Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Circ Res ; 131(10): 792-806, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36205124

RESUMO

BACKGROUND: In large-scale genomic studies, Sox17, an endothelial-specific transcription factor, has been suggested as a putative causal gene of pulmonary arterial hypertension (PAH); however, its role and molecular mechanisms remain to be elucidated. We investigated the functional impacts and acting mechanisms of impaired Sox17 (SRY-related HMG-box17) pathway in PAH and explored its potential as a therapeutic target. METHODS: In adult mice, Sox17 deletion in pulmonary endothelial cells (ECs) induced PAH under hypoxia with high penetrance and severity, but not under normoxia. RESULTS: Key features of PAH, such as hypermuscularization, EC hyperplasia, and inflammation in lung arterioles, right ventricular hypertrophy, and elevated pulmonary arterial pressure, persisted even after long rest in normoxia. Mechanistically, transcriptomic profiling predicted that the combination of Sox17 deficiency and hypoxia activated c-Met signaling in lung ECs. HGF (hepatocyte grow factor), a ligand of c-Met, was upregulated in Sox17-deficient lung ECs. Pharmacologic inhibition of HGF/c-Met signaling attenuated and reversed the features of PAH in both preventive and therapeutic settings. Similar to findings in animal models, Sox17 levels in lung ECs were repressed in 26.7% of PAH patients (4 of 15), while those were robust in all 14 non-PAH controls. HGF levels in pulmonary arterioles were increased in 86.7% of patients with PAH (13 of 15), but none of the controls showed that pattern. CONCLUSIONS: The downregulation of Sox17 levels in pulmonary arterioles increases the susceptibility to PAH, particularly when exposed to hypoxia. Our findings suggest the reactive upregulation of HGF/c-Met signaling as a novel druggable target for PAH treatment.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Camundongos , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Transdução de Sinais , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo
2.
Circ Res ; 119(7): 839-52, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27528602

RESUMO

RATIONALE: Vascular endothelial growth factor (VEGF) signaling is a key pathway for angiogenesis and requires highly coordinated regulation. Although the Notch pathway-mediated suppression of excessive VEGF activity via negative feedback is well known, the positive feedback control for augmenting VEGF signaling remains poorly understood. Transcription factor Sox17 is indispensable for angiogenesis, but its association with VEGF signaling is largely unknown. The contribution of other Sox members to angiogenesis also remains to be determined. OBJECTIVE: To reveal the genetic interaction of Sox7, another Sox member, with Sox17 in developmental angiogenesis and their functional relationship with VEGF signaling. METHODS AND RESULTS: Sox7 is expressed specifically in endothelial cells and its global and endothelial-specific deletion resulted in embryonic lethality with severely impaired angiogenesis in mice, substantially overlapping with Sox17 in both expression and function. Interestingly, compound heterozygosity for Sox7 and Sox17 phenocopied vascular defects of Sox7 or Sox17 homozygous knockout, indicating that the genetic cooperation of Sox7 and Sox17 is sensitive to their combined gene dosage. VEGF signaling upregulated both Sox7 and Sox17 expression in angiogenesis via mTOR pathway. Furthermore, Sox7 and Sox17 promoted VEGFR2 (VEGF receptor 2) expression in angiogenic vessels, suggesting a positive feedback loop between VEGF signaling and SoxF. CONCLUSIONS: Our findings demonstrate that SoxF transcription factors are indispensable players in developmental angiogenesis by acting as positive feedback regulators of VEGF signaling.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/fisiologia , Fatores de Transcrição SOXF/fisiologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Técnicas de Cultura , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez
3.
Foods ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766169

RESUMO

In the rice processing industry, wastewater is an inevitable by-product of rice washing. To increase the utilization of washed rice water (WRW), seven types of fermented washed rice water (FWRW) were prepared using lactic acid bacteria (LAB) and carbohydrate hydrolase. The total concentration of small maltooligosaccharides (MOSs) in the amyloglucosidase (AMG) treatment groups was about ten times higher than in the untreated groups. After 6 h of fermentation, six of the seven FWRW samples reached a pH of 4 due to the increased concentration of organic acids and could, therefore, be used as food acidity regulators. To confirm the applicability of FWRW, the traditional Korean rice cake garaetteok was prepared with FWRW and stored at 4 °C for 5 days. A texture profile analysis (TPA) revealed that the hardness of garaetteok treated with FWRW was significantly lower than that of untreated garaetteok following storage. Differential scanning calorimetry (DSC) showed that FWRW retarded the retrogradation of garaetteok during storage. The addition of FWRW using Lactobacillus reuteri with an AMG group was particularly effective for inhibiting microbial activity in garaetteok during storage. These results suggest that FWRW using AMG-added L. reuteri can be used as a novel food additive for improving the quality of traditional Korean starch foods and could also reduce the volume of waste WRW.

4.
Int J Biol Macromol ; 250: 126107, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536417

RESUMO

Amylopectin clusters (APCs) are produced by cyclodextrin glucanotransferase (EC 2.4.1.19). Their solubility rate in aqueous solution was found to be 16.7 %. The weight-average molecular weight of APCs is ∼105 Da, as determined by multiangle laser light scattering analysis. Side chain length analysis indicated that the relative proportions of side chains with a degree of polymerization in the ranges of 2-8 and 25-50 decreased and increased, respectively, during preparation of APCs. In the exercise experiment, the blood glucose level of rats was higher in the APC-treated group than in the groups treated with commercial carbohydrate supplement (CCD) and glucose. In the forced swimming test, the swimming time in the APC and CCD groups increased by 22.6 % and 31.1 %, respectively, compared with the glucose administration group. The insulin levels were also similar between the APC and CCD groups. However, the glycogen levels in the liver and muscles of mice were significantly higher in the APC group than control group. These results suggest that APCs could potentially enhance endurance when added to sports drinks.

5.
Carbohydr Polym ; 310: 120722, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925261

RESUMO

To improve the applicability of quercetin (QCT), we produced a QCT and cycloamylose (CA-QCT) inclusion complex based on the cyclization activity of cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19). The encapsulated QCT was purified using recycling preparative high-performance liquid chromatography, and its formation was analyzed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The water solubility of CA-QCT was 55,000-fold higher than that of QCT. CA-QCT had 97 % stability for one week at pH 8 in a 4 °C water bath. According to a 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay, CA-QCT activity in aqueous solution was 24 times higher than that of an equal amount of QCT in aqueous solution. In an anti-inflammatory assay using lipopolysaccharide-induced RAW264.7 macrophages, CA-QCT in aqueous solution decreased nitric oxide production in a similar manner to QCT in dimethyl sulfoxide (DMSO). Additionally, even under aqueous conditions, CA-QCT more effectively inhibited the production of inflammatory mediators, such as interleukin-1ß, interleukin-6, and cyclooxygenase, compared with QCT dissolved in DMSO.


Assuntos
Dimetil Sulfóxido , Quercetina , Quercetina/farmacologia , Quercetina/química , Anti-Inflamatórios/farmacologia , Oligossacarídeos
6.
Cancer Res ; 83(12): 1968-1983, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093870

RESUMO

T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE: ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.


Assuntos
Angiopoietina-2 , Melanoma , Humanos , Camundongos , Animais , Angiopoietina-2/genética , Inibidores de Checkpoint Imunológico , Melanoma/terapia , Imunoterapia , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral
7.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843277

RESUMO

Improving the management of metastasis in pancreatic neuroendocrine tumors (PanNETs) is critical, as nearly half of patients with PanNETs present with liver metastases, and this accounts for the majority of patient mortality. We identified angiopoietin-2 (ANGPT2) as one of the most upregulated angiogenic factors in RNA-Seq data from human PanNET liver metastases and found that higher ANGPT2 expression correlated with poor survival rates. Immunohistochemical staining revealed that ANGPT2 was localized to the endothelial cells of blood vessels in PanNET liver metastases. We observed an association between the upregulation of endothelial ANGPT2 and liver metastatic progression in both patients and transgenic mouse models of PanNETs. In human and mouse PanNET liver metastases, ANGPT2 upregulation coincided with poor T cell infiltration, indicative of an immunosuppressive tumor microenvironment. Notably, both pharmacologic inhibition and genetic deletion of ANGPT2 in PanNET mouse models slowed the growth of PanNET liver metastases. Furthermore, pharmacologic inhibition of ANGPT2 promoted T cell infiltration and activation in liver metastases, improving the survival of mice with metastatic PanNETs. These changes were accompanied by reduced plasma leakage and improved vascular integrity in metastases. Together, these findings suggest that ANGPT2 blockade may be an effective strategy for promoting T cell infiltration and immunostimulatory reprogramming to reduce the growth of liver metastases in PanNETs.


Assuntos
Neoplasias Hepáticas , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Células Endoteliais/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos Transgênicos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linfócitos T/patologia , Microambiente Tumoral
8.
Exp Mol Med ; 55(2): 470-484, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828931

RESUMO

Tumor progression is intimately associated with the vasculature, as tumor proliferation induces angiogenesis and tumor cells metastasize to distant organs via blood vessels. However, whether tumor invasion is associated with blood vessels remains unknown. As glioblastoma (GBM) is featured by aggressive invasion and vascular abnormalities, we characterized the onset of vascular remodeling in the diffuse tumor infiltrating zone by establishing new spontaneous GBM models with robust invasion capacity. Normal brain vessels underwent a gradual transition to severely impaired tumor vessels at the GBM periphery over several days. Increasing vasodilation from the tumor periphery to the tumor core was also found in human GBM. The levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) showed a spatial correlation with the extent of vascular abnormalities spanning the tumor-invading zone. Blockade of VEGFR2 suppressed vascular remodeling at the tumor periphery, confirming the role of VEGF-VEGFR2 signaling in the invasion-associated vascular transition. As angiopoietin-2 (ANGPT2) was expressed in only a portion of the central tumor vessels, we developed a ligand-independent tunica interna endothelial cell kinase 2 (Tie2)-activating antibody that can result in Tie2 phosphorylation in vivo. This agonistic anti-Tie2 antibody effectively normalized the vasculature in both the tumor periphery and tumor center, similar to the effects of VEGFR2 blockade. Mechanistically, this antibody-based Tie2 activation induced VE-PTP-mediated VEGFR2 dephosphorylation in vivo. Thus, our study reveals that the normal-to-tumor vascular transition is spatiotemporally associated with GBM invasion and may be controlled by Tie2 activation via a novel mechanism of action.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular
9.
Cancers (Basel) ; 12(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120820

RESUMO

Manipulating autophagy is a promising strategy for treating cancer as several autophagy inhibitors are shown to induce autophagic cell death. One of these, autophagonizer (APZ), induces apoptosis-independent cell death by binding an unknown target via an unknown mechanism. To identify APZ targets, we used a label-free drug affinity responsive target stability (DARTS) approach with a liquid chromatography/tandem mass spectrometry (LC-MS/MS) readout. Of 35 protein interactors, we identified Hsp70 as a key target protein of unmodified APZ in autophagy. Either APZ treatment or Hsp70 inhibition attenuates integrity of lysosomes, which leads to autophagic cell death exhibiting an excellent synergism with a clinical drug, temozolomide, in vitro, in vivo, and orthotropic glioma xenograft model. These findings demonstrate the potential of APZ to induce autophagic cell death and its development to combinational chemotherapeutic agent for glioma treatment. Collectively, our study demonstrated that APZ, a new autophagy inhibitor, can be used as a potent antitumor drug candidate to get over unassailable glioma and revealed a novel function of Hsp70 in lysosomal integrity regulation of autophagy.

10.
J Exp Med ; 215(3): 963-983, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29444818

RESUMO

High-grade glioma (HGG) is highly angiogenic, but antiangiogenic therapy has transient clinical benefit in only a fraction of patients. Vascular regulators of these heterogeneous responses remain undetermined. We found up-regulation of Sox7 and down-regulation of Sox17 in tumor endothelial cells (tECs) in mouse HGG. Sox7 deletion suppressed VEGFR2 expression, vascular abnormality, hypoxia-driven invasion, regulatory T cell infiltration, and tumor growth. Conversely, Sox17 deletion exacerbated these phenotypes by up-regulating Sox7 in tECs. Anti-VEGFR2 antibody treatment delayed tumor growth by normalizing Sox17-deficient abnormal vessels with high Sox7 levels but promoted it by regressing Sox7-deficient vessels, recapitulating variable therapeutic responses to antiangiogenic therapy in HGG patients. Our findings establish that Sox7 promotes tumor growth via vessel abnormalization, and its level determines the therapeutic outcome of VEGFR2 inhibition in HGG. In 189 HGG patients, Sox7 expression was heterogeneous in tumor vessels, and high Sox7 levels correlated with poor survival, early recurrence, and impaired vascular function, emphasizing the clinical relevance of Sox7 in HGG.


Assuntos
Vasos Sanguíneos/anormalidades , Glioma/metabolismo , Glioma/patologia , Fatores de Transcrição SOXF/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Proteínas de Ligação ao Cálcio , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Deleção de Genes , Glioma/irrigação sanguínea , Glioma/imunologia , Humanos , Imunidade , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Gradação de Tumores , Prognóstico , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA