Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38843834

RESUMO

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.

2.
Cell ; 179(2): 459-469.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585083

RESUMO

The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.


Assuntos
Bacteriófago T3/genética , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Terapia por Fagos/métodos , Dermatopatias Bacterianas/terapia , Proteínas da Cauda Viral/genética , Animais , Farmacorresistência Bacteriana , Especificidade de Hospedeiro , Camundongos , Mutagênese Sítio-Dirigida
3.
Proc Natl Acad Sci U S A ; 119(21): e2123000119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35580180

RESUMO

Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.


Assuntos
COVID-19 , África , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Variação Genética , Humanos , Fenótipo , SARS-CoV-2/genética , Seleção Genética
4.
Proteomics ; 24(12-13): e2300105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458994

RESUMO

Peptides have a plethora of activities in biological systems that can potentially be exploited biotechnologically. Several peptides are used clinically, as well as in industry and agriculture. The increase in available 'omics data has recently provided a large opportunity for mining novel enzymes, biosynthetic gene clusters, and molecules. While these data primarily consist of DNA sequences, other types of data provide important complementary information. Due to their size, the approaches proven successful at discovering novel proteins of canonical size cannot be naïvely applied to the discovery of peptides. Peptides can be encoded directly in the genome as short open reading frames (smORFs), or they can be derived from larger proteins by proteolysis. Both of these peptide classes pose challenges as simple methods for their prediction result in large numbers of false positives. Similarly, functional annotation of larger proteins, traditionally based on sequence similarity to infer orthology and then transferring functions between characterized proteins and uncharacterized ones, cannot be applied for short sequences. The use of these techniques is much more limited and alternative approaches based on machine learning are used instead. Here, we review the limitations of traditional methods as well as the alternative methods that have recently been developed for discovering novel bioactive peptides with a focus on prokaryotic genomes and metagenomes.


Assuntos
Biologia Computacional , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/genética , Biologia Computacional/métodos , Proteômica/métodos , Humanos , Fases de Leitura Aberta/genética , Aprendizado de Máquina
6.
Drug Resist Updat ; 71: 101012, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37924726

RESUMO

Despite significant progress in antibiotic discovery, millions of lives are lost annually to infections. Surprisingly, the failure of antimicrobial treatments to effectively eliminate pathogens frequently cannot be attributed to genetically-encoded antibiotic resistance. This review aims to shed light on the fundamental mechanisms contributing to clinical scenarios where antimicrobial therapies are ineffective (i.e., antibiotic failure), emphasizing critical factors impacting this under-recognized issue. Explored aspects include biofilm formation and sepsis, as well as the underlying microbiome. Therapeutic strategies beyond antibiotics, are examined to address the dimensions and resolution of antibiotic failure, actively contributing to this persistent but escalating crisis. We discuss the clinical relevance of antibiotic failure beyond resistance, limited availability of therapies, potential of new antibiotics to be ineffective, and the urgent need for novel anti-infectives or host-directed therapies directly addressing antibiotic failure. Particularly noteworthy is multidrug adaptive resistance in biofilms that represent 65 % of infections, due to the lack of approved therapies. Sepsis, responsible for 19.7 % of all deaths (as well as severe COVID-19 deaths), is a further manifestation of this issue, since antibiotics are the primary frontline therapy, and yet 23 % of patients succumb to this condition.


Assuntos
Antibacterianos , Sepse , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Biofilmes , Sepse/tratamento farmacológico
7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34244421

RESUMO

COVID-19 has led to over 3.47 million deaths worldwide and continues to devastate primarily middle- and low-income countries. High-frequency testing has been proposed as a potential solution to prevent outbreaks. However, current tests are not sufficiently low-cost, rapid, or scalable to enable broad COVID-19 testing. Here, we describe LEAD (Low-cost Electrochemical Advanced Diagnostic), a diagnostic test that detects severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 6.5 min and costs $1.50 per unit to produce using easily accessible and commercially available materials. LEAD is highly sensitive toward SARS-CoV-2 spike protein (limit of detection = 229 fg⋅mL-1) and displays an excellent performance profile using clinical saliva (100.0% sensitivity, 100.0% specificity, and 100.0% accuracy) and nasopharyngeal/oropharyngeal (88.7% sensitivity, 86.0% specificity, and 87.4% accuracy) samples. No cross-reactivity was detected with other coronavirus or influenza strains. Importantly, LEAD also successfully diagnosed the highly contagious SARS-CoV-2 B.1.1.7 UK variant. The device presents high reproducibility under all conditions tested and preserves its original sensitivity for 5 d when stored at 4 °C in phosphate-buffered saline. Our low-cost and do-it-yourself technology opens new avenues to facilitate high-frequency testing and access to much-needed diagnostic tests in resource-limited settings and low-income communities.


Assuntos
Técnicas Biossensoriais , Teste para COVID-19 , COVID-19 , Grafite/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/diagnóstico , COVID-19/metabolismo , Eletrodos , Humanos , Sensibilidade e Especificidade
8.
Aust Crit Care ; 37(2): 230-235, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37573155

RESUMO

BACKGROUND: More than 70% of patients demonstrate pain after endotracheal aspiration. Tools are needed to objectify the need for analgesia in non-communicative critically ill patients. OBJECTIVE: The objective of this study was to identify the lowest intensity electrical stimulus for detecting pain before daily care interventions. METHODS: Study of diagnostic tests to assess pupillometry to detect pain through the pupillary dilation response to noxious stimuli versus the Behavioural Pain Scale. Patients older than 18 years, under analgosedation, subjected to invasive ventilation, baseline Behavioural Pain Scale of 3, and Richmond Agitation-Sedation Scale between -1 and -4 were studied. We assessed the Behavioural Pain Scale and the pupillary dilation response to 10, 20, 30, and 40 mA stimuli. We studied the diagnostic performance based on sensitivity and specificity, negative predictive value, positive predictive value, and accuracy of the selected points after the different stimulations. AlgiScan® Pupillometer measured the pupillary dilation response. The presence of pain was considered as a Behavioural Pain Scale score of ≥4. Significance was defined as p <0.05. RESULTS: Measurements were performed on 31 patients. In the 20 mA stimulus, we found an area under the curve of 0.85 (0.69-1.0). The cut-off point of pupillary dilation was 11.5%, with a sensitivity of 100% (34.2-100) and a specificity of 75.9% (57.9-87.8). This point had an accuracy of 77.4 (60.2-88.6) and a Youden's Index of 0.8. CONCLUSIONS: Pupillary variation measurement during a 20 mA stimulus could help assess the need for analgesia before potentially painful interventions. Further studies are needed to confirm this. REGISTRATION: Phase 1 of the project PUPIPAIN ClinicalTrials.gov Identifier: NCT04078113.


Assuntos
Analgesia , Nociceptividade , Humanos , Dilatação , Nociceptividade/fisiologia , Dor/diagnóstico , Reflexo Pupilar/fisiologia , Adulto
9.
Crit Rev Microbiol ; 49(3): 414-434, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35574602

RESUMO

Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Probióticos , Humanos , Antibacterianos/uso terapêutico , Clostridioides difficile/genética , Clostridioides , Vancomicina/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle , Probióticos/uso terapêutico
10.
Nat Chem Biol ; 17(6): 724-731, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820990

RESUMO

Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.


Assuntos
Bactérias/efeitos dos fármacos , Hidrogéis/farmacologia , Alginatos/química , Antibacterianos/farmacologia , Bactérias/genética , Materiais Biocompatíveis , Bioengenharia , DNA Bacteriano/química , DNA Bacteriano/genética , Monitoramento Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Heme/química , Metais Pesados/química , Organismos Geneticamente Modificados , Percepção de Quorum , Rios , Poluentes da Água/química
11.
Pediatr Blood Cancer ; 70(1): e29939, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031729

RESUMO

Relapsed or refractory pediatric patients with B-acute lymphoblastic leukemia (B-ALL) have high rates of toxicities and relapse, and novel therapy is needed. We present a case of a 5-year-old male child with high-risk B-ALL that was refractory to several re-induction regimens. He was put into minimal residual disease-negative remission after re-induction with chemotherapy plus overlapping rituximab, inotuzumab ozogamicin, and blinatumomab, termed mini-hyper-CVD (cyclophosphamide, vincristine, and dexamethasone) plus CRIB (condensed rituximab, inotuzumab ozogamicin, and blinatumomab). This regimen was well tolerated, and he received his transplant and engrafted with no significant infections, toxicities, or sinusoidal obstruction syndrome. This is the first reported use of a condensed sequential immunotherapy/chemotherapy regimen in a pediatric leukemia patient.


Assuntos
Hepatopatia Veno-Oclusiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Humanos , Criança , Pré-Escolar , Inotuzumab Ozogamicina , Rituximab/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
12.
J Pediatr Hematol Oncol ; 45(8): e1001-e1004, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661300

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy, especially in pediatrics, that can involve the bone marrow, skin, lymph nodes, and central nervous system (CNS). Given its variable clinical presentation, coupled with an immunohistochemistry pattern (CD4, CD56, TCF4, TCL-1, and CD123 positivity) that differs from other myeloid neoplasms, the diagnosis of BPDCN can be missed. Limited data are available to guide the treatment of pediatric BPDCN. Herein, we report a case of a pediatric patient who had BPDCN with central nervous system, orbital, and skin involvement. This patient achieved complete remission after receiving modified hyper-CVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone with venetoclax and intrathecal chemotherapy. He remains disease-free 200 days after receiving a stem cell transplant. This represents the first known published pediatric case using a modified hyper-CVAD plus venetoclax regimen for treating a pediatric BPDCN patient in the frontline setting.


Assuntos
Neoplasias Hematológicas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Masculino , Humanos , Criança , Células Dendríticas/patologia , Neoplasias Cutâneas/patologia , Pele/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Neoplasias Hematológicas/patologia
13.
Proc Natl Acad Sci U S A ; 117(43): 26936-26945, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046640

RESUMO

Novel antibiotics are urgently needed to combat multidrug-resistant pathogens. Venoms represent previously untapped sources of novel drugs. Here we repurposed mastoparan-L, the toxic active principle derived from the venom of the wasp Vespula lewisii, into synthetic antimicrobials. We engineered within its N terminus a motif conserved among natural peptides with potent immunomodulatory and antimicrobial activities. The resulting peptide, mast-MO, adopted an α-helical structure as determined by NMR, exhibited increased antibacterial properties comparable to standard-of-care antibiotics both in vitro and in vivo, and potentiated the activity of different classes of antibiotics. Mechanism-of-action studies revealed that mast-MO targets bacteria by rapidly permeabilizing their outer membrane. In animal models, the peptide displayed direct antimicrobial activity, led to enhanced ability to attract leukocytes to the infection site, and was able to control inflammation. Permutation studies depleted the remaining toxicity of mast-MO toward human cells, yielding derivatives with antiinfective activity in animals. We demonstrate a rational design strategy for repurposing venoms into promising antimicrobials.


Assuntos
Bacteriemia/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/química , Venenos de Vespas/química , Animais , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Venenos de Vespas/uso terapêutico , Venenos de Vespas/toxicidade
14.
Trends Immunol ; 40(10): 952-973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601521

RESUMO

The gut microbiome has a significant impact on health and disease and can actively contribute to obesity, diabetes, inflammatory bowel disease, cardiovascular disease, and neurological disorders. We do not yet have the necessary tools to fine-tune the microbial communities that constitute the microbiome, though such tools could unlock extensive benefits to human health. Here, we provide an overview of the current state of technological tools that may be used for microbiome engineering. These tools can enable investigators to define the parameters of a healthy microbiome and to determine how gut bacteria may contribute to the etiology of a variety of diseases. These tools may also allow us to explore the exciting prospect of developing targeted therapies and personalized treatments for microbiome-linked diseases.


Assuntos
Microbioma Gastrointestinal , Engenharia Metabólica , Animais , Epigênese Genética/genética , Epigênese Genética/imunologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Humanos
15.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499761

RESUMO

Peptides are potential therapeutic alternatives against global diseases, such as antimicrobial-resistant infections and cancer. Venoms are a rich source of bioactive peptides that have evolved over time to act on specific targets of the prey. Peptides are one of the main components responsible for the biological activity and toxicity of venoms. South American organisms such as scorpions, snakes, and spiders are important producers of a myriad of peptides with different biological activities. In this review, we report the main venom-derived peptide families produced from South American organisms and their corresponding activities and biological targets.


Assuntos
Neoplasias , Peçonhas , Animais , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Escorpiões/química , Peptídeos/farmacologia , Peptídeos/química , Neoplasias/tratamento farmacológico , Resistência Microbiana a Medicamentos
16.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33558318

RESUMO

Although antimicrobial resistance is an increasingly significant public health concern, there have only been two new classes of antibiotics approved for human use since the 1960s. Understanding the mechanisms of action of antibiotics is critical for novel antibiotic discovery, but novel approaches are needed that do not exclusively rely on experiments. Molecular dynamics simulation is a computational tool that uses simple models of the atoms in a system to discover nanoscale insights into the dynamic relationship between mechanism and biological function. Such insights can lay the framework for elucidating the mechanism of action and optimizing antibiotic templates. Antimicrobial peptides represent a promising solution to escalating antimicrobial resistance, given their lesser tendency to induce resistance than that of small-molecule antibiotics. Simulations of these agents have already revealed how they interact with bacterial membranes and the underlying physiochemical features directing their structure and function. In this minireview, we discuss how traditional molecular dynamics simulation works and its role and potential for the development of new antibiotic candidates with an emphasis on antimicrobial peptides.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Descoberta de Drogas , Simulação de Dinâmica Molecular , Proteínas Citotóxicas Formadoras de Poros/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Descoberta de Drogas/métodos , Humanos , Conformação Molecular , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Relação Estrutura-Atividade
17.
Crit Rev Biotechnol ; 41(1): 94-120, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33070659

RESUMO

Indwelling and implanted medical devices are subject to contamination by microbial pathogens during surgery, insertion or injection, and ongoing use, often resulting in severe nosocomial infections. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics to reduce the incidence of such infections, as they exhibit broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria, microbial biofilms, fungi, and viruses. In this review-perspective, we first provide an overview of the progress made in this field over the past decade with an emphasis on the local release of AMPs from implant surfaces and immobilization strategies for incorporating these agents into a wide range of medical device materials. We then provide a regulatory science perspective addressing the characterization and testing of AMP coatings based on the type of immobilization strategy used with a focus on the US market regulatory niche. Our goal is to help narrow the gulf between academic studies and preclinical testing, as well as to support a future literature base in order to develop the regulatory science of antimicrobial coatings.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Biofilmes , Equipamentos e Provisões , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Equipamentos e Provisões/microbiologia , Fungos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Legislação de Dispositivos Médicos/normas , Vírus/efeitos dos fármacos
18.
J Pept Sci ; 27(4): e3296, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33442881

RESUMO

VmCT1, a linear helical antimicrobial peptide isolated from the venom of the scorpion Vaejovis mexicanus, displays broad spectrum antimicrobial activity against bacteria, fungi, and protozoa. Analogs derived from this peptide containing single Arg-substitutions have been shown to increase antimicrobial and antiparasitic activities against Trypanossoma cruzi. Here, we tested these analogs against malaria, an infectious disease caused by Plasmodium protozoa, and assessed their antitumoral properties. Specifically, we tested VmCT1 synthetic variants [Arg]3 -VmCT1-NH2 , [Arg]7 -VmCT1-NH2 , and [Arg]11 -VmCT1-NH2 , against Plasmodium gallinaceum sporozoites and MCF-7 mammary cancer cells. Our screen identified peptides [Arg]3 -VmCT1-NH2 and [Arg]7 -VmCT1-NH2 as potent antiplasmodial agents (IC50 of 0.57 and 0.51 µmol L-1 , respectively), whereas [Arg]11 -VmCT1-NH2 did not show activity against P. gallinaceum sporozoites. Interestingly, all peptides presented activity against MCF-7 and displayed lower cytotoxicity toward healthy cells. We demonstrate that increasing the net positive charge of VmCT1, through arginine substitutions, modulates the biological properties of this peptide family yielding novel antiplasmodial and antitumoral molecules.


Assuntos
Antimaláricos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Malária/tratamento farmacológico , Plasmodium gallinaceum/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Animais , Antimaláricos/química , Antimaláricos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Parasitária , Venenos de Escorpião/química , Venenos de Escorpião/isolamento & purificação , Escorpiões
19.
Acta Haematol ; 144(3): 285-292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33238261

RESUMO

BACKGROUND: The addition of tyrosine kinase inhibitors (TKIs) to chemotherapy has dramatically improved outcomes of patients with Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL). When allogeneic hematopoietic stem cell transplant (HSCT) is performed, maintenance TKI is generally given for a fixed duration. However, the optimal duration of TKI outside of HSCT remains unknown, and the common practice is to continue indefinitely. Here, we report characteristics and outcomes of 9 patients treated with chemotherapy + TKI without HSCT and later discontinued TKI. METHODS: Among 188 patients with Ph-positive ALL who did not undergo HSCT, 9 of them discontinued maintenance TKI mainly due to side effects. Patients were closely monitored with serial PCR testing for the BCR-ABL1 transcript. Major molecular response (MMR) was defined as BCR-ABL1 transcript ≤0.1% on the international scale for p210 transcripts and a 3-log reduction from baseline for p190 transcripts. Deep molecular remission (DMR) was defined as the absence of quantifiable BCR-ABL1 transcripts with a sensitivity of 0.01%. Molecular relapse was defined as loss of MMR. Treatment-free remission (TFR) was defined from time of TKI discontinuation to molecular relapse, last follow-up, or death from any cause. RESULTS: At the time of TKI discontinuation, transcript level was undetected in 6 patients, <0.01% in 2 patients, and 0.01% in another patient. Prior to discontinuation, the median duration of TKI therapy and of DMR was 70 and 47 months, respectively. No morphological relapse occurred. Three patients (33%) had molecular relapse at a median of 6 months. All 3 resumed TKI therapy, and 2 of them regained DMR after a median of 13 months. After a median follow-up of 49 months, the median TFR was not reached, and the 4-year TFR rate was 65%. The median duration of DMR in patients with and without molecular relapse was 22 and 58 months, respectively (p = 0.096). CONCLUSION: TKI discontinuation outside of HSCT in Ph-positive ALL in the setting of compelling toxicity may be safe only among a highly selected group of patients with deep and prolonged DMR undergoing close and frequent monitoring. Validation of these findings in prospective clinical trials is highly needed.


Assuntos
Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Seguimentos , Proteínas de Fusão bcr-abl/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Inibidores de Proteínas Quinases/efeitos adversos , Recidiva , Indução de Remissão , Adulto Jovem
20.
Future Oncol ; 17(15): 1963-1971, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559505

RESUMO

The high incidence of head and neck cancer in Central America and the Caribbean, together with limitations in the healthcare system for patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN) in this region necessitate a consensus of opinion based on a review of the literature on therapy with cisplatin plus radiation. Such an approach will ensure appropriate selection of patients who can benefit from therapy and reduce the incidence of related adverse events. Therefore, we recorded the opinion of experts in the region in order to identify needs and challenges in the treatment of LA SCCHN.


Assuntos
Quimiorradioterapia/efeitos adversos , Cisplatino/efeitos adversos , Contraindicações de Medicamentos , Neoplasias de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Idoso , Região do Caribe/epidemiologia , América Central/epidemiologia , Quimiorradioterapia/métodos , Quimiorradioterapia/normas , Cisplatino/normas , Comorbidade , Consenso , Feminino , Neoplasias de Cabeça e Pescoço/epidemiologia , Humanos , Incidência , Masculino , Oncologia/normas , Oncologistas/estatística & dados numéricos , Seleção de Pacientes , Guias de Prática Clínica como Assunto , Carcinoma de Células Escamosas de Cabeça e Pescoço/epidemiologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA