Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(6): 2431-2442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38368618

RESUMO

PURPOSE: We report the design concept and fabrication of MRI phantoms, containing blocks of aligned microcapillaires that can be stacked into larger arrays to construct diameter distribution phantoms or fractured, to create a "powder-averaged" emulsion of randomly oriented blocks for vetting or calibrating advanced MRI methods, that is, diffusion tensor imaging, AxCaliber MRI, MAP-MRI, and multiple pulsed field gradient or double diffusion-encoded microstructure imaging methods. The goal was to create a susceptibility-matched microscopically anisotropic but macroscopically isotropic phantom with a ground truth diameter that could be used to vet advanced diffusion methods for diameter determination in fibrous tissues. METHODS: Two-photon polymerization, a novel three-dimensional printing method is used to fabricate blocks of capillaries. Double diffusion encoding methods were employed and analyzed to estimate the expected MRI diameter. RESULTS: Susceptibility-matched microcapillary blocks or modules that can be assembled into large-scale MRI phantoms have been fabricated and measured using advanced diffusion methods, resulting in microscopic anisotropy and random orientation. CONCLUSION: This phantom can vet and calibrate various advanced MRI methods and multiple pulsed field gradient or diffusion-encoded microstructure imaging methods. We demonstrated that two double diffusion encoding methods underestimated the ground truth diameter.


Assuntos
Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Capilares , Imagens de Fantasmas , Anisotropia , Impressão Tridimensional , Imagem de Difusão por Ressonância Magnética/métodos
2.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38385634

RESUMO

The study and modeling of water exchange in complex media using different applications of diffusion and relaxation magnetic resonance (MR) have been of interest in recent years. Most models attempt to describe this process using a first order kinetics expression, which is appropriate to describe chemical exchange; however, it may not be suitable to describe diffusion-driven exchange since it has no direct relationship to diffusion dynamics of water molecules. In this paper, these limitations are addressed through a more general exchange expression that does consider such important properties. This exchange fraction expression features a multi-exponential recovery at short times and a mono-exponential decay at long times, both of which are not captured by the first order kinetics expression. Furthermore, simplified exchange expressions containing partial information of the analyzed system's diffusion and relaxation processes and geometry are proposed, which can potentially be employed in already established estimation protocols. Finally, exchange fractions estimated from simulated MR data and derived here were compared, showing qualitative similarities but quantitative differences, suggesting that the features of the derived exchange fraction in this paper can be partially recovered by employing an existing estimation framework.

3.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548304

RESUMO

Real-time monitoring and quantitative measurement of molecular exchange between different microdomains are useful to characterize the local dynamics in porous media and biomedical applications of magnetic resonance. Diffusion exchange spectroscopy (DEXSY) is a noninvasive technique for such measurements. However, its application is largely limited by the involved long acquisition time and complex parameter estimation. In this study, we introduce a physics-guided deep neural network that accelerates DEXSY acquisition in a data-driven manner. The proposed method combines sampling pattern optimization and physical parameter estimation into a unified framework. Comprehensive simulations and experiments based on a two-site exchange system are conducted to demonstrate this new sampling optimization method in terms of accuracy, repeatability, and efficiency. This general framework can be adapted for other molecular exchange magnetic resonance measurements.

4.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37093135

RESUMO

The diffusion propagator fully characterizes the diffusion process, which is highly sensitive to the confining boundaries and the structure within enclosed pores. While magnetic resonance has extensively been used to observe various features of the diffusion process, its full characterization has been elusive. Here, we address this challenge by employing a special sequence of magnetic field gradient pulses for measuring the diffusion propagator, which allows for "listening to the drum," mapping structural dispersity, and determining not only the pore's shape but also diffusive dynamics within it.

5.
Neuroimage ; 247: 118831, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923129

RESUMO

Transmembrane water exchange is a potential biomarker in the diagnosis and understanding of cancers, brain disorders, and other diseases. Filter-exchange imaging (FEXI), a special case of diffusion exchange spectroscopy adapted for clinical applications, has the potential to reveal different physiological water exchange processes. However, it is still controversial whether modulating the diffusion encoding gradient direction can affect the apparent exchange rate (AXR) measurements of FEXI in white matter (WM) where water diffusion shows strong anisotropy. In this study, we explored the diffusion-encoding direction dependence of FEXI in human brain white matter by performing FEXI with 20 diffusion-encoding directions on a clinical 3T scanner in-vivo. The results show that the AXR values measured when the gradients are perpendicular to the fiber orientation (0.77 ± 0.13 s - 1, mean ± standard deviation of all the subjects) are significantly larger than the AXR estimates when the gradients are parallel to the fiber orientation (0.33 ± 0.14 s - 1, p < 0.001) in WM voxels with coherently-orientated fibers. In addition, no significant correlation is found between AXRs measured along these two directions, indicating that they are measuring different water exchange processes. What's more, only the perpendicular AXR rather than the parallel AXR shows dependence on axonal diameter, indicating that the perpendicular AXR might reflect transmembrane water exchange between intra-axonal and extra-cellular spaces. Further finite difference (FD) simulations having three water compartments (intra-axonal, intra-glial, and extra-cellular spaces) to mimic WM micro-environments also suggest that the perpendicular AXR is more sensitive to the axonal water transmembrane exchange than parallel AXR. Taken together, our results show that AXR measured along different directions could be utilized to probe different water exchange processes in WM.


Assuntos
Água Corporal/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/metabolismo , Substância Branca/ultraestrutura , Anisotropia , Permeabilidade da Membrana Celular , Humanos
6.
Neuroimage ; 238: 118198, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029738

RESUMO

Q-space trajectory imaging (QTI) enables the estimation of useful scalar measures indicative of the local tissue structure. This is accomplished by employing generalized gradient waveforms for diffusion sensitization alongside a diffusion tensor distribution (DTD) model. The first two moments of the underlying DTD are made available by acquisitions at low diffusion sensitivity (b-values). Here, we show that three independent conditions have to be fulfilled by the mean and covariance tensors associated with distributions of symmetric positive semidefinite tensors. We introduce an estimation framework utilizing semi-definite programming (SDP) to guarantee that these conditions are met. Applying the framework on simulated signal profiles for diffusion tensors distributed according to non-central Wishart distributions demonstrates the improved noise resilience of QTI+ over the commonly employed estimation methods. Our findings on a human brain data set also reveal pronounced improvements, especially so for acquisition protocols featuring few number of volumes. Our method's robustness to noise is expected to not only improve the accuracy of the estimates, but also enable a meaningful interpretation of contrast in the derived scalar maps. The technique's performance on shorter acquisitions could make it feasible in routine clinical practice.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
7.
Neuroimage ; 240: 118367, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237442

RESUMO

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.


Assuntos
Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Animais , Encéfalo/fisiologia , Humanos , Camundongos
8.
Neuroimage ; 209: 116405, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846758

RESUMO

In this work we investigate the use of sum of squares constraints for various diffusion-weighted MRI models, with a goal of enforcing strict, global non-negativity of the diffusion propagator. We formulate such constraints for the mean apparent propagator model and for spherical deconvolution, guaranteeing strict non-negativity of the corresponding diffusion propagators. For the cumulant expansion similar constraints cannot exist, and we instead derive a set of auxiliary constraints that are necessary but not sufficient to guarantee non-negativity. These constraints can all be verified and enforced at reasonable computational costs using semidefinite programming. By verifying our constraints on standard reconstructions of the different models, we show that currently used weak constraints are largely ineffective at ensuring non-negativity. We further show that if strict non-negativity is not enforced then estimated model parameters may suffer from significant errors, leading to serious inaccuracies in important derived quantities such as the main fiber orientations, mean kurtosis, etc. Finally, our experiments confirm that the observed constraint violations are mostly due to measurement noise, which is difficult to mitigate and suggests that properly constrained optimization should currently be considered the norm in many cases.


Assuntos
Imagem de Difusão por Ressonância Magnética/normas , Modelos Teóricos , Neuroimagem/normas , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Imagem de Tensor de Difusão/normas , Humanos , Neuroimagem/métodos
9.
NMR Biomed ; 32(4): e3939, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30011138

RESUMO

The contrast in diffusion-weighted MR images is due to variations of diffusion properties within the examined specimen. Certain microstructural information on the underlying tissues can be inferred through quantitative analyses of the diffusion-sensitized MR signals. In the first part of the paper, we review two types of approach for characterizing diffusion MRI signals: Bloch's equations with diffusion terms, and statistical descriptions. Specifically, we discuss expansions in terms of cumulants and orthogonal basis functions, the confinement tensor formalism and tensor distribution models. Further insights into the tissue properties may be obtained by integrating diffusion MRI with other techniques, which is the subject of the second part of the paper. We review examples involving magnetic susceptibility, structural tensors, internal field gradients, transverse relaxation and functional MRI. Integrating information provided by other imaging modalities (MR based or otherwise) could be a key to improve our understanding of how diffusion MRI relates to physiology and biology.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Multimodal , Especificidade de Órgãos , Anisotropia , Humanos , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador
10.
Neuroimage ; 175: 272-285, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29604453

RESUMO

Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.


Assuntos
Encéfalo/diagnóstico por imagem , Interpretação Estatística de Dados , Imagem de Difusão por Ressonância Magnética/métodos , Modelos Teóricos , Teorema de Bayes , Simulação por Computador , Imagem de Tensor de Difusão/métodos , Humanos , Modelos Lineares , Incerteza
11.
Neuroimage ; 146: 452-473, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27751940

RESUMO

Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons.


Assuntos
Axônios , Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Difusão , Humanos , Processamento de Imagem Assistida por Computador
12.
Magn Reson Med ; 78(5): 1767-1780, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28090658

RESUMO

PURPOSE: This study was a systematic evaluation across different and prominent diffusion MRI models to better understand the ways in which scalar metrics are influenced by experimental factors, including experimental design (diffusion-weighted imaging [DWI] sampling) and noise. METHODS: Four diffusion MRI models-diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent propagator MRI (MAP-MRI), and neurite orientation dispersion and density imaging (NODDI)-were evaluated by comparing maps and histogram values of the scalar metrics generated using DWI datasets obtained in fixed mouse brain with different noise levels and DWI sampling complexity. Additionally, models were fit with different input parameters or constraints to examine the consequences of model fitting procedures. RESULTS: Experimental factors affected all models and metrics to varying degrees. Model complexity influenced sensitivity to DWI sampling and noise, especially for metrics reporting non-Gaussian information. DKI metrics were highly susceptible to noise and experimental design. The influence of fixed parameter selection for the NODDI model was found to be considerable, as was the impact of initial tensor fitting in the MAP-MRI model. CONCLUSION: Across DTI, DKI, MAP-MRI, and NODDI, a wide range of dependence on experimental factors was observed that elucidate principles and practical implications for advanced diffusion MRI. Magn Reson Med 78:1767-1780, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem/métodos , Animais , Masculino , Camundongos , Modelos Teóricos , Água
13.
J Chem Phys ; 146(12): 124201, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28388135

RESUMO

We consider diffusion within pores with general shapes in the presence of spatially linear magnetic field profiles. The evolution of local magnetization of the spin bearing particles can be described by the Bloch-Torrey equation. We study the diffusive process in the eigenbasis of the non-Hermitian Bloch-Torrey operator. It is possible to find expressions for some special temporal gradient waveforms employed to sensitize the nuclear magnetic resonance (NMR) signal to diffusion. For more general gradient waveforms, we derive an efficient numerical solution by introducing a novel matrix formalism. Compared to previous methods, this new approach requires a fewer number of eigenfunctions to achieve the same accuracy. This shows that these basis functions are better suited to the problem studied. The new framework could provide new important insights into the fundamentals of diffusion sensitization, which could further the development of the field of NMR.

14.
Neuroimage ; 127: 422-434, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26584864

RESUMO

Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our ability to perform whole-brain fiber tractography. Reconstructions from subsampled data sets suggest that MAP MRI parameters can be computed from a relatively small number of DWIs acquired with high b-value and good signal-to-noise ratio in clinically achievable scan durations of less than 10min. The neuroanatomical consistency across healthy subjects and reproducibility in test-retest experiments of MAP MRI microstructural parameters further substantiate the robustness and clinical feasibility of this technique. The MAP MRI metrics could potentially provide more sensitive clinical biomarkers with increased pathophysiological specificity compared to microstructural measures derived using conventional diffusion MRI techniques.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino
15.
Neuroimage ; 135: 345-62, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26923372

RESUMO

This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor distribution (DTD) model, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework enables microstructure modeling that is not possible with the traditional pulsed gradient encoding as introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination of the sizes, shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally invariant scalar quantities describing intuitive microstructural features including size, shape, and orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study of complex tissue architecture.


Assuntos
Algoritmos , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Esquizofrenia/patologia , Processamento de Sinais Assistido por Computador , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Estudos de Viabilidade , Humanos , Reprodutibilidade dos Testes , Esquizofrenia/diagnóstico por imagem , Sensibilidade e Especificidade , Substância Branca/diagnóstico por imagem
16.
Magn Reson Med ; 75(1): 82-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26418050

RESUMO

Stejskal and Tanner's ingenious pulsed field gradient design from 1965 has made diffusion NMR and MRI the mainstay of most studies seeking to resolve microstructural information in porous systems in general and biological systems in particular. Methods extending beyond Stejskal and Tanner's design, such as double diffusion encoding (DDE) NMR and MRI, may provide novel quantifiable metrics that are less easily inferred from conventional diffusion acquisitions. Despite the growing interest on the topic, the terminology for the pulse sequences, their parameters, and the metrics that can be derived from them remains inconsistent and disparate among groups active in DDE. Here, we present a consensus of those groups on terminology for DDE sequences and associated concepts. Furthermore, the regimes in which DDE metrics appear to provide microstructural information that cannot be achieved using more conventional counterparts (in a model-free fashion) are elucidated. We highlight in particular DDE's potential for determining microscopic diffusion anisotropy and microscopic fractional anisotropy, which offer metrics of microscopic features independent of orientation dispersion and thus provide information complementary to the standard, macroscopic, fractional anisotropy conventionally obtained by diffusion MR. Finally, we discuss future vistas and perspectives for DDE.


Assuntos
Imageamento por Ressonância Magnética/classificação , Imageamento por Ressonância Magnética/normas , Espectroscopia de Ressonância Magnética/classificação , Espectroscopia de Ressonância Magnética/normas , Processamento de Sinais Assistido por Computador , Terminologia como Assunto , Guias como Assunto
17.
NMR Biomed ; 28(11): 1550-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26434812

RESUMO

Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present symmetrized double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth cumulant (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics, and act as a novel source of contrast to better resolve tissue micro-structure.


Assuntos
Asparagus/química , Imagem de Difusão por Ressonância Magnética/métodos , Difusão , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Modelos Estatísticos , Algoritmos , Simulação por Computador , Modelos Químicos , Distribuição Normal , Permeabilidade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Neuroimage ; 64: 229-39, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22939872

RESUMO

We report our design and implementation of a quadruple pulsed-field gradient (qPFG) diffusion MRI pulse sequence on a whole-body clinical scanner and demonstrate its ability to non-invasively detect restriction-induced microscopic anisotropy in human brain tissue. The microstructural information measured using qPFG diffusion MRI in white matter complements that provided by diffusion tensor imaging (DTI) and exclusively characterizes diffusion of water trapped in microscopic compartments with unique measures of average cell geometry. We describe the effect of white matter fiber orientation on the expected MR signal and highlight the importance of incorporating such information in the axon diameter measurement using a suitable mathematical framework. Integration of qPFG diffusion-weighted images (DWI) with fiber orientations measured using high-resolution DTI allows the estimation of average axon diameters in the corpus callosum of healthy human volunteers. Maps of inter-hemispheric average axon diameters reveal an anterior-posterior variation in good topographical agreement with anatomical measurements reported in previous post-mortem studies. With further technical refinements and additional clinical validation, qPFG diffusion MRI could provide a quantitative whole-brain histological assessment of white and gray matter, enabling a wide range of neuroimaging applications for improved diagnosis of neurodegenerative pathologies, monitoring neurodevelopmental processes, and mapping brain connectivity.


Assuntos
Encéfalo/citologia , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Anisotropia , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Neuroimage ; 78: 16-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23587694

RESUMO

Diffusion-weighted magnetic resonance (MR) signals reflect information about underlying tissue microstructure and cytoarchitecture. We propose a quantitative, efficient, and robust mathematical and physical framework for representing diffusion-weighted MR imaging (MRI) data obtained in "q-space," and the corresponding "mean apparent propagator (MAP)" describing molecular displacements in "r-space." We also define and map novel quantitative descriptors of diffusion that can be computed robustly using this MAP-MRI framework. We describe efficient analytical representation of the three-dimensional q-space MR signal in a series expansion of basis functions that accurately describes diffusion in many complex geometries. The lowest order term in this expansion contains a diffusion tensor that characterizes the Gaussian displacement distribution, equivalent to diffusion tensor MRI (DTI). Inclusion of higher order terms enables the reconstruction of the true average propagator whose projection onto the unit "displacement" sphere provides an orientational distribution function (ODF) that contains only the orientational dependence of the diffusion process. The representation characterizes novel features of diffusion anisotropy and the non-Gaussian character of the three-dimensional diffusion process. Other important measures this representation provides include the return-to-the-origin probability (RTOP), and its variants for diffusion in one- and two-dimensions-the return-to-the-plane probability (RTPP), and the return-to-the-axis probability (RTAP), respectively. These zero net displacement probabilities measure the mean compartment (pore) volume and cross-sectional area in distributions of isolated pores irrespective of the pore shape. MAP-MRI represents a new comprehensive framework to model the three-dimensional q-space signal and transform it into diffusion propagators. Experiments on an excised marmoset brain specimen demonstrate that MAP-MRI provides several novel, quantifiable parameters that capture previously obscured intrinsic features of nervous tissue microstructure. This should prove helpful for investigating the functional organization of normal and pathologic nervous tissue.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Modelos Teóricos , Animais , Callithrix , Interpretação de Imagem Assistida por Computador
20.
Brain Commun ; 5(6): fcad284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953843

RESUMO

There is mounting evidence of the long-term effects of COVID-19 on the central nervous system, with patients experiencing diverse symptoms, often suggesting brain involvement. Conventional brain MRI of these patients shows unspecific patterns, with no clear connection of the symptomatology to brain tissue abnormalities, whereas diffusion tensor studies and volumetric analyses detect measurable changes in the brain after COVID-19. Diffusion MRI exploits the random motion of water molecules to achieve unique sensitivity to structures at the microscopic level, and new sequences employing generalized diffusion encoding provide structural information which are sensitive to intravoxel features. In this observational study, a total of 32 persons were investigated: 16 patients previously hospitalized for COVID-19 with persisting symptoms of post-COVID condition (mean age 60 years: range 41-79, all male) at 7-month follow-up and 16 matched controls, not previously hospitalized for COVID-19, with no post-COVID symptoms (mean age 58 years, range 46-69, 11 males). Standard MRI and generalized diffusion encoding MRI were employed to examine the brain white matter of the subjects. To detect possible group differences, several tissue microstructure descriptors obtainable with the employed diffusion sequence, the fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, microscopic anisotropy, orientational coherence (Cc) and variance in compartment's size (CMD) were analysed using the tract-based spatial statistics framework. The tract-based spatial statistics analysis showed widespread statistically significant differences (P < 0.05, corrected for multiple comparisons using the familywise error rate) in all the considered metrics in the white matter of the patients compared to the controls. Fractional anisotropy, microscopic anisotropy and Cc were lower in the patient group, while axial diffusivity, radial diffusivity, mean diffusivity and CMD were higher. Significant changes in fractional anisotropy, microscopic anisotropy and CMD affected approximately half of the analysed white matter voxels located across all brain lobes, while changes in Cc were mainly found in the occipital parts of the brain. Given the predominant alteration in microscopic anisotropy compared to Cc, the observed changes in diffusion anisotropy are mostly due to loss of local anisotropy, possibly connected to axonal damage, rather than white matter fibre coherence disruption. The increase in radial diffusivity is indicative of demyelination, while the changes in mean diffusivity and CMD are compatible with vasogenic oedema. In summary, these widespread alterations of white matter microstructure are indicative of vasogenic oedema, demyelination and axonal damage. These changes might be a contributing factor to the diversity of central nervous system symptoms that many patients experience after COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA