Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biotechnol Bioeng ; 121(3): 1026-1035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168837

RESUMO

Yttrium is a heavy rare earth element (REE) that acquires remarkable characteristics when it is in oxide form and doped with other REEs. Owing to these characteristics Y2 O3 can be used in the manufacture of several products. However, a supply deficit of this mineral is expected in the coming years, contributing to its price fluctuation. Thus, developing an efficient, cost-effective, and eco-friendly process to recover Y2 O3 from secondary sources has become necessary. In this study, we used phage surface display to screen peptides with high specificity for Y2 O3 particles. After three rounds of enrichment, a phage expressing the peptide TRTGCHVPRCNTLS (DM39) from the random pVIII phage peptide library Cys4 was found to bind specifically to Y2 O3 , being 531.6-fold more efficient than the wild-type phage. The phage DM39 contains two arginines in the polar side chains, which may have contributed to the interaction between the mineral targets. Immunofluorescence assays identified that the peptide's affinity was strong for Y2 O3 and negligible to LaPO4 :Ce3+ ,Tb3+ . The identification of a peptide with high specificity and affinity for Y2 O3 provides a potentially new strategic approach to recycle this type of material from secondary sources, especially from electronic scrap.


Assuntos
Metais Terras Raras , Ítrio , Peptídeos/química , Biblioteca de Peptídeos , Eletrônica , Minerais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38888622

RESUMO

Rhodococcus erythropolis bacterium is known for its remarkable resistance characteristics that can be useful in several biotechnological processes, such as bioremediation. However, there is scarce knowledge concerning the behavior of this strain against different metals. This study sought to investigate the behavior of R. erythropolis ATCC 4277 against the residue of chalcopyrite and e-waste to verify both resistive capacities to the metals present in these residues and their potential use for biomining processes. These tests were carried out in a stirred tank bioreactor for 48 h, at 24ºC, pH 7.0, using a total volume of 2.0 L containing 2.5% (v/v) of a bacterial pre-culture. The pulp density of chalcopyrite was 5% (w/w), and agitation and oxygen flow rates were set to 250 rpm and 1.5 LO2 min-1, respectively. On the other hand, we utilized a waste of computer printed circuit board (WPCB) with a pulp density of 10% (w/w), agitation at 400 rpm, and an oxygen flow rate of 3.0 LO2 min-1. Metal concentration analyses post-fermentation showed that R. erythropolis ATCC 4277 was able to leach about 38% of the Cu present in the chalcopyrite residue (in ~ 24 h), and 49.5% of Fe, 42.3% of Ni, 27.4% of Al, and 15% Cu present in WPCB (in ~ 24 h). In addition, the strain survived well in the environment containing such metals, demonstrating the potential of using this bacterium for waste biomining processes as well as in other processes with these metals.

3.
J Environ Manage ; 338: 117804, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996570

RESUMO

The bacterial synthesis of copper nanoparticles emerges as an eco-friendly alternative to conventional techniques since it comprises a single-step and bottom-up approach, which leads to stable metal nanoparticles. In this paper, we studied the biosynthesis of Cu-based nanoparticles by Rhodococcus erythropolis ATCC4277 using a pre-processed mining tailing as a precursor. The influence of pulp density and stirring rate on particle size was evaluated using a factor-at-time experimental design. The experiments were carried out in a stirred tank bioreactor for 24 h at 25 °C, wherein 5% (v/v) of bacterial inoculum was employed. The O2 flow rate was maintained at 1.0 L min-1 and the pH at 7.0. Copper nanoparticles (CuNPs), with an average hydrodynamic diameter of 21 ± 1 nm, were synthesized using 25 g.L-1 of mining tailing and a stirring rate of 250 rpm. Aiming to visualize some possible biomedical applications of the as-synthesized CuNPs, their antibacterial activity was evaluated against Escherichia coli and their cytotoxicity was evaluated against Murine Embryonic Fibroblast (MEF) cells. The 7-day extract of CuNPs at 0.1 mg mL-1 resulted in 75% of MEF cell viability. In the direct method, the suspension of CuNPs at 0.1 mg mL-1 resulted in 70% of MEF cell viability. Moreover, the CuNPs at 0.1 mg mL-1 inhibited 60% of E. coli growth. Furthermore, the NPs were evaluated regarding their photocatalytic activity by monitoring the oxidation of methylene blue (MB) dye. The CuNPs synthesized showed rapid oxidation of MB dye, with the degradation of approximately 65% of dye content in 4 h. These results show that the biosynthesis of CuNPs by R. erythropolis using pre-processed mine tailing can be a suitable method to obtain CuNPs from environmental and economical perspectives, resulting in NPs useful for biomedical and photocatalytic applications.


Assuntos
Proteínas de Escherichia coli , Nanopartículas Metálicas , Camundongos , Animais , Cobre/química , Escherichia coli , Nanopartículas Metálicas/química , Bactérias , Oxirredução , Antibacterianos/química , Proteínas de Ciclo Celular
4.
Bioprocess Biosyst Eng ; 44(11): 2269-2276, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34155546

RESUMO

This work aims to produce bio-surfactant using a brewery waste (trub) as a strategy to reduce production costs related to the substrate, as well as to provide an eco-friendly destination for this residue. Trub is obtained during the boiling of the wort, being mainly composed of proteins and reducing sugars. To evaluate important process parameters on bio-surfactant production, a full factorial design (24) was elaborated, having agitation rate and concentrations of trub, yeast extract, and peptone as independent variables. The highest bio-surfactant concentration achieved was 100.76 mg L-1, where FTIR and Maldi-ToF-MS confirmed functional groups characteristic of peptides and isomers of surfactin in the bio-surfactant extract. Trub, agitation and yeast extract showed statistically significant effects on the response variable (surface tension), where an increase in the agitation rate and in the concentration of yeast extract demonstrated a positive impact on the production of bio-surfactant.


Assuntos
Cerveja , Carbono/metabolismo , Resíduos Industriais , Tensoativos/metabolismo , Fermentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Tensão Superficial
5.
Appl Microbiol Biotechnol ; 103(17): 7231-7240, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31292679

RESUMO

Sulfur minerals originating from coal mining represent an important environmental problem. Turning these wastes into value-added by-products can be an interesting alternative. Biotransformation of coal tailings into iron-containing nanoparticles using Rhodococcus erythropolis ATCC 4277 free cells was studied. The influence of culture conditions (stirring rate, biomass concentration, and coal tailings ratio) in the particle size was investigated using a 23 full factorial design. Statistical analysis revealed that higher concentrations of biomass produced larger sized particles. Conversely, a more intense stirring rate of the culture medium and a higher coal tailings ratio (% w/w) led to the synthesis of smaller particles. Thus, the culture conditions that produced smaller particles (< 50 nm) were 0.5 abs of normalized biomass concentration, 150 rpm of stirring rate, and 2.5% w/w of coal tailings ratio. Composition analyses showed that the biosynthesized nanoparticles are formed by iron sulfate. Conversion ratio of the coal tailings into iron-containing nanoparticles reached 19%. The proposed biosynthesis process, using R. erythropolis ATCC 4277 free cells, seems to be a new and environmentally friendly alternative for sulfur minerals reuse.


Assuntos
Carvão Mineral , Ferro/metabolismo , Nanopartículas Metálicas/microbiologia , Mineração , Biomassa , Biotransformação , Poluentes Ambientais/metabolismo , Nanopartículas Metálicas/química , Tamanho da Partícula , Rhodococcus/metabolismo , Enxofre/metabolismo
6.
Biotechnol Rep (Amst) ; 28: e00537, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33145189

RESUMO

Surfactin has potential as next generation antibiofilm agent to combat antimicrobial resistance against emerging pathogens. However, the widespread industrial applications of surfactin is hampered by its high production cost. In this work, surfactin was produced from Bacillus subtilis using a low-cost brewery waste as a carbon source. The strain produced 210.11 mg  L - 1 after 28 h. The antimicrobial activity was observed against all tested strains, achieving complete inhibition for Pseudomonas aeruginosa, at 500  µ g mL - 1 . A growth log reduction of 3.91 was achieved for P. aeruginosa while, Staphylococcus aureus and Staphylococcus epidermidis showed between 1 and 2 log reductions. In the anti-biofilm assays against P. aeruginosa, the co-incubation, anti-adhesive and disruption showed inhibition, where the greatest inhibition was observed in the co-incubation assay (79.80%). This study provides evidence that surfactin produced from a low-cost substrate can be a promising biocide due to its antimicrobial and anti-biofilm abilities against pathogens.

7.
Appl Biochem Biotechnol ; 183(4): 1375-1389, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28528382

RESUMO

Rhodococcus sp. has a broad catabolic diversity and unique enzymatic capabilities, and it is able to adapt under extreme conditions. Thereby, the production of this remarkable bacterium has a great biotechnological and industrial importance. In this sense, we sought to improve the R. erythropolis ATCC 4277 growth through a central composite design, by varying the components of nutrient medium (glucose, malt extract, yeast extract, CaCO3), temperature, and agitation. It was found that the concentrations of glucose and malt extract are not statistically significant, being reduced of 4.0 and 10.0 g L-1 to 2.0 and 5.0 g L-1, respectively. The CaCO3 concentration and temperature were also diminished of 2.0 to 1.16 g L-1and 28 to 23.7 °C, respectively. Optimal growth conditions provided a 240% increase in final biomass concentration, an increment in specific growth rate, and a growth yield coefficient about five times greater. Application of the optimal conditions in biodesulfurization and biodenitrogenation processes showed that desulfurization capability is not associated with optimal growth conditions; however, it was achieved a 47% of nitrogen removal in the assay containing 10% (w/w) of heavy gas oil. Graphical Abstract ᅟ.


Assuntos
Biomassa , Nitrogênio/metabolismo , Rhodococcus/crescimento & desenvolvimento , Sulfatos/metabolismo , Catálise
8.
Appl Biochem Biotechnol ; 174(6): 2079-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25163887

RESUMO

The burning of fossil fuels has released a large quantity of pollutants into the atmosphere. In this context, sulfur dioxide is one of the most noxious gas which, on reacting with moist air, is transformed into sulfuric acid, causing the acid rain. In response, many countries have reformulated their legislation in order to enforce the commercialization of fuels with very low sulfur levels. The existing desulfurization processes cannot remove such low levels of sulfur and thus a biodesulfurization has been developed, where the degradation of sulfur occurs through the action of microorganisms. Rhodococcus erythropolis has been identified as one of the most promising bacteria for use in the biodesulfurization. In this study, the effectiveness of the strain R. erythropolis ATCC 4277 in the desulfurization of dibenzothiophene (DBT) was evaluated in a batch reactor using an organic phase (n-dodecane or diesel) concentrations of 20, 80, and 100 % (v/v). This strain was able to degrade 93.3, 98.0, and 95.5 % of the DBT in the presence of 20, 80, and 100 % (v/v) of dodecane, respectively. The highest value for the specific DBT degradation rate was 44 mmol DBT · kg DCW(-1) · h(-1), attained in the reactor containing 80 % (v/v) of n-dodecane as the organic phase.


Assuntos
Reatores Biológicos/microbiologia , Rhodococcus/metabolismo , Enxofre/química , Tiofenos/química , Tiofenos/metabolismo , Alcanos/química , Alcanos/metabolismo , Análise de Variância , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA