Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 155(2): 410-22, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120139

RESUMO

The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Elementos de Resposta , Fator de Células-Tronco/genética , Neoplasias Testiculares/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Seleção Genética , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 113(27): 7361-8, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27382150

RESUMO

Inferring causal effects from observational and interventional data is a highly desirable but ambitious goal. Many of the computational and statistical methods are plagued by fundamental identifiability issues, instability, and unreliable performance, especially for large-scale systems with many measured variables. We present software and provide some validation of a recently developed methodology based on an invariance principle, called invariant causal prediction (ICP). The ICP method quantifies confidence probabilities for inferring causal structures and thus leads to more reliable and confirmatory statements for causal relations and predictions of external intervention effects. We validate the ICP method and some other procedures using large-scale genome-wide gene perturbation experiments in Saccharomyces cerevisiae The results suggest that prediction and prioritization of future experimental interventions, such as gene deletions, can be improved by using our statistical inference techniques.


Assuntos
Modelos Genéticos , Estatística como Assunto , Algoritmos , Citometria de Fluxo , Deleção de Genes , Saccharomyces cerevisiae , Software
3.
Nature ; 458(7242): 1163-6, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19407800

RESUMO

Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Carbono/análise , Efeito Estufa , Modelos Teóricos , Temperatura , Benchmarking , Simulação por Computador , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas/história , Indústrias/história , Fatores de Tempo , Incerteza
4.
Nature ; 458(7242): 1158-62, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19407799

RESUMO

More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqués envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.


Assuntos
Ecologia/métodos , Efeito Estufa , Modelos Teóricos , Temperatura , Atmosfera/química , Dióxido de Carbono/análise , Previsões , Combustíveis Fósseis/análise , Probabilidade , Incerteza
5.
EClinicalMedicine ; 62: 102124, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37588623

RESUMO

Background: When sepsis is detected, organ damage may have progressed to irreversible stages, leading to poor prognosis. The use of machine learning for predicting sepsis early has shown promise, however international validations are missing. Methods: This was a retrospective, observational, multi-centre cohort study. We developed and externally validated a deep learning system for the prediction of sepsis in the intensive care unit (ICU). Our analysis represents the first international, multi-centre in-ICU cohort study for sepsis prediction using deep learning to our knowledge. Our dataset contains 136,478 unique ICU admissions, representing a refined and harmonised subset of four large ICU databases comprising data collected from ICUs in the US, the Netherlands, and Switzerland between 2001 and 2016. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis annotations, amounting to 25,694 (18.8%) patient stays with sepsis. We compared our approach to clinical baselines as well as machine learning baselines and performed an extensive internal and external statistical validation within and across databases, reporting area under the receiver-operating-characteristic curve (AUC). Findings: Averaged over sites, our model was able to predict sepsis with an AUC of 0.846 (95% confidence interval [CI], 0.841-0.852) on a held-out validation cohort internal to each site, and an AUC of 0.761 (95% CI, 0.746-0.770) when validating externally across sites. Given access to a small fine-tuning set (10% per site), the transfer to target sites was improved to an AUC of 0.807 (95% CI, 0.801-0.813). Our model raised 1.4 false alerts per true alert and detected 80% of the septic patients 3.7 h (95% CI, 3.0-4.3) prior to the onset of sepsis, opening a vital window for intervention. Interpretation: By monitoring clinical and laboratory measurements in a retrospective simulation of a real-time prediction scenario, a deep learning system for the detection of sepsis generalised to previously unseen ICU cohorts, internationally. Funding: This study was funded by the Personalized Health and Related Technologies (PHRT) strategic focus area of the ETH domain.

6.
Gigascience ; 122022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318234

RESUMO

OBJECTIVE: To develop a unified framework for analyzing data from 5 large publicly available intensive care unit (ICU) datasets. FINDINGS: Using 3 American (Medical Information Mart for Intensive Care III, Medical Information Mart for Intensive Care IV, electronic ICU) and 2 European (Amsterdam University Medical Center Database, High Time Resolution ICU Dataset) databases, we constructed a mapping for each database to a set of clinically relevant concepts, which are grounded in the Observational Medical Outcomes Partnership Vocabulary wherever possible. Furthermore, we performed synchronization in the units of measurement and data type representation. On top of this, we built functionality, which allows the user to download, set up, and load data from all of the 5 databases, through a unified Application Programming Interface. The resulting ricu R-package represents the computational infrastructure for handling publicly available ICU datasets, and its latest release allows the user to load 119 existing clinical concepts from the 5 data sources. CONCLUSION: The ricu R-package (available on GitHub and CRAN) is the first tool that enables users to analyze publicly available ICU datasets simultaneously (datasets are available upon request from respective owners). Such an interface saves researchers time when analyzing ICU data and helps reproducibility. We hope that ricu can become a community-wide effort, so that data harmonization is not repeated by each research group separately. One current limitation is that concepts were added on a case-to-case basis, and therefore the resulting dictionary of concepts is not comprehensive. Further work is needed to make the dictionary comprehensive.


Assuntos
Cuidados Críticos , Unidades de Terapia Intensiva , Humanos , Reprodutibilidade dos Testes , Cuidados Críticos/métodos , Bases de Dados Factuais , Gerenciamento de Dados
7.
Sci Adv ; 7(43): eabh4429, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34678070

RESUMO

Climate warming is unequivocal and exceeds internal climate variability. However, estimates of the magnitude of decadal-scale variability from models and observations are uncertain, limiting determination of the fraction of warming attributable to external forcing. Here, we use statistical learning to extract a fingerprint of climate change that is robust to different model representations and magnitudes of internal variability. We find a best estimate forced warming trend of 0.8°C over the past 40 years, slightly larger than observed. It is extremely likely that at least 85% is attributable to external forcing based on the median variability across climate models. Detection remains robust even when evaluated against models with high variability and if decadal-scale variability were doubled. This work addresses a long-standing limitation in attributing warming to external forcing and opens up opportunities even in the case of large model differences in decadal-scale variability, model structural uncertainty, and limited observational records.

8.
Open Heart ; 7(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32690553

RESUMO

OBJECTIVE: A multidisciplinary heart valve team is recommended for the evaluation of treatment in patients with valvular heart disease, but evidence supporting this concept is lacking. In patients with severe mitral regurgitation, we thought to analyse the patient selection process by the heart team for different treatment options and the outcome after treatment. METHODS: In this single-centre cohort study, all patients treated for mitral regurgitation between July 2013 and September 2018 were included. Primary end points during follow-up were all-cause mortality and a combined end point, consisting of all-cause mortality, cardiovascular rehospitalisation and mitral valve reintervention. RESULTS: 179 patients (44.8%) were treated using Mitraclip, 185 (46.2%) by surgical repair and 36 (9.0%) by surgical replacement. The mortality risk according to EuroScore II differed significantly between treatment groups (6.6%±5.6%, 1.7%±1.5% and 3.6%±2.7% for Mitraclip, surgical repair and replacement, respectively, p<0.001). In-hospital mortality for the 3 groups were 3.4%, 1.6% and 8.3%, respectively (p=0.091). Overall, surgical repair patients had higher 4-year survival (HR 0.40 (95% CI 0.26 to 0.63), p<0.001) and fewer combined end points (HR 0.51 (95% CI 0.32 to 0.80), p<0.001) compared with surgical replacement and Mitraclip patients. However, patients undergoing Mitraclip for isolated, primary mitral regurgitation achieved very good long-term survival. CONCLUSION: The multidisciplinary heart team assigned only low-risk patients with favourable anatomy to surgical repair, while high-risk patients underwent Mitraclip or surgical replacement. This strategy was associated with lower than expected in-hospital mortality for Mitraclip patients and high 4-year survival rates for patients undergoing surgical or percutaneous repair of isolated primary mitral regurgitation.


Assuntos
Implante de Prótese de Valva Cardíaca , Anuloplastia da Valva Mitral , Insuficiência da Valva Mitral/cirurgia , Valva Mitral/cirurgia , Equipe de Assistência ao Paciente , Idoso , Idoso de 80 Anos ou mais , Tomada de Decisão Clínica , Feminino , Próteses Valvulares Cardíacas , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/instrumentação , Implante de Prótese de Valva Cardíaca/mortalidade , Hemodinâmica , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Anuloplastia da Valva Mitral/efeitos adversos , Anuloplastia da Valva Mitral/instrumentação , Anuloplastia da Valva Mitral/mortalidade , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/mortalidade , Insuficiência da Valva Mitral/fisiopatologia , Readmissão do Paciente , Seleção de Pacientes , Desenho de Prótese , Recuperação de Função Fisiológica , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
9.
Stud Health Technol Inform ; 270: 1163-1167, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570564

RESUMO

Sepsis is a highly heterogenous syndrome with variable causes and outcomes. As part of the SPHN/PHRT funding program, we aim to build a highly interoperable, interconnected network for data collection, exchange and analysis of patients on intensive care units in order to predict sepsis onset and mortality earlier. All five University Hospitals, Universities, the Swiss Institute of Bioinformatics and ETH Zurich are involved in this multi-disciplinary project. With two prospective clinical observational studies, we test our infrastructure setup and improve the framework gradually and generate relevant data for research.


Assuntos
Sepse , Hospitais Universitários , Humanos , Unidades de Terapia Intensiva , Estudos Observacionais como Assunto , Estudos Prospectivos , Suíça
10.
Nat Commun ; 7: 13299, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830750

RESUMO

All common genome-wide association (GWA) methods rely on population structure correction, to avoid false genotype-to-phenotype associations. However, population structure correction is a stringent penalization, which also impedes identification of real associations. Using recent statistical advances, we developed a new GWA method, called Quantitative Trait Cluster Association Test (QTCAT), enabling simultaneous multi-marker associations while considering correlations between markers. With this, QTCAT overcomes the need for population structure correction and also reflects the polygenic nature of complex traits better than single-marker methods. Using simulated data, we show that QTCAT clearly outperforms linear mixed model approaches. Moreover, using QTCAT to reanalyse public human, mouse and Arabidopsis GWA data revealed nearly all known and some previously undetected associations. Following up on the most significant novel association in the Arabidopsis data allowed us to identify a so far unknown component of root growth.


Assuntos
Mapeamento Cromossômico/métodos , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas/genética , Arabidopsis/genética , Frequência do Gene , Genoma de Planta/genética , Genótipo , Modelos Lineares , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA