Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2318444121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598340

RESUMO

Fluid efflux from the brain plays an important role in solute waste clearance. Current experimental approaches provide little spatial information, and data collection is limited due to short duration or low frequency of sampling. One approach shows tracer efflux to be independent of molecular size, indicating bulk flow, yet also decelerating like simple membrane diffusion. In an apparent contradiction to this report, other studies point to tracer efflux acceleration. We here develop a one-dimensional advection-diffusion model to gain insight into brain efflux principles. The model is characterized by nine physiological constants and three efflux parameters for which we quantify prior uncertainty. Using Bayes' rule and the two efflux studies, we validate the model and calculate data-informed parameter distributions. The apparent contradictions in the efflux studies are resolved by brain surface boundaries being bottlenecks for efflux. To critically test the model, a custom MRI efflux assay measuring solute dispersion in tissue and release to cerebrospinal fluid was employed. The model passed the test with tissue bulk flow velocities in the range 60 to 190 [Formula: see text]m/h. Dimensional analysis identified three principal determinants of efflux, highlighting brain surfaces as a restricting factor for metabolite solute clearance.


Assuntos
Encéfalo , Teorema de Bayes , Encéfalo/metabolismo , Transporte Biológico , Difusão , Cinética
2.
J Anat ; 243(1): 23-38, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36794762

RESUMO

Outer radial glial cells (oRGs) give rise to neurons and glial cells and contribute to cell migration and expansion in developing neocortex. HOPX has been described as a marker of oRGs and possible actor in glioblastomas. Recent years' evidence points to spatiotemporal differences in brain development which may have implications for the classification of cell types in the central nervous system and understanding of a range of neurological diseases. Using the Human Embryonic/Fetal Biobank, Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark, HOPX and BLBP immunoexpression was investigated in developing frontal, parietal, temporal and occipital human neocortex, other cortical areas and brain stem regions to interrogate oRG and HOPX regional heterogeneity. Furthermore, usage of high-plex spatial profiling (Nanostring GeoMx® DSP) was tested on the same material. HOPX marked oRGs in several human developing brain regions as well as cells in known gliogenic areas but did not completely overlap with BLBP or GFAP. Interestingly, limbic structures (e.g. olfactory bulb, indusium griseum, entorhinal cortex, fimbria) showed more intense HOPX immunoreactivity than adjacent neocortex and in cerebellum and brain stem, HOPX and BLBP seemed to stain different cell populations in cerebellar cortex and corpus pontobulbare. DSP screening of corresponding regions indicated differences in cell type composition, vessel density and presence of apolipoproteins within and across regions and thereby confirming the importance of acknowledging time and place in developmental neuroscience.


Assuntos
Neuroglia , Neurônios , Humanos , Neurônios/metabolismo , Neuroglia/metabolismo , Encéfalo , Neurogênese , Sistema Nervoso Central
3.
Annu Rev Pharmacol Toxicol ; 59: 487-505, 2019 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-30183506

RESUMO

Efflux mechanisms situated in various brain barrier interfaces control drug entry into the adult brain; this review considers the effectiveness of these protective mechanisms in the embryo, fetus, and newborn brain. The longstanding belief that the blood-brain barrier is absent or immature in the fetus and newborn has led to many misleading statements with potential clinical implications. The immature brain is undoubtedly more vulnerable to damage by drugs and toxins; as is reviewed here, some developmentally regulated normal brain barrier mechanisms probably contribute to this vulnerability. We propose that the functional status of brain barrier efflux mechanisms should be investigated at different stages of brain development to provide a rational basis for the use of drugs in pregnancy and in newborns, especially in those prematurely born, where protection usually provided by the placenta is no longer present.


Assuntos
Transporte Biológico/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Feminino , Humanos , Recém-Nascido , Gravidez
4.
J Anat ; 235(3): 590-615, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30901080

RESUMO

The astroglial lineage consists of heterogeneous cells instrumental for normal brain development, function and repair. Unfortunately, this heterogeneity complicates research in the field, which suffers from lack of truly specific and sensitive astroglial markers. Nevertheless, single astroglial markers are often used to describe astrocytes in different settings. We therefore investigated and compared spatiotemporal patterns of immunoreactivity in developing human brain from 12 to 21 weeks post conception and publicly available RNA expression data for four established and potential astroglial markers - GFAP, S100, AQP4 and YKL-40. In the hippocampal region, we also screened for C3, a complement component highly expressed in A1-reactive astrocytes. We found diverging partly overlapping patterns of the established astroglial markers GFAP, S100 and AQP4, confirming that none of these markers can fully describe and discriminate different developmental forms and subpopulations of astrocytes in human developing brain, although AQP4 seems to be the most sensitive and specific marker for the astroglial lineage at midgestation. AQP4 characterizes a brain-wide water transport system in cerebral cortex with regional differences in immunoreactivity at midgestation. AQP4 distinguishes a vast proportion of astrocytes and subpopulations of radial glial cells destined for the astroglial lineage, including astrocytes determined for the future glia limitans and apical truncated radial glial cells in ganglionic eminences, devoid of GFAP and S100. YKL-40 and C3d, previously found in reactive astrocytes, stain different subpopulations of astrocytes/astroglial progenitors in developing hippocampus at midgestation and may characterize specific subpopulations of 'developmental astrocytes'. Our results clearly reflect that lack of pan-astrocytic markers necessitates the consideration of time, region, context and aim when choosing appropriate astroglial markers.


Assuntos
Astrócitos , Biomarcadores/metabolismo , Encéfalo/embriologia , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Proteínas S100/metabolismo
5.
J Anat ; 235(3): 543-554, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30644551

RESUMO

Neuroserpin is a serine-protease inhibitor mainly expressed in the CNS and involved in the inhibition of the proteolytic cascade. Animal models confirmed its neuroprotective role in perinatal hypoxia-ischaemia and adult stroke. Although neuroserpin may be a potential therapeutic target in the treatment of the aforementioned conditions, there is still no information in the literature on its distribution during human brain development. The present study provides a detailed description of the changing spatiotemporal patterns of neuroserpin focusing on physiological human brain development. Five stages were distinguished within our examined age range which spanned from the 7th gestational week until adulthood. In particular, subplate and deep cortical plate neurons were identified as the main sources of neuroserpin production between the 25th gestational week and the first postnatal month. Our immunohistochemical findings were substantiated by single cell RNA sequencing data showing specific neuronal and glial cell types expressing neuroserpin. The characterization of neuroserpin expression during physiological human brain development is essential for forthcoming studies which will explore its involvement in pathological conditions, such as perinatal hypoxia-ischaemia and adult stroke in human.


Assuntos
Encéfalo/embriologia , Neuropeptídeos/metabolismo , Serpinas/metabolismo , Encéfalo/metabolismo , Humanos , Imuno-Histoquímica , Análise de Sequência de RNA , Análise de Célula Única , Neuroserpina
6.
Adv Anat Embryol Cell Biol ; 230: 1-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30543033

RESUMO

The observation of two precursor groups of the early stem cells (Groups I and II) leads to the realization that a first amount of fetal stem cells (Group I) migrate from the AMG (Aortal-Mesonephric-Gonadal)-region into the aorta and its branching vessels. A second group (Group II) gains quite a new significance during human development. This group presents a specific developmental step which is found only in the human. This continuation of the early development along a different way indicates a general alteration of the stem cell biology. This changed process in the stem cell scene dominates the further development of the human stem cells. It remains unclear where this phylogenetic step first appears. By far not all advanced mammals show this second group of stem cells and their axonal migration. Essentially only primates seem to be involved in this special development.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/ultraestrutura , Gônadas/citologia , Gônadas/embriologia , Células APUD/citologia , Córtex Suprarrenal/citologia , Córtex Suprarrenal/embriologia , Córtex Suprarrenal/fisiologia , Córtex Suprarrenal/ultraestrutura , Medula Suprarrenal/citologia , Medula Suprarrenal/embriologia , Medula Suprarrenal/fisiologia , Aorta/citologia , Aorta/embriologia , Aorta/ultraestrutura , Sistema Nervoso Autônomo/citologia , Sistema Nervoso Autônomo/embriologia , Sistema Nervoso Autônomo/fisiologia , Orientação de Axônios/fisiologia , Movimento Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Gônadas/fisiologia , Gônadas/ultraestrutura , Desenvolvimento Humano/fisiologia , Humanos , Microscopia Eletrônica , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/fisiologia , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Pâncreas/ultraestrutura , Paragânglios Cromafins/citologia , Paragânglios Cromafins/fisiologia , Paragânglios Cromafins/ultraestrutura , Teratoma/embriologia , Teratoma/fisiopatologia
7.
J Physiol ; 596(23): 5723-5756, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29774535

RESUMO

Properties of the local internal environment of the adult brain are tightly controlled providing a stable milieu essential for its normal function. The mechanisms involved in this complex control are structural, molecular and physiological (influx and efflux transporters) frequently referred to as the 'blood-brain barrier'. These mechanisms include regulation of ion levels in brain interstitial fluid essential for normal neuronal function, supply of nutrients, removal of metabolic products, and prevention of entry or elimination of toxic agents. A key feature is cerebrospinal fluid secretion and turnover. This is much less during development, allowing greater accumulation of permeating molecules. The overall effect of these mechanisms is to tightly control the exchange of molecules into and out of the brain. This review presents experimental evidence currently available on the status of these mechanisms in developing brain. It has been frequently stated for over nearly a century that the blood-brain barrier is not present or at least is functionally deficient in the embryo, fetus and newborn. We suggest the alternative hypothesis that the barrier mechanisms in developing brain are likely to be appropriately matched to each stage of its development. The contributions of different barrier mechanisms, such as changes in constituents of cerebrospinal fluid in relation to specific features of brain development, for example neurogenesis, are only beginning to be studied. The evidence on this previously neglected aspect of brain barrier function is outlined. We also suggest future directions this field could follow with special emphasis on potential applications in a clinical setting.


Assuntos
Encéfalo/fisiologia , Desenvolvimento Fetal , Animais , Proteínas do Líquido Cefalorraquidiano , Feto/fisiologia , Humanos , Recém-Nascido , Junções Íntimas/fisiologia
8.
Acta Neuropathol ; 135(3): 363-385, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368214

RESUMO

Meninges that surround the CNS consist of an outer fibrous sheet of dura mater (pachymeninx) that is also the inner periosteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilitators in the foetal CNS. There are two separate CSF systems during early foetal life, inner CSF in the ventricles and outer CSF in the subarachnoid space. As the foramina of Magendi and Luschka develop, one continuous CSF system evolves. Due to the lack of arachnoid granulations during foetal life, it is most likely that CSF is eliminated by lymphatic drainage pathways passing through the cribriform plate and nasal submucosa. (2) We then review the fine structure of the adult human and rodent leptomeninges to establish their roles as barriers and facilitators for the movement of fluid, cells and pathogens. Leptomeningeal cells line CSF spaces, including arachnoid granulations and lymphatic drainage pathways, and separate elements of extracellular matrix from the CSF. The leptomeningeal lining facilitates the traffic of inflammatory cells within CSF but also allows attachment of bacteria such as Neisseria meningitidis and of tumour cells as CSF metastases. Single layers of leptomeningeal cells extend into the brain closely associated with the walls of arteries so that there are no perivascular spaces around arteries in the cerebral cortex. Perivascular spaces surrounding arteries in the white matter and basal ganglia relate to their two encompassing layers of leptomeninges. (3) Finally we examine the roles of ligands expressed by leptomeningeal cells for the attachment of inflammatory cells, bacteria and tumour cells as understanding these roles may aid the design of therapeutic strategies to manage developmental, autoimmune, infectious and neoplastic diseases relating to the CSF, the leptomeninges and the associated CNS.


Assuntos
Meninges/citologia , Meninges/metabolismo , Animais , Humanos , Meninges/irrigação sanguínea , Meninges/microbiologia , Roedores
9.
Glia ; 64(1): 90-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26295543

RESUMO

The glycosphingolipid SSEA-4 and the glycoprotein YKL-40 have both been associated with human embryonic and neural stem cell differentiation. We investigated the distribution of SSEA-4 and YKL-40 positive cells in proliferative zones of human fetal forebrain using immunohistochemistry and double-labeling immunofluorescence. A few small rounded SSEA-4 and YKL-40 labeled cells were present in the radial glial BLBP positive proliferative zones adjacent to the lateral ganglionic eminence from 12th week post conception. With increasing age, a similarly stained cell population appeared more widespread in the subventricular zone. At midgestation, the entire subventricular zone showed patches of SSEA-4, YKL-40, and BLBP positive cells. Co-labeling with markers for radial glial cells (RGCs) and neuronal, glial, and microglial markers tested the lineage identity of this subpopulation of radial glial descendants. Adjacent to the ventricular zone, a minor fraction showed overlap with GFAP but not with nestin, Olig2, NG2, or S100. No co-localization was found with neuronal markers NeuN, calbindin, DCX or with markers for microglial cells (Iba-1, CD68). Moreover, the SSEA-4 and YKL-40 positive cell population in subventricular zone was largely devoid of Tbr2, a marker for intermediate neuronal progenitor cells descending from RGCs. YKL-40 has recently been found in astrocytes in the neuron-free fimbria, and both SSEA-4 and YKL-40 are present in malignant astroglial brain tumors. We suggest that the population of cells characterized by immunohistochemical combination of antibodies against SSEA-4 and YKL-40 and devoid of neuronal and microglial markers represent a yet unexplored astrogenic lineage illustrating the complexity of astroglial development.


Assuntos
Adipocinas/metabolismo , Lectinas/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo , Nicho de Células-Tronco/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos Nucleares/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Calbindinas/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/metabolismo , Proteína 1 Semelhante à Quitinase-3 , Proteínas de Ligação a DNA/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteína 7 de Ligação a Ácidos Graxos , Humanos , Imuno-Histoquímica , Proteínas dos Microfilamentos , Proteínas Associadas aos Microtúbulos/metabolismo , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Proteínas S100/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
Hum Mol Genet ; 23(23): 6163-76, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24986922

RESUMO

Genome instability, epigenetic remodelling and structural chromosomal rearrangements are hallmarks of cancer. However, the coordinated epigenetic effects of constitutional chromosomal rearrangements that disrupt genes associated with congenital neurodevelopmental diseases are poorly understood. To understand the genetic-epigenetic interplay at breakpoints of chromosomal translocations disrupting CG-rich loci, we quantified epigenetic modifications at DLGAP4 (SAPAP4), a key post-synaptic density 95 (PSD95) associated gene, truncated by the chromosome translocation t(8;20)(p12;q11.23), co-segregating with cerebellar ataxia in a five-generation family. We report significant epigenetic remodelling of the DLGAP4 locus triggered by the t(8;20)(p12;q11.23) translocation and leading to dysregulation of DLGAP4 expression in affected carriers. Disruption of DLGAP4 results in monoallelic hypermethylation of the truncated DLGAP4 promoter CpG island. This induced hypermethylation is maintained in somatic cells of carriers across several generations in a t(8;20) dependent-manner however, is erased in the germ cells of the translocation carriers. Subsequently, chromatin remodelling of the locus-perturbed monoallelic expression of DLGAP4 mRNAs and non-coding RNAs in haploid cells having the translocation. Our results provide new mechanistic insight into the way a balanced chromosomal rearrangement associated with a neurodevelopmental disorder perturbs allele-specific epigenetic mechanisms at breakpoints leading to the deregulation of the truncated locus.


Assuntos
Ataxia Cerebelar/genética , Montagem e Desmontagem da Cromatina , Epigênese Genética , Proteínas do Tecido Nervoso/genética , Cromossomos Humanos Par 8/genética , Ilhas de CpG , Metilação de DNA , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Associadas SAP90-PSD95 , Translocação Genética
11.
Am J Hum Genet ; 92(3): 415-21, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23395477

RESUMO

Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans.


Assuntos
Albinismo/genética , Diferenciação Celular/genética , Cromossomos Humanos Par 10 , Códon sem Sentido , Genes Recessivos , Melanócitos/metabolismo , Albinismo/metabolismo , Albinismo/patologia , Animais , Aberrações Cromossômicas , Mapeamento Cromossômico/métodos , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Masculino , Melanócitos/patologia , Pigmentação/genética , Epitélio Pigmentado da Retina/metabolismo , Peixe-Zebra
12.
Cereb Cortex ; 24(5): 1216-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23283686

RESUMO

Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human hippocampus, where it is complementary to the expression pattern of the Zbtb20 target gene Tbr1. Therefore, the disclosed Zbtb20-mediated transcriptional repressor mechanism may be involved in development of the human archicortex.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Imunoprecipitação da Cromatina , Feto , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/genética
13.
Peptides ; 176: 171213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604379

RESUMO

Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.


Assuntos
Hormônio Adrenocorticotrópico , Glucagon , Glicopeptídeos , Humanos , Glicopeptídeos/metabolismo , Glucagon/metabolismo , Glucagon/sangue , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/metabolismo , Masculino , Adulto , Feminino , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Hidrocortisona/sangue , Receptores de Glucagon/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/sangue , Pessoa de Meia-Idade
14.
Science ; 385(6704): 80-86, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963846

RESUMO

Classical migraine patients experience aura, which is transient neurological deficits associated with cortical spreading depression (CSD), preceding headache attacks. It is not currently understood how a pathological event in cortex can affect peripheral sensory neurons. In this study, we show that cerebrospinal fluid (CSF) flows into the trigeminal ganglion, establishing nonsynaptic signaling between brain and trigeminal cells. After CSD, ~11% of the CSF proteome is altered, with up-regulation of proteins that directly activate receptors in the trigeminal ganglion. CSF collected from animals exposed to CSD activates trigeminal neurons in naïve mice in part by CSF-borne calcitonin gene-related peptide (CGRP). We identify a communication pathway between the central and peripheral nervous system that might explain the relationship between migrainous aura and headache.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Depressão Alastrante da Atividade Elétrica Cortical , Modelos Animais de Doenças , Transtornos de Enxaqueca , Gânglio Trigeminal , Animais , Gânglio Trigeminal/metabolismo , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/líquido cefalorraquidiano , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Transtornos de Enxaqueca/líquido cefalorraquidiano , Transtornos de Enxaqueca/metabolismo , Líquido Cefalorraquidiano/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Proteoma/metabolismo , Transdução de Sinais
15.
Am J Hum Genet ; 86(6): 839-49, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20493459

RESUMO

Congenital heart defects (CHDs) are the most common major developmental anomalies and the most frequent cause for perinatal mortality, but their etiology remains often obscure. We identified a locus for CHDs on 6q24-q25. Genotype-phenotype correlations in 12 patients carrying a chromosomal deletion on 6q delineated a critical 850 kb region on 6q25.1 harboring five genes. Bioinformatics prioritization of candidate genes in this locus for a role in CHDs identified the TGF-beta-activated kinase 1/MAP3K7 binding protein 2 gene (TAB2) as the top-ranking candidate gene. A role for this candidate gene in cardiac development was further supported by its conserved expression in the developing human and zebrafish heart. Moreover, a critical, dosage-sensitive role during development was demonstrated by the cardiac defects observed upon titrated knockdown of tab2 expression in zebrafish embryos. To definitively confirm the role of this candidate gene in CHDs, we performed mutation analysis of TAB2 in 402 patients with a CHD, which revealed two evolutionarily conserved missense mutations. Finally, a balanced translocation was identified, cosegregating with familial CHD. Mapping of the breakpoints demonstrated that this translocation disrupts TAB2. Taken together, these data clearly demonstrate a role for TAB2 in human cardiac development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Deleção Cromossômica , Cromossomos Humanos Par 6 , Cardiopatias Congênitas/genética , Sequência de Aminoácidos , Animais , Embrião de Mamíferos , Feminino , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Coração/embriologia , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Translocação Genética , Peixe-Zebra/embriologia
16.
Res Sq ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37961391

RESUMO

Traditionally, the meninges are described as 3 distinct layers, dura, arachnoid and pia. Yet, the classification of the connective meningeal membranes surrounding the brain is based on postmortem macroscopic examination. Ultrastructural and single cell transcriptome analyses have documented that the 3 meningeal layers can be subdivided into several distinct layers based on cellular characteristics. We here re-examined the existence of a 4th meningeal membrane, Subarachnoid Lymphatic-like Membrane or SLYM in Prox1-eGFP reporter mice. Imaging of freshly resected whole brains showed that SLYM covers the entire brain and brain stem and forms a roof shielding the subarachnoid cerebrospinal fluid (CSF)-filled cisterns and the pia-adjacent vasculature. Thus, SLYM is strategically positioned to facilitate periarterial influx of freshly produced CSF and thereby support unidirectional glymphatic CSF transport. Histological analysis showed that, in spinal cord and parts of dorsal cortex, SLYM fused with the arachnoid barrier layer, while in the basal brain stem typically formed a 1-3 cell layered membrane subdividing the subarachnoid space into two compartments. However, great care should be taken when interpreting the organization of the delicate leptomeningeal membranes in tissue sections. We show that hyperosmotic fixatives dehydrate the tissue with the risk of shrinkage and dislocation of these fragile membranes in postmortem preparations.

17.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961461

RESUMO

Traditionally, the meninges are described as 3 distinct layers, dura, arachnoid and pia. Yet, the classification of the connective meningeal membranes surrounding the brain is based on postmortem macroscopic examination. Ultrastructural and single cell transcriptome analyses have documented that the 3 meningeal layers can be subdivided into several distinct layers based on cellular characteristics. We here re-examined the existence of a 4 th meningeal membrane, S ubarachnoid Ly mphatic-like M embrane or SLYM in Prox1-eGFP reporter mice. Imaging of freshly resected whole brains showed that SLYM covers the entire brain and brain stem and forms a roof shielding the subarachnoid cerebrospinal fluid (CSF)-filled cisterns and the pia-adjacent vasculature. Thus, SLYM is strategically positioned to facilitate periarterial influx of freshly produced CSF and thereby support unidirectional glymphatic CSF transport. Histological analysis showed that, in spinal cord and parts of dorsal cortex, SLYM fused with the arachnoid barrier layer, while in the basal brain stem typically formed a 1-3 cell layered membrane subdividing the subarachnoid space into two compartments. However, great care should be taken when interpreting the organization of the delicate leptomeningeal membranes in tissue sections. We show that hyperosmotic fixatives dehydrate the tissue with the risk of shrinkage and dislocation of these fragile membranes in postmortem preparations.

18.
Fluids Barriers CNS ; 20(1): 93, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098084

RESUMO

Traditionally, the meninges are described as 3 distinct layers, dura, arachnoid and pia. Yet, the classification of the connective meningeal membranes surrounding the brain is based on postmortem macroscopic examination. Ultrastructural and single cell transcriptome analyses have documented that the 3 meningeal layers can be subdivided into several distinct layers based on cellular characteristics. We here re-examined the existence of a 4th meningeal membrane, Subarachnoid Lymphatic-like Membrane or SLYM in Prox1-eGFP reporter mice. Imaging of freshly resected whole brains showed that SLYM covers the entire brain and brain stem and forms a roof shielding the subarachnoid cerebrospinal fluid (CSF)-filled cisterns and the pia-adjacent vasculature. Thus, SLYM is strategically positioned to facilitate periarterial influx of freshly produced CSF and thereby support unidirectional glymphatic CSF transport. Histological analysis showed that, in spinal cord and parts of dorsal cortex, SLYM fused with the arachnoid barrier layer, while in the basal brain stem typically formed a 1-3 cell layered membrane subdividing the subarachnoid space into two compartments. However, great care should be taken when interpreting the organization of the delicate leptomeningeal membranes in tissue sections. We show that hyperosmotic fixatives dehydrate the tissue with the risk of shrinkage and dislocation of these fragile membranes in postmortem preparations.


Assuntos
Dura-Máter , Meninges , Camundongos , Animais , Meninges/metabolismo , Dura-Máter/metabolismo , Aracnoide-Máter/metabolismo , Espaço Subaracnóideo , Córtex Cerebral
19.
Science ; 379(6627): 84-88, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603070

RESUMO

The central nervous system is lined by meninges, classically known as dura, arachnoid, and pia mater. We show the existence of a fourth meningeal layer that compartmentalizes the subarachnoid space in the mouse and human brain, designated the subarachnoid lymphatic-like membrane (SLYM). SLYM is morpho- and immunophenotypically similar to the mesothelial membrane lining of peripheral organs and body cavities, and it encases blood vessels and harbors immune cells. Functionally, the close apposition of SLYM with the endothelial lining of the meningeal venous sinus permits direct exchange of small solutes between cerebrospinal fluid and venous blood, thus representing the mouse equivalent of the arachnoid granulations. The functional characterization of SLYM provides fundamental insights into brain immune barriers and fluid transport.


Assuntos
Encéfalo , Espaço Subaracnóideo , Animais , Humanos , Camundongos , Dura-Máter/citologia , Dura-Máter/fisiologia , Endotélio/citologia , Endotélio/fisiologia , Espaço Subaracnóideo/citologia , Espaço Subaracnóideo/fisiologia , Epitélio/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Líquido Cefalorraquidiano/fisiologia
20.
Sci Transl Med ; 15(702): eabq3916, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379370

RESUMO

Inner ear gene therapy has recently effectively restored hearing in neonatal mice, but it is complicated in adulthood by the structural inaccessibility of the cochlea, which is embedded within the temporal bone. Alternative delivery routes may advance auditory research and also prove useful when translated to humans with progressive genetic-mediated hearing loss. Cerebrospinal fluid flow via the glymphatic system is emerging as a new approach for brain-wide drug delivery in rodents as well as humans. The cerebrospinal fluid and the fluid of the inner ear are connected via a bony channel called the cochlear aqueduct, but previous studies have not explored the possibility of delivering gene therapy via the cerebrospinal fluid to restore hearing in adult deaf mice. Here, we showed that the cochlear aqueduct in mice exhibits lymphatic-like characteristics. In vivo time-lapse magnetic resonance imaging, computed tomography, and optical fluorescence microscopy showed that large-particle tracers injected into the cerebrospinal fluid reached the inner ear by dispersive transport via the cochlear aqueduct in adult mice. A single intracisternal injection of adeno-associated virus carrying solute carrier family 17, member 8 (Slc17A8), which encodes vesicular glutamate transporter-3 (VGLUT3), rescued hearing in adult deaf Slc17A8-/- mice by restoring VGLUT3 protein expression in inner hair cells, with minimal ectopic expression in the brain and none in the liver. Our findings demonstrate that cerebrospinal fluid transport comprises an accessible route for gene delivery to the adult inner ear and may represent an important step toward using gene therapy to restore hearing in humans.


Assuntos
Orelha Interna , Adulto , Animais , Humanos , Camundongos , Orelha Interna/patologia , Cóclea , Audição , Terapia Genética/métodos , Técnicas de Transferência de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA