Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Dig Dis Sci ; 68(7): 2981-2996, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36867295

RESUMO

BACKGROUND: Sodium butyrate (NaB) is a short-chain fatty acid produced by intestinal microbial fermentation of dietary fiber, and has been shown to be effective in inhibiting ulcerative colitis (UC). However, how NaB regulates inflammation and oxidative stress in the pathogenesis of UC is not clear. AIMS: The purpose of this study was to use a dextran sulfate sodium salt (DSS)-induced murine colitis model, and determine the effects of NaB and the related molecular mechanisms. METHODS: Colitis model was induced in mice by administration of 2.5%(wt/vol) DSS. 0.1 M NaB in drinking water, or intraperitoneal injection of NaB (1 g/kg body weight) was given during the study period. In vivo imaging was performed to detect abdominal reactive oxygen species (ROS). Western blotting and RT-PCR were used to determine the levels of target signals. RESULTS: The results showed that NaB decreases the severity of colitis as determined by an improved survival rate, colon length, spleen weight, disease activity index (DAI), and histopathological changes. NaB reduced oxidative stress as determined by a reduction in abdominal ROS chemiluminescence signaling, inhibition of the accumulation of myeloperoxidase and malondialdehyde, and restoration of glutathione activity. NaB activated the COX-2/Nrf2/HO-1 pathway by increasing the expressions of COX-2, Nrf2, and HO-1 proteins. NaB inhibited the phosphorylation of NF-κB and activation of NLRP3 inflammasomes, and reduced the secretion of corresponding inflammatory factors. Furthermore, NaB promoted the occurrence of mitophagy via activating the expression of Pink1/Parkin. CONCLUSIONS: In conclusion, our results indicate that NaB improves colitis by inhibiting oxidative stress and NF-κB/NLRP3 activation, which may be via COX-2/Nrf2/HO-1 activation and mitophagy.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Butírico/farmacologia , Sulfato de Dextrana/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitofagia , Ciclo-Oxigenase 2/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/patologia , Transdução de Sinais , Estresse Oxidativo , Cloreto de Sódio , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Cancers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672372

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies, and effective treatment and prevention methods are lacking. Sodium butyrate (NaB) is a short-chain fatty acid produced by intestinal microbial fermentation of dietary fiber. It has been shown to be effective in inhibiting CRC, but the mechanism is not known. METHODS: Human normal intestinal epithelial cell line FHT and colorectal tumor cell line HCT-116 were treated with NaB alone or in combination with different programmed cell death inhibitors. Cell activity was then assessed with MTT assays and PI staining; ferroptosis with Fe2+, glutathione (GSH), and lipid peroxidation assays; signaling pathway screening with PCR arrays; and CD44, SCL7A11, and GPX4 expression with Western blotting. A CD44-overexpressing HCT-116 cell line was constructed to determine the effect of the overexpression of CD44 on NaB-induced ferroptosis. The synergistic effect of co-treatment with NaB and Erastin was assessed by isobolographic analysis. RESULTS: NaB induced apoptosis and ferroptosis in HCT-116 cells but only induced low-level apoptosis in FHC cells. Moreover, NaB significantly increased intracellular Fe2+ and promoted GSH depletion and lipid peroxidation in HCT-116 cells. Ferroptosis-related qPCR array analysis identified CD44/SLC7A11 as a potential effector molecular of NaB-induced ferroptosis. NaB significantly inhibited the expression of CD44 and SLC7A11 in mouse CRC tissues. A CD44 overexpressed HCT-116 cell line was used to verify that CD44/SLC7A11 was a key signaling pathway that NaB-induced GSH depletion, lipid peroxidation accumulation, and ferroptosis in HCT-116 cells. Examination of whether NaB can increase the effect of ferroptosis agents showed that NaB, in combination with Erastin, a ferroptosis inducer, further promoted HCT-116 cell death and increased changes of ferroptosis markers. CONCLUSIONS: Our results suggest that NaB induces ferroptosis in CRC cells through the CD44/SLC7A11 signaling pathway and has synergistic effects with Erastin. These results may provide new insights into CRC prevention and the combined use of NaB and ferroptosis-inducing agents.

4.
Transl Cancer Res ; 11(6): 1781-1794, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35836521

RESUMO

Background: Glioblastoma is the most common type of malignant tumor of the brain. Despite substantial improvements in therapy, the 5-year survival rate of patients with glioblastoma remains low. Antitumor drug development has encountered considerable obstacles, which can be attributed to metastasis and the blood-brain barrier (BBB). Hesperetin (HSP), derived from citrus fruits, exhibits several biological properties, including anticancer and anti-inflammatory activities. In addition, in vitro models have shown that HSP can easily cross the BBB. The purpose of the present study was to explore the effects and underlying mechanisms of HSP on glioblastoma cells. Methods: GL261 cell were cultured and treated with different dose HSP. The cell viability was assessed with Cell Counting Kit-8 (CCK-8) assay. The cell apoptosis was determined using an Annexin V/propidine iodide (PI) staining and Hoechst staining and detection assay, cell migration and invasion were observed on GL261 cells using Matrigel-coated Transwells and Wound-Healing assay. The expression of proteins was detected by Western blotting. Results: HSP suppressed cell proliferation and could induce apoptosis, the latter of which might be regulated through the Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor-kappa B (NF-κB) pathways. Furthermore, HSP inhibited cell migration and invasion by downregulating the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9, and inhibited epithelial-mesenchymal transition (EMT) by upregulating the expression of E-cadherin while downregulating N-cadherin and vimentin expression. Conclusions: These findings suggest HSP to be an alternative preventive and therapeutic antiglioblastoma drug that may be especially useful for patients with recurrent glioblastoma.

5.
J Pharm Anal ; 12(2): 339-349, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35582406

RESUMO

GB7 acetate is a galbulimima alkaloid obtained from Galbulimima belgraveana. However, information regarding its structure, biological activities, and related mechanisms is not entirely available. A series of spectroscopic analyses, structural degradation, interconversion, and crystallography were performed to identify the structure of GB7 acetate. The MTT assay was applied to measure cell proliferation on human colorectal cancer HCT 116 cells. The expressions of the related proteins were measured by Western blotting. Transmission electron microscopy (TEM), acridine orange (AO) and monodansylcadaverine (MDC) staining were used to detect the presence of autophagic vesicles and autolysosomes. A transwell assay was performed to demonstrate metastatic capabilities. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays were performed to determine the mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis activity of HCT 116 cells. The data showed that GB7 acetate suppressed the proliferation and colony-forming ability of HCT 116 cells. Pretreatment with GB7 acetate significantly induced the formation of autophagic vesicles and autolysosomes. GB7 acetate upregulated the expressions of LC3 and Thr172 phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase α (p-AMPKα), which are key elements of autophagy. In addition, GB7 acetate suppressed the metastatic capabilities of HCT 116 cells. Additionally, the production of matrix metallo-proteinase-2 (MMP-2) and MMP-9 was reduced, whereas the expression of E-cadherin (E-cad) was upregulated. Furthermore, GB7 acetate significantly reduced mitochondrial OXPHOS and glycolysis. In conclusion, the structure of the novel Galbulimima alkaloid GB7 acetate was identified. GB7 acetate was shown to have anti-proliferative, pro-autophagic, anti-metastatic, and anti-metabolite capabilities in HCT 116 cells. This study might provide new insights into cancer treatment efficacy and cancer chemoprevention.

6.
ACS Appl Bio Mater ; 4(9): 7081-7093, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006940

RESUMO

To date, various Prussian blue analogues (PBAs) have been prepared for biomedical applications due to their unique structural advantages. However, the safety and effectiveness of tumor treatment still need further exploration. This contribution reports a facile synthesis of PBA with superior tumor synergetic therapeutic effects and a detailed mechanistic evaluation of their intrinsic tumor metastasis inhibition activity. The as-synthesized PBA has a uniform cube structure with a diameter of approximately 220 nm and shows high near-infrared light (NIR) photoreactivity, photothermal conversion efficiency (41.44%), and photodynamic effect. Additionally, PBA could lead to a chemodynamic effect, which is caused by the Fenton reaction and ferroptosis. The combined therapy strategy of PBA exhibits notable tumor ablation properties due to photothermal therapy (PTT)/photodynamic therapy (PDT)/chemodynamic therapy (CDT) effects without obvious toxicity in vivo. The PBA has also shown potential as a contrast agent for magnetic resonance imaging (MRI) and photoacoustic (PA) imaging. More importantly, careful investigations reveal that PBA displays excellent biodegradation and anti-metastasis properties. Further exploration of the PBA implies that its underlying mechanism of intrinsic tumor metastasis inhibition activity can be attributed to the modulation of epithelial-mesenchymal transition (EMT) expression. The considerable potential exhibited by the as-synthesized PBA makes it an ideal candidate as a synergetic therapeutic agent for tumor treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Ferrocianetos/química , Humanos , Neoplasias/tratamento farmacológico , Terapia Fototérmica
7.
Aging (Albany NY) ; 13(9): 12955-12972, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33929971

RESUMO

Breast cancer is the most common malignancy in women all around the world, especially in many countries in Asia. However, antitumor drugs with unique curative effects and low toxic side-effects have not been found yet. Warangalone is an isoflavone extracted from the Cudrania tricuspidata fruit, and is reported to possess anti-inflammatory and anti-cancer activity. The purpose of this study was to determine the effects of warangalone on breast cancer cells. In this study, we found that warangalone decreased the viability of breast cancer cells by increasing the generation of reactive oxygen species (ROS) resulting in mitochondrial damage and decreased mitochondrial membrane potential (MMP). Warangalone induced mitochondrial apoptosis by increasing the BAX/BCL-2 ratio. Warangalone activated mitophagy via upregulation of PINK1 and Parkin expression and co-localization. The combination of warangalone and autophagy inhibitors or PINK1 siRNA increased the degree of cell apoptosis compared to treatment with warangalone alone. Warangalone damages mitochondria via ROS, thereby triggering PINK1/Parkin-mediated mitophagy and inducing mitochondrial apoptosis. However, autophagy/mitophagy protects against warangalone-induced mitochondrial apoptosis. A combination of warangalone and autophagy/mitophagy inhibitors may be a potential treatment for breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Isoflavonas/farmacologia , Mitofagia/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoflavonas/uso terapêutico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Int J Biol Macromol ; 160: 1242-1251, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479939

RESUMO

Hydrogels can be used as bioactive dressings, which outperform traditional dressings and are widely used in wound hemostasis and healing. However, it is still a challenge to develop a hydrogel with good stability and strong mechanical properties for wound hemostasis and healing. Herein, we developed a novel composite polysaccharide hydrogel from fenugreek gum and cellulose. Fenugreek gum was combined with cellulose through hydrogen bonding to form a hydrogel to improve the mechanical properties of the composite hydrogel. The composite hydrogel had a porous structure, thermal stability, good water absorption and a sustained release effect. Furthermore, the composite hydrogel demonstrated good biocompatibility in vitro and in vivo. Notably, the superior performance of wound hemostasis and healing has been confirmed. Our results indicated that the composite hydrogel was a promising medical dressing and had the potential to promote wound healing.


Assuntos
Curativos Biológicos , Celulose/análogos & derivados , Hidrogéis/síntese química , Gomas Vegetais/química , Trigonella/química , Cicatrização , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Hemostasia/efeitos dos fármacos , Hidrogéis/efeitos adversos , Hidrogéis/farmacologia , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Porosidade , Molhabilidade
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(6): 876-883, 2020 Jun 30.
Artigo em Zh | MEDLINE | ID: mdl-32895205

RESUMO

OBJECTIVE: To prepare warangalone-loaded thermosensitive liposomes (WLTSL) and evaluate its inhibitory effect on breast cancer cells in vitro. METHODS: MTT assay was used to assess the changes in proliferation of 3 breast cancer cell lines (MDA-MB-231, MCF7, and SKBR3) following treatment with warangalone, soy isoflavone and genistein. Colony-forming assay and wound healing assay was used to assess colony forming activity and migration of MDA-MB-231 cells treated with warangalone. The effect of warangalone on the expression of MMP2 and MMP9 in MDA-MB-231 cells was examined with Western blotting. The thermosensitive liposomes (TSL) and WLTSL were prepared using a thin film hydration method, and the morphology, size, encapsulation efficiency and stability of the prepared liposomes were characterized using transmission electron microscopy, dynamic light scattering scanning and UV spectrophotometry. MTT assay was used to examine the inhibitory effect of WLTSL on mouse breast cancer cells (4T1) in vitro. RESULTS: Warangalone showed stronger anti-proliferation effects than soy isoflavones and genistein in the 3 human breast cancer cell lines and significantly inhibited colony formation by MDA-MB-231 cells. Treatment with warangalone significantly inhibited migration of the breast cancer cells and down-regulated the cellular expressions of MMP2 and MMP9. The prepared TSL and WLTSL presented with a homogeneous, irregular spherical morphology, with a mean particle size of 56.23±0.61 nm, a polymer dispersity index of 0.241±0.014, a Zeta potential of -40.40±0.46 mV, and an encapsulation efficiency was 87.68±2.41%. WLTSL showed a good stability at 4 ℃ and 37 ℃ and a stronger inhibitory effect than warangalone in 4T1 cells. CONCLUSIONS: Warangalone inhibits the proliferation, migration and invasion of breast cancer cells, and the prepared WLTSL possesses good physical properties and strong anti-breast cancer activity.


Assuntos
Neoplasias da Mama , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Isoflavonas , Lipossomos , Camundongos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32296694

RESUMO

Cardiovascular diseases (CVDs), including a series of pathological disorders, severely affect millions of people all over the world. To address this issue, several potential therapies have been developed for treating CVDs, including injectable hydrogels as a minimally invasive method. However, the utilization of injectable hydrogel is a bit restricted recently owing to some limitations, such as transporting the therapeutic agent more accurately to the target site and prolonging their retention locally. This review focuses on the advances in injectable hydrogels for CVD, detailing the types of injectable hydrogels (natural or synthetic), especially that complexed with stem cells, cytokines, nano-chemical particles, exosomes, genetic material including DNA or RNA, etc. Moreover, we summarized the mainly prominent mechanism, based on which injectable hydrogel present excellent treating effect of cardiovascular repair. All in all, it is hopefully that injectable hydrogel-based nanocomposites would be a potential candidate through cardiac repair in CVDs treatment.

11.
J Agric Food Chem ; 68(5): 1326-1336, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31955565

RESUMO

Ovarian cancer is one of the most serious female malignancies worldwide. Despite intensive efforts being made to overcome ovarian cancer, there still remain limited optional treatments for this disease. Nobiletin, a prospective food-derived phytochemical extracted from citrus fruits, has recently been reported to suppress ovarian cancer cells, but the role of pyroptosis in ovarian carcinoma with nobiletin still remains unknown. In this study, we aim to explore the effect of nobiletin on ovarian carcinoma and further expound the underlying mechanisms of nobiletin-induced ovarian cancer cell death. Our results showed that nobiletin could significantly inhibit cell proliferation, induce DNA damage, and also lead to apoptosis by increasing the cleaved poly (ADP-ribose) polymerase (PARP) level of human ovarian cancer cells (HOCCs) in a dose-dependent manner. Moreover, we revealed that nobiletin decreased mitochondrial membrane potential and induced reactive oxygen species (ROS) generation and autophagy of HOCCs, contributing to gasdermin D-/gasdermin E-mediated pyroptosis. Taken together, nobiletin as a functional food ingredient represents a promising new anti-ovarian cancer candidate that could induce apoptosis and trigger ROS-mediated pyroptosis through regulating autophagy in ovarian cancer cells.


Assuntos
Autofagia/efeitos dos fármacos , Flavonas/farmacologia , Neoplasias Ovarianas/fisiopatologia , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo
12.
J Physiol Biochem ; 75(1): 53-63, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30362049

RESUMO

Butyrate is produced by the fermentation of undigested dietary fibers and acts as the promising candidate for cancer treatment. However, the mechanism underlying sodium butyrate (NaB)-induced autophagy in colorectal cancer is not yet completely understood. The expressions of LC3-II protein and mRNA were detected by western blot and quantitative RT-PCR in colorectal cancer (CRC) cell lines HCT-116 and HT-29, respectively. Autolysosome formation was observed by transmission electron microscope. AMPK and LKB1 were inhibited by chemical inhibitor or siRNAs and confirmed by western blot. NaB elevated the protein and mRNA expressions of LC3 in a dose-dependent manner. NaB treatment increased the formation of autolysosome and expression of phosphorylated liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC). Treatment with compound C (an inhibitor of AMPK) and siRNA-mediated knockdown of AMPK and LKB1 significantly attenuated NaB-induced autophagy in CRC cells. Collectively, these findings indicated that LKB1 and AMPK are critical for NaB-mediated autophagy and may act as the novel targets for colorectal cancer therapy in the future.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Autofagia/efeitos dos fármacos , Ácido Butírico/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Autofagia/genética , Células HCT116 , Células HT29 , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
13.
Eur J Med Chem ; 162: 423-434, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30453249

RESUMO

Multidrug resistance (MDR), defined as the cross-resistance of cancer cells toward a broad range of chemotherapeutic agents, is a universal and intractable problem in chemotherapy. The understanding of MDR mechanisms is essential to discover the potential biomarkers for predicting multidrug resistance and more importantly, tackling and preventing multidrug resistance. Multiple technologies have been used to study MDR mechanisms including comparative genomic hybridization, DNA array, differential display RT-PCR and various immunoassays. Compared with these approaches, proteomic technologies allow a high through-put analysis of protein detection, protein quantification and protein interaction with high accuracy. With the rapid development of proteomic studies in recent years, proteomic technologies have made substantial contributions to the characterization of MDR mechanisms including MDR-related protein detection and quantification, as well as the characterization of drug-transporter binding sites. This review offers a comprehensive illustration of MDR, proteomic technologies and the discoveries made in understanding MDR mechanisms using proteomic approaches.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Proteômica/métodos , Humanos
14.
J Agric Food Chem ; 66(1): 91-98, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29236498

RESUMO

Lots of active substances are hydrophobic materials at ambient and body temperatures, decreasing their bioavailability and posing great challenges to successful incorporation into medication and functional foods. The goal of this research was to develop a nanoemulsion delivery system containing a hydrophobic crystalline bioactive component (nobiletin) to improve the anti-inflammatory activity. Nobiletin was incorporated into the oily phase, and the nanoemulsions were fabricated using high-speed and high-pressure homogenization. Particle size, polydispersity index (PDI), and zeta potential were evaluated by a commercial laser light scattering instrument. The anti-inflammatory activities were performed in LPS-stimulated RAW 264.7 cells. The developed nobiletin nanoemulsion had an average droplet size of 168.6 ± 3.8 nm and a PDI of 0.168, while the average diameter of the blank nanoemulsion was 157.3 ± 1.9 nm and its PDI was 0.161. The zeta potential values of nobiletin nanoemulsion and blank nanoemulsion were -68.45 ± 0.64 and -62.75 ± 0.21 mV, respectively. All obtained nanoemulsions kept physically stable during storage at 4, 25, and 37 °C. A nobiletin-loaded nanoemulsion showed an enhanced anti-inflammatory activity in LPS-induced macrophages, with a decrease in pro-inflammatory mediators and cytokines. The findings suggested that the nanoemulsion would be used as an effective delivery system for nobiletin to improve its anti-inflammatory activity.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Flavonas/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Linhagem Celular , Estabilidade de Medicamentos , Flavonas/administração & dosagem , Flavonas/química , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Nanoestruturas/química , Óxido Nítrico/metabolismo , Tamanho da Partícula , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA