Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 26(3): 423-436, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977946

RESUMO

Severe inflammatory stress often leads to vessel rarefaction and fibrosis, resulting in limited tissue recovery. However, signaling pathways mediating these processes are not completely understood. Patients with ischemic and inflammatory conditions have increased systemic Activin A level, which frequently correlates with the severity of pathology. Yet, Activin A's contribution to disease progression, specifically to vascular homeostasis and remodeling, is not well defined. This study investigated vasculogenesis in an inflammatory environment with an emphasis on Activin A's role. Exposure of endothelial cells (EC) and perivascular cells (adipose stromal cells, ASC) to inflammatory stimuli (represented by blood mononuclear cells from healthy donors activated with lipopolysaccharide, aPBMC) dramatically decreased EC tubulogenesis or caused vessel rarefaction compared to control co-cultures, concurrent with increased Activin A secretion. Both EC and ASC upregulated Inhibin Ba mRNA and Activin A secretion in response to aPBMC or their secretome. We identified TNFα (in EC) and IL-1ß (in EC and ASC) as the exclusive inflammatory factors, present in aPBMC secretome, responsible for induction of Activin A. Similar to ASC, brain and placental pericytes upregulated Activin A in response to aPBMC and IL-1ß, but not TNFα. Both these cytokines individually diminished EC tubulogenesis. Blocking Activin A with neutralizing IgG mitigated detrimental effects of aPBMC or TNFα/IL-1ß on tubulogenesis in vitro and vessel formation in vivo. This study delineates the signaling pathway through which inflammatory cells have a detrimental effect on vessel formation and homeostasis, and highlights the central role of Activin A in this process. Transitory interference with Activin A during early phases of inflammatory or ischemic insult, with neutralizing antibodies or scavengers, may benefit vasculature preservation and overall tissue recovery.


Assuntos
Células Endoteliais , Placenta , Humanos , Feminino , Gravidez , Células Endoteliais/metabolismo , Ativinas/metabolismo , Diferenciação Celular , Células Cultivadas
2.
J Mol Cell Cardiol ; 164: 1-12, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774548

RESUMO

BACKGROUND: Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage. METHODS AND RESULTS: Isolated mouse hearts were divided into: no cold storage (control), 6 h cold storage (6 h-I), 6 h-I + conditioned media from bone marrow MSCs (BM-MSC CM), and 6 h-I + adipose-MSC CM (Ad-MSC CM). Deep RNA sequencing analysis revealed that compared to control, 6 h-I led to 266 differentially expressed genes, many of which were implicated in modulating mitochondrial performance, oxidative stress response, myocardial function, and apoptosis. BM-MSC CM and Ad-MSC CM restored these gene expression towards control. They also improved 6 h-I-induced myocardial functional depression, reduced inflammatory cytokine production, decreased apoptosis, and reduced myocardial H2O2. However, neither MSC-exosomes nor exosome-depleted CM recapitulated MSC CM-ameliorated apoptosis and CM-improved mitochondrial preservation during cold ischemia. Knockdown of Per2 by specific siRNA abolished MSC CM-mediated these protective effects in cardiomyocytes following 6 h cold storage. CONCLUSIONS: Our results demonstrated that using MSC secretome (BM-MSCs and Ad-MSCs) during prolonged cold storage confers preservation of the normal transcriptional "fingerprint", and reduces donor heart damage. MSC-released soluble factors and exosomes may synergistically act for donor heart protection.


Assuntos
Transplante de Coração , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Medula Óssea , Humanos , Peróxido de Hidrogênio/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Secretoma , Doadores de Tecidos , Transcriptoma
3.
Small ; 18(28): e2201330, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670145

RESUMO

Current biomarkers for myocardial infarction (MI) diagnosis are typically late markers released upon cell death, incapable of distinguishing between ischemic and reperfusion injury and can be symptoms of other pathologies. Circulating microRNAs (miRNAs) have recently been proposed as alternative biomarkers for MI diagnosis; however, detecting the changes in the human cardiac miRNA profile during MI is extremely difficult. Here, to study the changes in miRNA levels during acute MI, a heart-on-chip model with a cardiac channel, containing human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in human heart decellularized matrix and collagen, and a vascular channel, containing hiPSC-derived endothelial cells, is developed. This model is exposed to anoxia followed by normoxia to mimic ischemia and reperfusion, respectively. Using a highly sensitive miRNA biosensor that the authors developed, the exact same increase in miR-1, miR-208b, and miR-499 levels in the MI-on-chip and the time-matched human blood plasma samples collected before and after ischemia and reperfusion, is shown. That the surface marker profile of exosomes in the engineered model changes in response to ischemic and reperfusion injury, which can be used as biomarkers to detect MI, is also shown. Hence, the MI-on-chip model developed here can be used in biomarker discovery.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Infarto do Miocárdio , Traumatismo por Reperfusão , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Humanos , Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Reperfusão , Traumatismo por Reperfusão/diagnóstico
4.
Stem Cells ; 39(2): 170-182, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159685

RESUMO

Heart transplantation is a life-saving therapy for end-stage organ failure. Organ deterioration during transportation limits storage to 4 hours, limiting hearts available. Approaches ameliorating organ damage could increase the number of hearts acceptable for transplantation. Prior studies show that adipose-derived stem/stromal cell secretome (ASC-S) rescues tissues from postischemic damage in vivo. This study tested whether ASC-S preserved the function of mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes (iCM) exposed to organ transportation and transplantation conditions. Hearts were subjected to cold University of Wisconsin (UW) cardioplegic solution ± ASC-S for 6 hours followed by analysis using the Langendorff technique. In parallel, the effects of ASC-S on the recovery of iCM from UW solution were examined when provided either during or after cold cardioplegia. Exposure of hearts and iCM to UW deteriorated contractile activity and caused cell apoptosis, worsening in iCM as a function of exposure time; these were ameliorated by augmenting with ASC-S. Silencing of superoxide dismutase 3 and catalase expression prior to secretome generation compromised the ASC-S cardiomyocyte-protective effects. In this study, a novel in vitro iCM model was developed to complement a rodent heart model in assessing efficacy of approaches to improve cardiac preservation. ASC-S displays strong cardioprotective activity on iCM either with or following cold cardioplegia. This effect is associated with ASC-S-mediated cellular clearance of reactive oxygen species. The effect of ASC-S on the temporal recovery of iCM function supports the possibility of lengthening heart storage by augmenting cardioplegic transport solution with ASC-S, expanding the pool of hearts for transplantation.


Assuntos
Soluções Cardioplégicas/toxicidade , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Soluções para Preservação de Órgãos/toxicidade , Recuperação de Função Fisiológica/fisiologia , Adenosina/toxicidade , Alopurinol/toxicidade , Animais , Glutationa/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Insulina/toxicidade , Preparação de Coração Isolado/métodos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Rafinose/toxicidade , Recuperação de Função Fisiológica/efeitos dos fármacos
5.
J Transl Med ; 18(1): 285, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678051

RESUMO

BACKGROUND: Although a large body of information exists relating to cellular therapies, much of this information is either anecdotal or has been obtained from relatively small clinical trials, so that the level of evidence available to direct adoption of therapeutic approaches is quite limited. Despite this, a large number of clinics offer various cellular treatments without having gone through the processes of FDA approval. Florida is considered a "hotspot" of such sites, with a large number of clinics relative to the population. METHODS: To better understand the magnitude and scope of this issue with a specific focus on cardiovascular disease, we surveyed clinics in Florida advertising "cell therapy for heart failure". We identified only 8 clinics that "treat cardiac conditions, including heart failure." Data on administration route, cell type used, dose, success rate, cost, and training of persons performing procedures were collected when available, via email, telephone, or website information. RESULTS: A total of 20,135 patients were identified as treated: 2157 for cardiac conditions. All clinics reported administering cells intravenously, using either adipose- or umbilical-derived sources. Doses ranged from 30 to 150 million cells per treatment. The "success rate" ranged from 65 to 85%, with costs from $6000 to $20,700. Procedures were performed by PAs, MDs, and DOs. CONCLUSION: Large numbers of patients (> 10% of all 20,135 patients) have been and presumably are still are being treated for "cardiac conditions." We conclude that implementation of uniform data collection with an outcome registry, as well as creation of a public database listing FDA-approved cell-based clinical trials, would be useful to patients and the cardiovascular field at large.


Assuntos
Cardiopatias , Transplante de Células-Tronco , Tecido Adiposo , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Células-Tronco Multipotentes
6.
Circ Res ; 122(12): 1703-1715, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29703749

RESUMO

RATIONALE: Autologous bone marrow mesenchymal stem cells (MSCs) and c-kit+ cardiac progenitor cells (CPCs) are 2 promising cell types being evaluated for patients with heart failure (HF) secondary to ischemic cardiomyopathy. No information is available in humans about the relative efficacy of MSCs and CPCs and whether their combination is more efficacious than either cell type alone. OBJECTIVE: CONCERT-HF (Combination of Mesenchymal and c-kit+ Cardiac Stem Cells As Regenerative Therapy for Heart Failure) is a phase II trial aimed at elucidating these issues by assessing the feasibility, safety, and efficacy of transendocardial administration of autologous MSCs and CPCs, alone and in combination, in patients with HF caused by chronic ischemic cardiomyopathy (coronary artery disease and old myocardial infarction). METHODS AND RESULTS: Using a randomized, double-blinded, placebo-controlled, multicenter, multitreatment, and adaptive design, CONCERT-HF examines whether administration of MSCs alone, CPCs alone, or MSCs+CPCs in this population alleviates left ventricular remodeling and dysfunction, reduces scar size, improves quality of life, or augments functional capacity. The 4-arm design enables comparisons of MSCs alone with CPCs alone and with their combination. CONCERT-HF consists of 162 patients, 18 in a safety lead-in phase (stage 1) and 144 in the main trial (stage 2). Stage 1 is complete, and stage 2 is currently randomizing patients from 7 centers across the United States. CONCLUSIONS: CONCERT-HF will provide important insights into the potential therapeutic utility of MSCs and CPCs, given alone and in combination, for patients with HF secondary to ischemic cardiomyopathy. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02501811.


Assuntos
Insuficiência Cardíaca/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Terapia Combinada/métodos , Método Duplo-Cego , Estudos de Viabilidade , Insuficiência Cardíaca/etiologia , Humanos , Isquemia Miocárdica/complicações , Miócitos Cardíacos/química , Proteínas Proto-Oncogênicas c-kit , Projetos de Pesquisa , Transplante Autólogo , Resultado do Tratamento , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/terapia , Remodelação Ventricular
7.
Stem Cells ; 36(6): 856-867, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29589872

RESUMO

Cigarette smoking (CS) adversely affects the physiologic function of endothelial progenitor, hematopoietic stem and progenitor cells. However, the effect of CS on the ability of adipose stem/stromal cells (ASC) to promote vasculogenesis and rescue perfusion in the context of ischemia is unknown. To evaluate this, ASC from nonsmokers (nCS-ASC) and smokers (CS-ASC), and their activity to promote perfusion in hindlimb ischemia models, as well as endothelial cell (EC) survival and vascular morphogenesis in vitro were assessed. While nCS-ASC improved perfusion in ischemic limbs, CS-ASC completely lost this therapeutic effect. In vitro vasculogenesis assays revealed that human CS-ASC and ASC from CS-exposed mice showed compromised support of EC morphogenesis into vascular tubes, and the CS-ASC secretome was less potent in supporting EC survival/proliferation. Comparative secretome analysis revealed that CS-ASC produced lower amounts of hepatocyte growth factor (HGF) and stromal cell-derived growth factor 1 (SDF-1). Conversely, CS-ASC secreted the angiostatic/pro-inflammatory factor Activin A, which was not detected in nCS-ASC conditioned media (CM). Furthermore, higher Activin A levels were measured in EC/CS-ASC cocultures than in EC/nCS-ASC cocultures. CS-ASC also responded to inflammatory cytokines with 5.2-fold increase in Activin A secretion, whereas nCS-ASC showed minimal Activin A induction. Supplementation of EC/CS-ASC cocultures with nCS-ASC CM or with recombinant vascular endothelial growth factor, HGF, or SDF-1 did not rescue vasculogenesis, whereas inhibition of Activin A expression or activity improved network formation up to the level found in EC/nCS-ASC cocultures. In conclusion, ASC of CS individuals manifest compromised in vitro vasculogenic activity as well as in vivo therapeutic activity. Stem Cells 2018;36:856-867.


Assuntos
Adipócitos/metabolismo , Fumar Cigarros/efeitos adversos , Isquemia/induzido quimicamente , Neovascularização Fisiológica/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Isquemia/patologia , Camundongos
8.
Mol Ther ; 26(8): 2060-2069, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29910176

RESUMO

Influenza A virus (IAV) remains a major worldwide health threat, especially to high-risk populations, including the young and elderly. There is an unmet clinical need for therapy that will protect the lungs from damage caused by lower respiratory infection. Here, we analyzed the role of EMAPII, a stress- and virus-induced pro-inflammatory and pro-apoptotic factor, in IAV-induced lung injury. First, we demonstrated that IAV induces EMAPII surface translocation, release, and apoptosis in cultured endothelial and epithelial cells. Next, we showed that IAV induces EMAPII surface translocation and release to bronchoalveolar lavage fluid (BALF) in mouse lungs, concomitant with increases in caspase 3 activity. Injection of monoclonal antibody (mAb) against EMAPII attenuated IAV-induced EMAPII levels, weight loss, reduction of blood oxygenation, lung edema, and increase of the pro-inflammatory cytokine TNF alpha. In accordance with the pro-apoptotic properties of EMAPII, levels of caspase 3 activity in BALF were also decreased by mAb treatment. Moreover, we detected EMAPII mAb-induced increase in lung levels of M2-like macrophage markers YM1 and CD206. All together, these data strongly suggest that EMAPII mAb ameliorates IAV-induced lung injury by limiting lung cell apoptosis and shifting the host inflammatory setting toward resolution of inflammation.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Influenza Humana/tratamento farmacológico , Lesão Pulmonar/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/virologia , Caspase 3 , Linhagem Celular , Modelos Animais de Doenças , Humanos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/metabolismo , Injeções , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Camundongos , Transporte Proteico/efeitos dos fármacos , Resultado do Tratamento , Redução de Peso/efeitos dos fármacos
9.
J Cell Mol Med ; 22(1): 173-184, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28834227

RESUMO

Acute ischaemia causes a significant loss of blood vessels leading to deterioration of organ function. Multiple ischaemic conditions are associated with up-regulation of activin A, but its effect on endothelial cells (EC) in the context of hypoxia is understudied. This study evaluated the role of activin A in vasculogenesis in hypoxia. An in vitro vasculogenesis model, in which EC were cocultured with adipose stromal cells (ASC), was used. Incubation of cocultures at 0.5% oxygen led to decrease in EC survival and vessel density. Hypoxia up-regulated inhibin BA (monomer of activin A) mRNA by 4.5-fold and activin A accumulation in EC-conditioned media by 10-fold, but down-regulated activin A inhibitor follistatin by twofold. Inhibin BA expression was also increased in human EC injected into ischaemic mouse muscles. Activin A secretion was positively modulated by hypoxia mimetics dimethyloxalylglycine and desferrioxamine. Silencing HIF1α or HIF2α expression decreased activin A secretion in EC exposed to hypoxia. Introduction of activin A to cocultures decreased EC number and vascular density by 40%; conversely, blockade of activin A expression in EC or its activity improved vasculogenesis in hypoxia. Activin A affected EC survival directly and by modulating ASC paracrine activity leading to diminished ability of the ASC secretome to support EC survival and vasculogenesis. In conclusion, hypoxia up-regulates EC secretion of activin A, which, by affecting both EC and adjacent mesenchymal cells, creates a micro-environment unfavourable for vasculogenesis. This finding suggests that blockade of activin A signalling in ischaemic tissue may improve preservation of the affected tissue.


Assuntos
Ativinas/metabolismo , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Ativinas/genética , Animais , Hipóxia Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Recém-Nascido , Isquemia/patologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Circulation ; 135(15): 1417-1428, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28209728

RESUMO

BACKGROUND: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute-sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow-derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. METHODS: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. RESULTS: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] -0.6 to 2.5; P=0.238), collateral count (0.9±0.6 arteries; 95% CI, -0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, -0.8 to 0.8; P=0.978), and capillary perfusion (-0.2±0.6%; 95% CI, -1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1-2.9; P=0.047) in participants with completely occluded femoral arteries. CONCLUSIONS: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01774097.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Doença Arterial Periférica/terapia , Idoso , Aldeído Desidrogenase/metabolismo , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Comorbidade , Exercício Físico , Extremidades/irrigação sanguínea , Feminino , Seguimentos , Humanos , Claudicação Intermitente/terapia , Masculino , Pessoa de Meia-Idade , Perfusão , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/metabolismo , Qualidade de Vida , Fatores de Risco , Resultado do Tratamento
11.
Am J Physiol Lung Cell Mol Physiol ; 315(3): L382-L386, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29745251

RESUMO

We have shown that cigarette smoke (CS)-induced pulmonary emphysema-like manifestations are preceded by marked suppression of the number and function of bone marrow hematopoietic progenitor cells (HPCs). To investigate whether a limited availability of HPCs may contribute to CS-induced lung injury, we used a Food and Drug Administration-approved antagonist of the interactions of stromal cell-derived factor 1 (SDF-1) with its chemokine receptor CXCR4 to promote intermittent HPC mobilization and tested its ability to limit emphysema-like injury following chronic CS. We administered AMD3100 (5mg/kg) to mice during a chronic CS exposure protocol of up to 24 wk. AMD3100 treatment did not affect either lung SDF-1 levels, which were reduced by CS, or lung inflammatory cell counts. However, AMD3100 markedly improved CS-induced bone marrow HPC suppression and significantly ameliorated emphysema-like end points, such as alveolar airspace size, lung volumes, and lung static compliance. These results suggest that antagonism of SDF-1 binding to CXCR4 is associated with protection of both bone marrow and lungs during chronic CS exposure, thus encouraging future studies of potential therapeutic benefit of AMD3100 in emphysema.


Assuntos
Compostos Heterocíclicos/farmacologia , Lesão Pulmonar , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar , Fumar , Animais , Benzilaminas , Medula Óssea/metabolismo , Medula Óssea/patologia , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/metabolismo , Ciclamos , Feminino , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Camundongos , Alvéolos Pulmonares/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/prevenção & controle , Receptores CXCR4/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo , Fumar/patologia
12.
Am Heart J ; 201: 54-62, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29910056

RESUMO

OBJECTIVES: SENECA (StEm cell iNjECtion in cAncer survivors) is a phase I, randomized, double-blind, placebo-controlled study to evaluate the safety and feasibility of delivering allogeneic mesenchymal stromal cells (allo-MSCs) transendocardially in subjects with anthracycline-induced cardiomyopathy (AIC). BACKGROUND: AIC is an incurable and often fatal syndrome, with a prognosis worse than that of ischemic or nonischemic cardiomyopathy. Recently, cell therapy with MSCs has emerged as a promising new approach to repair damaged myocardium. METHODS: The study population is 36 cancer survivors with a diagnosis of AIC, left ventricular (LV) ejection fraction ≤40%, and symptoms of heart failure (NYHA class II-III) on optimally-tolerated medical therapy. Subjects must be clinically free of cancer for at least two years with a ≤ 30% estimated five-year risk of recurrence. The first six subjects participated in an open-label, lead-in phase and received 100 million allo-MSCs; the remaining 30 will be randomized 1:1 to receive allo-MSCs or vehicle via 20 transendocardial injections. Efficacy measures (obtained at baseline, 6 months, and 12 months) include MRI evaluation of LV function, LV volumes, fibrosis, and scar burden; assessment of exercise tolerance (six-minute walk test) and quality of life (Minnesota Living with Heart Failure Questionnaire); clinical outcomes (MACE and cumulative days alive and out of hospital); and biomarkers of heart failure (NT-proBNP). CONCLUSIONS: This is the first clinical trial using direct cardiac injection of cells for the treatment of AIC. If administration of allo-MSCs is found feasible and safe, SENECA will pave the way for larger phase II/III studies with therapeutic efficacy as the primary outcome.


Assuntos
Antraciclinas/efeitos adversos , Sobreviventes de Câncer/estatística & dados numéricos , Insuficiência Cardíaca/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Neoplasias/tratamento farmacológico , Qualidade de Vida , Função Ventricular Esquerda/fisiologia , Adolescente , Adulto , Idoso , Antraciclinas/uso terapêutico , Método Duplo-Cego , Estudos de Viabilidade , Feminino , Seguimentos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Transplante Autólogo , Resultado do Tratamento , Adulto Jovem
13.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299842

RESUMO

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Assuntos
Sistema Nervoso Central/citologia , Eletroacupuntura , Células-Tronco Mesenquimais/citologia , Tendão do Calcâneo/patologia , Pontos de Acupuntura , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Humanos , Hiperalgesia/terapia , Hipotálamo/citologia , Interleucina-10/sangue , Macrófagos/citologia , Camundongos , Rede Nervosa/fisiologia , Ratos , Ruptura , Células Receptoras Sensoriais/metabolismo , Proteína Desacopladora 1/metabolismo
14.
Respir Res ; 19(1): 107, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855321

RESUMO

BACKGROUND: Several inflammatory lung diseases display abundant presence of hyaluronic acid (HA) bound to heavy chains (HC) of serum protein inter-alpha-inhibitor (IαI) in the extracellular matrix. The HC-HA modification is critical to neutrophil sequestration in liver sinusoids and to survival during experimental lipopolysaccharide (LPS)-induced sepsis. Therefore, the covalent HC-HA binding, which is exclusively mediated by tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6), may play an important role in the onset or the resolution of lung inflammation in acute lung injury (ALI) induced by respiratory infection. METHODS: Reversible ALI was induced by a single intratracheal instillation of LPS or Pseudomonas aeruginosa in mice and outcomes were studied for up to six days. We measured in the lung or the bronchoalveolar fluid HC-HA formation, HA immunostaining localization and roughness, HA fragment abundance, and markers of lung inflammation and lung injury. We also assessed TSG-6 secretion by TNFα- or LPS-stimulated human alveolar macrophages, lung fibroblast Wi38, and bronchial epithelial BEAS-2B cells. RESULTS: Extensive HC-modification of lung HA, localized predominantly in the peri-broncho-vascular extracellular matrix, was notable early during the onset of inflammation and was markedly decreased during its resolution. Whereas human alveolar macrophages secreted functional TSG-6 following both TNFα and LPS stimulation, fibroblasts and bronchial epithelial cells responded to only TNFα. Compared to wild type, TSG-6-KO mice, which lacked HC-modified HA, exhibited modest increases in inflammatory cells in the lung, but no significant differences in markers of lung inflammation or injury, including histopathological lung injury scores. CONCLUSIONS: Respiratory infection induces rapid HC modification of HA followed by fragmentation and clearance, with kinetics that parallel the onset and resolution phase of ALI, respectively. Alveolar macrophages may be an important source of pulmonary TSG-6 required for HA remodeling. The formation of HC-modified HA had a minor role in the onset, severity, or resolution of experimental reversible ALI induced by respiratory infection with gram-negative bacteria.


Assuntos
Lesão Pulmonar Aguda/metabolismo , alfa-Globulinas/metabolismo , Ácido Hialurônico/metabolismo , Macrófagos Alveolares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/microbiologia , Animais , Células Cultivadas , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos Alveolares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Depuração Mucociliar/efeitos dos fármacos , Depuração Mucociliar/fisiologia , Ligação Proteica , Fatores de Tempo
15.
J Cell Mol Med ; 21(7): 1420-1430, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28455887

RESUMO

Damage to endothelial cells contributes to acute kidney injury (AKI) by causing impaired perfusion, while the permanent loss of the capillary network following AKI has been suggested to promote chronic kidney disease. Therefore, strategies to protect renal vasculature may impact both short-term recovery and long-term functional preservation post-AKI. Human adipose stromal cells (hASCs) possess pro-angiogenic and anti-inflammatory properties and therefore have been tested as a therapeutic agent to treat ischaemic conditions. This study evaluated hASC potential to facilitate recovery from AKI with specific attention to capillary preservation and inflammation. Male Sprague Dawley rats were subjected to bilateral ischaemia/reperfusion and allowed to recover for either two or seven days. At the time of reperfusion, hASCs or vehicle was injected into the suprarenal abdominal aorta. hASC-treated rats had significantly greater survival compared to vehicle-treated rats (88.7% versus 69.3%). hASC treatment showed hastened recovery as demonstrated by lower creatinine levels at 48 hrs, while tubular damage was significantly reduced at 48 hrs. hASC treatment resulted in a significant decrease in total T cell and Th17 cell infiltration into injured kidneys at 2 days post-AKI, but an increase in accumulation of regulatory T cells. By day 7, hASC-treated rats showed significantly attenuated capillary rarefaction in the cortex (15% versus 5%) and outer medulla (36% versus 18%) compared to vehicle-treated rats as well as reduced accumulation of interstitial alpha-smooth muscle actin-positive myofibroblasts. These results suggest for the first time that hASCs improve recovery from I/R-induced injury by mechanisms that contribute to decrease in inflammation and preservation of peritubular capillaries.


Assuntos
Injúria Renal Aguda/terapia , Inflamação/terapia , Traumatismo por Reperfusão/terapia , Células Estromais/transplante , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/fisiopatologia , Adipócitos/imunologia , Adipócitos/transplante , Tecido Adiposo/imunologia , Tecido Adiposo/transplante , Animais , Modelos Animais de Doenças , Humanos , Inflamação/fisiopatologia , Rim/imunologia , Rim/patologia , Rarefação Microvascular/imunologia , Rarefação Microvascular/fisiopatologia , Rarefação Microvascular/terapia , Ratos , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/fisiopatologia , Células Estromais/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
16.
Aesthet Surg J ; 37(4): 454-463, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364523

RESUMO

Background: The progressive decline in tissue mechanical strength that occurs with aging is hypothesized to be due to a loss of resident stem cell number and function. As such, there is concern regarding use of autologous adult stem cell therapy in older patients. To abrogate this, many patients elect to cryopreserve the adipose stromal-vascular fraction (SVF) of lipoaspirate, which contains resident adipose stem cells (ASC). However, it is not clear yet if there is any clinical benefit from banking cells at a younger age. Objectives: We performed a comparative analysis of SVF composition and ASC function from cells obtained under GMP conditions from the same three patients with time gap of 7 to 12 years. Methods: SVF, cryobanked under good manufacturing practice (GMP) conditions, was thawed and cell yield, viability, and cellular composition were assessed. In parallel, ASC proliferation and efficiency of tri-lineage differentiation were evaluated. Results: The results showed no significant differences existed in cell yield and SVF subpopulation composition within the same patient between harvest procedures 7 to 12 years apart. Further, no change in proliferation rates of cultured ASCs was found, and expanded cells from all patients were capable of tri-lineage differentiation. Conclusions: By harvesting fat from the same patient at two time points, we have shown that despite the natural human aging process, the prevalence and functional activity of ASCs in an adult mesenchymal stem cell, is highly preserved. Level of Evidence: 5.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/fisiologia , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Transplante de Células-Tronco/métodos , Células Estromais/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Criopreservação , Feminino , Citometria de Fluxo , Humanos , Lipectomia , Masculino , Bancos de Tecidos/normas , Adulto Jovem
17.
Stem Cells ; 33(10): 3039-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26037810

RESUMO

Adipose stem/stromal cells (ASCs) after isolation produce numerous angiogenic growth factors. This justifies their use to promote angiogenesis per transplantation. In parallel, local coimplantation of ASC with endothelial cells (ECs) leading to formation of functional vessels by the donor cells suggests the existence of a mechanism responsible for fine-tuning ASC paracrine activity essential for vasculogenesis. As expected, conditioned media (CM) from ASC promoted ECs survival, proliferation, migration, and vasculogenesis. In contrast, media from EC-ASC cocultures had neutral effects upon EC responses. Media from cocultures exhibited lower levels of vascular endothelial growth factor (VEGF), hepatic growth factor, angiopoietin-1, and stromal cell-derived factor-1 compared with those in ASC CM. Activin A was induced in ASC in response to EC exposure and was responsible for overall antivasculogenic activity of EC-ASC CM. Except for VEGF, activin A diminished secretion of all tested factors by ASC. Activin A mediated induction of VEGF expression in ASC, but also upregulated expression of VEGF scavenger receptor FLT-1 in EC in EC-ASC cocultures. Blocking the FLT-1 expression in EC led to an increase in VEGF concentration in CM. In vitro pre-exposure of ASC to low number of EC before subcutaneous coimplantation with EC resulted in decrease in vessel density in the implants. In vitro tests suggested that activin A was partially responsible for this diminished ASC activity. This study shows that neovessel formation is associated with induction of activin A expression in ASC; this factor, by affecting the bioactivity of both ASC and EC, directs the crosstalk between these complementary cell types to establish stable vessels.


Assuntos
Ativinas/biossíntese , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Células Estromais/citologia , Ativinas/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células Estromais/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese
18.
Stem Cells ; 33(2): 468-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25329668

RESUMO

OBJECTIVE: Bone marrow-derived hematopoietic stem and progenitor cells (HSC/HPC) are critical to homeostasis and tissue repair. The aims of this study were to delineate the myelotoxicity of cigarette smoking (CS) in a murine model, to explore human adipose-derived stem cells (hASC) as a novel approach to mitigate this toxicity, and to identify key mediating factors for ASC activities. METHODS: C57BL/6 mice were exposed to CS with or without i.v. injection of regular or siRNA-transfected hASC. For in vitro experiments, cigarette smoke extract was used to mimic the toxicity of CS exposure. Analysis of bone marrow HPC was performed both by flow cytometry and colony-forming unit assays. RESULTS: In this study, we demonstrate that as few as 3 days of CS exposure results in marked cycling arrest and diminished clonogenic capacity of HPC, followed by depletion of phenotypically defined HSC/HPC. Intravenous injection of hASC substantially ameliorated both acute and chronic CS-induced myelosuppression. This effect was specifically dependent on the anti-inflammatory factor TSG-6, which is induced from xenografted hASC, primarily located in the lung and capable of responding to host inflammatory signals. Gene expression analysis within bone marrow HSC/HPC revealed several specific signaling molecules altered by CS and normalized by hASC. CONCLUSION: Our results suggest that systemic administration of hASC or TSG-6 may be novel approaches to reverse CS-induced myelosuppression.


Assuntos
Tecido Adiposo/metabolismo , Moléculas de Adesão Celular/metabolismo , Mielopoese , Fumar/efeitos adversos , Transplante de Células-Tronco , Células-Tronco/metabolismo , Tecido Adiposo/patologia , Animais , Moléculas de Adesão Celular/farmacologia , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fumar/patologia , Células-Tronco/patologia
19.
Circ Res ; 115(9): 800-9, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25114097

RESUMO

RATIONALE: Adipose stromal cells (ASC) are therapeutically potent progenitor cells that possess properties of pericytes. In vivo, ASC in combination with endothelial cells (EC) establish functional multilayer vessels, in which ASC form the outer vessel layer and differentiate into mural cells. OBJECTIVE: To identify factors responsible for ASC differentiation toward the smooth muscle cell phenotype via interaction with EC. METHODS AND RESULTS: An in vitro model of EC cocultivation with ASC was used, in which EC organized into vascular cords, accompanied by ASC migration toward EC and upregulation of α-smooth muscle actin, SM22α, and calponin expression. Conditioned media from EC-ASC, but not from EC cultures, induced smooth muscle cell protein expression in ASC monocultures. EC-ASC cocultivation induced marked accumulation of activin A but not transforming growth factor-ß1 in conditioned media. This was attributed to induction of activin A expression in ASC on contact with EC. Although transforming growth factor-ß and activin A were individually sufficient to initiate expression of smooth muscle cell antigens in ASC, only activin A IgG blocked the effect of EC-ASC conditioned media. Although transforming growth factor-ß was able to induce activin A expression in ASC, in cocultures this induction was transforming growth factor-ß independent. In EC-ASC cocultures, activin A IgG or ALK4/5/7 receptor inhibitors blocked expression of α-smooth muscle actin in ASC in the absence of direct EC-cord contact, but this inhibition was circumvented in ASC by direct EC contact. CONCLUSIONS: EC initiate a smooth muscle cell differentiation program in adjacent ASC and propagate this differentiation in distant ASC by induction of activin A expression.


Assuntos
Ativinas/metabolismo , Tecido Adiposo/metabolismo , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos de Músculo Liso/metabolismo , Actinas/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Tecido Adiposo/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Folistatina/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Neovascularização Fisiológica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Calponinas
20.
J Transl Med ; 13: 67, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25889857

RESUMO

BACKGROUND: Acute Respiratory Distress Syndrome (ARDS) is a condition that contributes to morbidity and mortality of critically ill patients. We investigated whether factors secreted by adipose stromal cells (ASC) into conditioned media (ASC-CM) will effectively decrease lung injury in the model of lipopolysaccharide (LPS)-induced ARDS. METHODS: To assess the effect of ASC-CM on ARDS indices, intravenous delivery of ASC and ASC-CM to C57Bl/6 mice was carried out 4 h after LPS oropharyngeal aspiration; Evans Blue Dye (EBD) was injected intravenously 1 h prior to animal sacrifice (48 h post-LPS). Lungs were either fixed for histopathology, or used to extract bronchoalveolar lavage fluid (BALF) or EBD. To assess the effect of ASC-CM on endothelial barrier function and apoptosis, human pulmonary artery endothelial cells were treated with ASC-CM for 48-72 h. RESULTS: ASC-CM markedly reduced LPS-induced histopathologic changes of lung, protein extravasation into BALF, and suppressed the secretion of proinflammatory cytokines TNFα and IL6. White Blood Cells (WBC) from BALF of LPS-challenged mice receiving ASC-CM had decreased reactive oxygen species (ROS) generation compared to WBC from LPS-challenged mice receiving control media injection. Treatment of pulmonary endothelial monolayers with ASC-CM significantly suppressed H2O2-induced leakage of FITC dextran and changes in transendothelial resistance, as well as gap formation in endothelial monolayer. ASC-CM exposure reduced the percentage of endothelial cells expressing ICAM-1, and suppressed TNFα-induced expression of E-selectin and cleavage of caspase-3. ASC-CM reduced the endothelial level of pro-apoptotic protein Bim, but did not affect the level of Bcl-2, Bad, or Bad phosphorylation. CONCLUSIONS: Factors secreted by ASC efficiently reduce ARDS indices, endothelial barrier hyperpermeability, and activation of pro-inflammatory and pro-apoptotic pathways in endothelium.


Assuntos
Lesão Pulmonar Aguda/patologia , Tecido Adiposo/citologia , Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/patologia , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Selectina E/metabolismo , Células Endoteliais/efeitos dos fármacos , Citometria de Fluxo , Humanos , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Contagem de Leucócitos , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Artéria Pulmonar/patologia , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA