ subunit of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the enzyme that tags lysosomal enzymes with the mannose 6-phosphate lysosomal targeting signal. In patients with this disorder, most of the newly synthesized lysosomal enzymes are secreted rather than being sorted to lysosomes, resulting in increased levels of these enzymes in the plasma. Several missense mutations in GNPTG, the gene encoding the γ subunit, have been reported in mucolipidosis III γ patients. However, in most cases, the impact of these mutations on γ subunit function has remained unclear. Here, we report that the variants c.316G>A (p.G106S), c.376G>A (p.G126S), and c.425G>A (p.C142Y) cause misfolding of the γ subunit, whereas another variant, c.857C>T (p.T286M), does not appear to alter γ subunit function. The misfolded γ subunits were retained in the ER and failed to rescue the lysosomal targeting of lysosomal acid glycosidases.


Assuntos
Mucolipidoses/genética , Mutação de Sentido Incorreto , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Retículo Endoplasmático/enzimologia , Células HeLa , Humanos , Polimorfismo de Nucleotídeo Único , Dobramento de Proteína , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
7.
J Biol Chem ; 290(5): 3045-56, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25505245

RESUMO

UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and ß subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αß. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αß patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and ß subunits.


Assuntos
Lisossomos/metabolismo , Mucolipidoses/enzimologia , Mucolipidoses/genética , Mutação de Sentido Incorreto/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Humanos , Mucolipidoses/metabolismo , Peixe-Zebra
8.
Proc Natl Acad Sci U S A ; 110(25): 10246-51, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733939

RESUMO

UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) is an α2ß2γ2 heterohexamer that mediates the initial step in the formation of the mannose 6-phosphate recognition signal on lysosomal acid hydrolases. We previously reported that the specificity of the reaction is determined by the ability of the α/ß subunits to recognize a conformation-dependent protein determinant present on the acid hydrolases. We now present evidence that the DNA methyltransferase-associated protein (DMAP) interaction domain of the α subunit functions in this recognition process. First, GST-DMAP pulled down several acid hydrolases, but not nonlysosomal glycoproteins. Second, recombinant GlcNAc-1-phosphotransferase containing a missense mutation in the DMAP interaction domain (Lys732Asn) identified in a patient with mucolipidosis II exhibited full activity toward the simple sugar α-methyl d-mannoside but impaired phosphorylation of acid hydrolases. Finally, unlike the WT enzyme, expression of the K732N mutant in a zebrafish model of mucolipidosis II failed to correct the phenotypic abnormalities. These results indicate that the DMAP interaction domain of the α subunit functions in the selective recognition of acid hydrolase substrates and provides an explanation for the impaired phosphorylation of acid hydrolases in a patient with mucolipidosis II.


Assuntos
Anormalidades Múltiplas/metabolismo , Lisossomos/enzimologia , Mucolipidoses/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Anormalidades Múltiplas/enzimologia , Acetilglucosamina/metabolismo , Animais , Feminino , Células HEK293 , Células HeLa , Humanos , Hidrolases/metabolismo , Masculino , Manosefosfatos/metabolismo , Camundongos , Mucolipidoses/enzimologia , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
9.
Traffic ; 13(10): 1315-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22762444

RESUMO

The GGA family of clathrin adaptor proteins mediates the intracellular trafficking of transmembrane proteins by interacting with DXXLL-type sorting signals on the latter. These signals were originally identified at the carboxy-termini of the transmembrane cargo proteins. Subsequent studies, however, showed that internal DXXLL sorting motifs occur within the N- or C-terminal cytoplasmic domains of cargo molecules. The GGAs themselves also contain internal DXXLL motifs that serve to auto-regulate GGA function. A recent study challenged the notion that internal DXXLL signals are competent for binding to GGAs. Since the question of whether GGA adaptors interact with internal DXXLL motifs is fundamental to the identification of bona fide GGA cargo, and to an accurate understanding of GGA regulation within cells, we have extended our previous findings. We now present additional evidence confirming that GGAs do interact with internal DXXLL motifs. We also summarize the recent reports from other laboratories documenting internal GGA binding motifs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sinais Direcionadores de Proteínas , Proteínas Adaptadoras de Transporte Vesicular/química , Motivos de Aminoácidos , Animais , Células HEK293 , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Transporte Proteico , Rede trans-Golgi/metabolismo
10.
J Biol Chem ; 288(23): 16789-16799, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23572527

RESUMO

DUF2233, a domain of unknown function (DUF), is present in many bacterial and several viral proteins and was also identified in the mammalian transmembrane glycoprotein N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase ("uncovering enzyme" (UCE)). We report the crystal structure of BACOVA_00430, a 315-residue protein from the human gut bacterium Bacteroides ovatus that is the first structural representative of the DUF2233 protein family. A notable feature of this structure is the presence of a surface cavity that is populated by residues that are highly conserved across the entire family. The crystal structure was used to model the luminal portion of human UCE (hUCE), which is involved in targeting of lysosomal enzymes. Mutational analysis of several residues in a highly conserved surface cavity of hUCE revealed that they are essential for function. The bacterial enzyme (BACOVA_00430) has ∼1% of the catalytic activity of hUCE toward the substrate GlcNAc-P-mannose, the precursor of the Man-6-P lysosomal targeting signal. GlcNAc-1-P is a poor substrate for both enzymes. We conclude that, for at least a subset of proteins in this family, DUF2233 functions as a phosphodiester glycosidase.


Assuntos
Proteínas de Bactérias/química , Bacteroides/enzimologia , Diester Fosfórico Hidrolases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Mutagênese , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Homologia Estrutural de Proteína
12.
Traffic ; 12(7): 912-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21466643

RESUMO

Osteoclasts are specialized cells that secrete lysosomal acid hydrolases at the site of bone resorption, a process critical for skeletal formation and remodeling. However, the cellular mechanism underlying this secretion and the organization of the endo-lysosomal system of osteoclasts have remained unclear. We report that osteoclasts differentiated in vitro from murine bone marrow macrophages contain two types of lysosomes. The major species is a secretory lysosome containing cathepsin K and tartrate-resistant acid phosphatase (TRAP), two hydrolases critical for bone resorption. These secretory lysosomes are shown to fuse with the plasma membrane, allowing the regulated release of acid hydrolases at the site of bone resorption. The other type of lysosome contains cathepsin D, but little cathepsin K or TRAP. Osteoclasts from Gnptab(-/-) (gene encoding GlcNAc-1-phosphotransferase α, ß-subunits) mice, which lack a functional mannose 6-phosphate (Man-6-P) targeting pathway, show increased secretion of cathepsin K and TRAP and impaired secretory lysosome formation. However, cathepsin D targeting was intact, showing that osteoclasts have a Man-6-P-independent pathway for selected acid hydrolases.


Assuntos
Lisossomos/metabolismo , Manosefosfatos/metabolismo , Osteoclastos/metabolismo , Osteoclastos/ultraestrutura , Fosfatase Ácida/metabolismo , Animais , Catepsina D/metabolismo , Catepsina K/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Endossomos/metabolismo , Endossomos/ultraestrutura , Isoenzimas/metabolismo , Lisossomos/ultraestrutura , Macrófagos/citologia , Macrófagos/fisiologia , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Transdução de Sinais/fisiologia , Fosfatase Ácida Resistente a Tartarato , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
13.
BMC Med Genet ; 14: 106, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24103465

RESUMO

BACKGROUND: Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to its cognate transfer RNA and therefore plays an essential role in protein biosynthesis. METHODS: We used exome sequencing, aminoacylation assays, homology modeling, and immuno-isolation of transfected MARS to identify and characterize mutations in the methionyl-tRNA synthetase gene (MARS) in an infant with an unexplained multi-organ phenotype. RESULTS: We identified compound heterozygous mutations (F370L and I523T) in highly conserved regions of MARS. The parents were each heterozygous for one of the mutations. Aminoacylation assays documented that the F370L and I523T MARS mutants had 18 ± 6% and 16 ± 6%, respectively, of wild-type activity. Homology modeling of the human MARS sequence with the structure of E. coli MARS showed that the F370L and I523T mutations are in close proximity to each other, with residue I523 located in the methionine binding pocket. We found that the F370L and I523T mutations did not affect the association of MARS with the multisynthetase complex. CONCLUSION: This infant expands the catalogue of inherited human diseases caused by mutations in aminoacyl-tRNA synthetase genes.


Assuntos
Metionina tRNA Ligase/genética , Adulto , Sequência de Aminoácidos , Medula Óssea/patologia , Encéfalo/diagnóstico por imagem , Éxons , Feminino , Heterozigoto , Humanos , Lactente , Hepatopatias/genética , Hepatopatias/patologia , Imageamento por Ressonância Magnética , Metionina/metabolismo , Metionina tRNA Ligase/química , Dados de Sequência Molecular , Mutação , Fenótipo , Estrutura Terciária de Proteína , Radiografia , Análise de Sequência de DNA
14.
J Biol Chem ; 286(46): 39786-93, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21956109

RESUMO

GlcNAc-1-phosphodiester-N-acetylglucosaminidase ("uncovering enzyme" (UCE); EC 3.1.4.45) is a Golgi enzyme that mediates the second step in the synthesis of the mannose 6-phosphate lysosomal targeting signal on acid hydrolases. Recently, three mutations (two missense and one deletion/frameshift) in the NAGPA gene that encodes UCE have been identified in individuals with persistent stuttering. We now demonstrate that each mutation leads to lower cellular UCE activity. The p.R328C mutation impairs folding in the endoplasmic reticulum, resulting in degradation of a significant portion by the proteasomal system. The p.H84Q mutation also impairs folding and, in addition, decreases the specific activity of the enzyme that folds sufficiently to traffic to the Golgi. The p.F513SfsX113 frameshift mutation adds 113 amino acids to the C terminus of the cytoplasmic tail of the protein, including a VWLL sequence that causes rapid degradation via the proteasomal system. These biochemical findings extend the genetic data implicating mutations in the NAGPA gene in the persistent stuttering phenotype.


Assuntos
Mutação da Fase de Leitura , Mutação de Sentido Incorreto , Diester Fosfórico Hidrolases , Dobramento de Proteína , Proteólise , Gagueira , Substituição de Aminoácidos , Feminino , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Células HeLa , Humanos , Masculino , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/genética , Gagueira/enzimologia , Gagueira/genética
15.
Nat Struct Mol Biol ; 29(4): 348-356, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332324

RESUMO

Vertebrates use the mannose 6-phosphate (M6P)-recognition system to deliver lysosomal hydrolases to lysosomes. Key to this pathway is N-acetylglucosamine (GlcNAc)-1-phosphotransferase (PTase) that selectively adds GlcNAc-phosphate (P) to mannose residues of hydrolases. Human PTase is an α2ß2γ2 heterohexamer with a catalytic core and several peripheral domains that recognize and bind substrates. Here we report a cryo-EM structure of the catalytic core of human PTase and the identification of a hockey stick-like motif that controls activation of the enzyme. Movement of this motif out of the catalytic pocket is associated with a rearrangement of part of the peripheral domains that unblocks hydrolase glycan access to the catalytic site, thereby activating PTase. We propose that PTase fluctuates between inactive and active states in solution, and selective substrate binding of a lysosomal hydrolase through its protein-binding determinant to PTase locks the enzyme in the active state to permit glycan phosphorylation. This mechanism would help ensure that only N-linked glycans of lysosomal enzymes are phosphorylated.


Assuntos
Hidrolases , Manose , Humanos , Hidrolases/metabolismo , Lisossomos/metabolismo , Manose/metabolismo , Fosfatos/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Polissacarídeos
16.
BBA Adv ; 2: 100032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37082581

RESUMO

Tay-Sachs and Sandhoff diseases are genetic disorders resulting from mutations in HEXA or HEXB, which code for the α- and ß-subunits of the heterodimer ß-hexosaminidase A (HexA), respectively. Loss of HexA activity results in the accumulation of GM2 ganglioside (GM2) in neuronal lysosomes, culminating in neurodegeneration and death, often by age 4. Previously, we combined critical features of the α- and ß-subunits of HexA into a single subunit to create a homodimeric enzyme known as HexM. HexM is twice as active as HexA and degrades GM2 in vivo, making it a candidate for enzyme replacement therapy (ERT). Here we show HexM production is scalable to meet ERT requirements and we describe an approach that enhances its cellular uptake via co-expression with an engineered GlcNAc-1-phosphotransferase that highly phosphorylates lysosomal proteins. Further, we developed a HexA overexpression system and functionally compared the recombinant enzyme to HexM, revealing the kinetic differences between the enzymes. This study further advances HexM as an ERT candidate and provides a convenient system to produce HexA for comparative studies.

17.
J Biol Chem ; 285(5): 3360-70, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19955174

RESUMO

UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an alpha(2)beta(2)gamma(2) hexamer that mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases. Using a multifaceted approach, including analysis of acid hydrolase phosphorylation in mice and fibroblasts lacking the gamma subunit along with kinetic studies of recombinant alpha(2)beta(2)gamma(2) and alpha(2)beta(2) forms of the transferase, we have explored the function of the alpha/beta and gamma subunits. The findings demonstrate that the alpha/beta subunits recognize the protein determinant of acid hydrolases in addition to mediating the catalytic function of the transferase. In mouse brain, the alpha/beta subunits phosphorylate about one-third of the acid hydrolases at close to wild-type levels but require the gamma subunit for optimal phosphorylation of the rest of the acid hydrolases. In addition to enhancing the activity of the alpha/beta subunits toward a subset of the acid hydrolases, the gamma subunit facilitates the addition of the second GlcNAc-P to high mannose oligosaccharides of these substrates. We postulate that the mannose 6-phosphate receptor homology domain of the gamma subunit binds and presents the high mannose glycans of the acceptor to the alpha/beta catalytic site in a favorable manner.


Assuntos
Transferases (Outros Grupos de Fosfato Substituídos)/química , Animais , Encéfalo/metabolismo , Domínio Catalítico , Bovinos , Fibroblastos/metabolismo , Humanos , Cinética , Manose/química , Camundongos , Oligossacarídeos/química , Fosforilação , Estrutura Terciária de Proteína , Receptor IGF Tipo 2/química , Proteínas Recombinantes/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
18.
Nat Med ; 10(5): 518-23, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15107842

RESUMO

The congenital disorders of glycosylation (CDG) are characterized by defects in N-linked glycan biosynthesis that result from mutations in genes encoding proteins directly involved in the glycosylation pathway. Here we describe two siblings with a fatal form of CDG caused by a mutation in the gene encoding COG-7, a subunit of the conserved oligomeric Golgi (COG) complex. The mutation impairs integrity of the COG complex and alters Golgi trafficking, resulting in disruption of multiple glycosylation pathways. These cases represent a new type of CDG in which the molecular defect lies in a protein that affects the trafficking and function of the glycosylation machinery.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Proteínas de Transporte/genética , Mutação , Sequência de Bases , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , DNA Complementar/genética , Feminino , Glicosilação , Complexo de Golgi/metabolismo , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino
19.
FEBS Lett ; 595(13): 1758-1767, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991349

RESUMO

The SARS-CoV-2 spike glycoprotein (spike) mediates viral entry by binding ACE2 receptors on host cell surfaces. Spike glycan processing and cleavage, which occur in the Golgi network, are important for fusion at the plasma membrane, promoting both virion infectivity and cell-to-cell viral spreading. We show that a KxHxx motif in the cytosolic tail of spike weakly binds the COPß' subunit of COPI coatomer, which facilitates some recycling of spike within the Golgi, while releasing the remainder to the cell surface. Although histidine (KxHxx) has been proposed to be equivalent to lysine within di-lysine endoplasmic reticulum (ER) retrieval sequences, we show that histidine-to-lysine substitution (KxKxx) retains spike at the ER and prevents glycan processing, protease cleavage, and transport to the plasma membrane.


Assuntos
Substituição de Aminoácidos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Glicosilação , Complexo de Golgi , Células HEK293 , Células HeLa , Histidina/genética , Humanos , Lisina/genética , Domínios Proteicos , Proteólise , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
20.
FEBS Open Bio ; 11(2): 367-374, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33206455

RESUMO

The Golgi-localized, gamma-ear containing, ADP-ribosylation factor-binding proteins (GGAs 1, 2, and 3) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) at the Golgi and play a role, along with adaptor protein complex 1 (AP-1), in the sorting of newly synthesized lysosomal hydrolases to the endolysosomal system. However, the relative importance of the two types of coat proteins in this process is still unclear. Here, we report that inactivation of all three GGA genes in HeLa cells decreased the sorting efficiency of cathepsin D from 97% to 73% relative to wild-type, with marked redistribution of the cation-independent MPR from peripheral punctae to the trans-Golgi network. In comparison, GNPTAB-/- HeLa cells with complete inactivation of the mannose 6-phosphate pathway sorted only 20% of the cathepsin D. We conclude that the residual sorting of cathepsin D in the GGA triple-knockout cells is mediated by AP-1.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Catepsina D/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Lisossomos/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA