Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(23): 4249-4251, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368302

RESUMO

In this issue of Cell, Xie et al. identify a gut-to-brain pathway that triggers retching after toxic food ingestion or emetic agent administration. Their results shed light on how peripheral signals reach the brain to orchestrate appropriate behavioral responses and facilitate learning to prevent repeated ingestion of harmful substances.


Assuntos
Intestinos , Vômito , Humanos , Vômito/prevenção & controle
2.
Cell ; 185(24): 4621-4633.e17, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36368323

RESUMO

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.


Assuntos
Dor Crônica , Transcriptoma , Camundongos , Animais , DNA , RNA , Géis
3.
Cell ; 177(5): 1293-1307.e16, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031008

RESUMO

The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.


Assuntos
Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Neurônios/metabolismo , Fases do Sono/fisiologia , Animais , Colecistocinina/metabolismo , Hipotálamo/citologia , Mesencéfalo/citologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Optogenética
4.
Cell ; 162(2): 363-374, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186190

RESUMO

Animals learn to avoid harmful situations by associating a neutral stimulus with a painful one, resulting in a stable threat memory. In mammals, this form of learning requires the amygdala. Although pain is the main driver of aversive learning, the mechanism that transmits pain signals to the amygdala is not well resolved. Here, we show that neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus are critical for relaying pain signals to the central nucleus of amygdala and that this pathway may transduce the affective motivational aspects of pain. Genetic silencing of CGRP neurons blocks pain responses and memory formation, whereas their optogenetic stimulation produces defensive responses and a threat memory. The pain-recipient neurons in the central amygdala expressing CGRP receptors are also critical for establishing a threat memory. The identification of the neural circuit conveying affective pain signals may be pertinent for treating pain conditions with psychiatric comorbidities.


Assuntos
Tonsila do Cerebelo/fisiologia , Vias Neurais , Neurônios/fisiologia , Dor/fisiopatologia , Animais , Comportamento Animal , Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Condicionamento Psicológico , Aprendizagem , Núcleos Parabraquiais/fisiologia , Precursores de Proteínas/genética
5.
Cell ; 157(6): 1292-1308, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906148

RESUMO

Beige fat, which expresses the thermogenic protein UCP1, provides a defense against cold and obesity. Although a cold environment is the physiologic stimulus for inducing beige fat in mice and humans, the events that lead from the sensing of cold to the development of beige fat remain poorly understood. Here, we identify the efferent beige fat thermogenic circuit, consisting of eosinophils, type 2 cytokines interleukin (IL)-4/13, and alternatively activated macrophages. Genetic loss of eosinophils or IL-4/13 signaling impairs cold-induced biogenesis of beige fat. Mechanistically, macrophages recruited to cold-stressed subcutaneous white adipose tissue (scWAT) undergo alternative activation to induce tyrosine hydroxylase expression and catecholamine production, factors required for browning of scWAT. Conversely, administration of IL-4 to thermoneutral mice increases beige fat mass and thermogenic capacity to ameliorate pre-established obesity. Together, our findings have uncovered the efferent circuit controlling biogenesis of beige fat and provide support for its targeting to treat obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Eosinófilos/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Adipócitos Marrons/metabolismo , Animais , Catecolaminas/metabolismo , Temperatura Baixa , Interleucina-13/genética , Interleucina-4/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Obesidade/metabolismo , Receptores CCR2/metabolismo , Fator de Transcrição STAT6/metabolismo , Termogênese
6.
Nature ; 594(7863): 403-407, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040259

RESUMO

Adaptive behaviour necessitates the formation of memories for fearful events, but also that these memories can be extinguished. Effective extinction prevents excessive and persistent reactions to perceived threat, as can occur in anxiety and 'trauma- and stressor-related' disorders1. However, although there is evidence that fear learning and extinction are mediated by distinct neural circuits, the nature of the interaction between these circuits remains poorly understood2-6. Here, through a combination of in vivo calcium imaging, functional manipulations, and slice physiology, we show that distinct inhibitory clusters of intercalated neurons (ITCs) in the mouse amygdala exert diametrically opposed roles during the acquisition and retrieval of fear extinction memory. Furthermore, we find that the ITC clusters antagonize one another through mutual synaptic inhibition and differentially access functionally distinct cortical- and midbrain-projecting amygdala output pathways. Our findings show that the balance of activity between ITC clusters represents a unique regulatory motif that orchestrates a distributed neural circuitry, which in turn regulates the switch between high- and low-fear states. These findings suggest that the ITCs have a broader role in a range of amygdala functions and associated brain states that underpins the capacity to adapt to salient environmental demands.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Estimulação Acústica , Animais , Aprendizagem da Esquiva , Condicionamento Clássico , Extinção Psicológica , Feminino , Masculino , Camundongos , Inibição Neural , Neurônios/fisiologia
7.
Proc Natl Acad Sci U S A ; 120(44): e2304933120, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37847729

RESUMO

Travel can induce motion sickness (MS) in susceptible individuals. MS is an evolutionary conserved mechanism caused by mismatches between motion-related sensory information and past visual and motion memory, triggering a malaise accompanied by hypolocomotion, hypothermia, hypophagia, and nausea. Vestibular nuclei (VN) are critical for the processing of movement input from the inner ear. Motion-induced activation of VN neurons recapitulates MS-related signs. However, the genetic identity of VN neurons mediating MS-related autonomic and aversive responses remains unknown. Here, we identify a central role of cholecystokinin (CCK)-expressing VN neurons in motion-induced malaise. Moreover, we show that CCK VN inputs onto the parabrachial nucleus activate Calca-expressing neurons and are sufficient to establish avoidance to novel food, which is prevented by CCK-A receptor antagonism. These observations provide greater insight into the neurobiological regulation of MS by identifying the neural substrates of MS and providing potential targets for treatment.


Assuntos
Enjoo devido ao Movimento , Vestíbulo do Labirinto , Animais , Camundongos , Movimento , Neurônios/fisiologia , Núcleos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiologia
8.
Cell ; 137(7): 1225-34, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563755

RESUMO

Neurons in the arcuate nucleus that produce AgRP, NPY, and GABA (AgRP neurons) promote feeding. Ablation of AgRP neurons in adult mice results in Fos activation in postsynaptic neurons and starvation. Loss of GABA is implicated in starvation because chronic subcutaneous delivery of bretazenil (a GABA(A) receptor partial agonist) suppresses Fos activation and maintains feeding during ablation of AgRP neurons. Moreover, under these conditions, direct delivery of bretazenil into the parabrachial nucleus (PBN), a direct target of AgRP neurons that also relays gustatory and visceral sensory information, is sufficient to maintain feeding. Conversely, inactivation of GABA biosynthesis in the ARC or blockade of GABA(A) receptors in the PBN of mice promote anorexia. We suggest that activation of the PBN by AgRP neuron ablation or gastrointestinal malaise inhibits feeding. Chronic delivery of bretazenil during loss of AgRP neurons provides time to establish compensatory mechanisms that eventually allow mice to eat.


Assuntos
Anorexia/fisiopatologia , Neurônios/metabolismo , Rombencéfalo/metabolismo , Transdução de Sinais , Inanição/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Astrócitos/metabolismo , Agonistas de Receptores de GABA-A , Glutamato Descarboxilase , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo
9.
Nature ; 555(7698): 617-622, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562230

RESUMO

Animals must respond to various threats to survive. Neurons that express calcitonin gene-related peptide in the parabrachial nucleus (CGRPPBN neurons) relay sensory signals that contribute to satiation and pain-induced fear behaviour, but it is unclear how they encode these distinct processes. Here, by recording calcium transients in vivo from individual neurons in mice, we show that most CGRPPBN neurons are activated by noxious cutaneous (shock, heat, itch) and visceral stimuli (lipopolysaccharide). The same neurons are inhibited during feeding, but become activated during satiation, consistent with evidence that CGRPPBN neurons prevent overeating. CGRPPBN neurons are also activated during consumption of novel foods or by an auditory cue that has previously been paired with electrical footshocks. Correspondingly, silencing of CGRPPBN neurons attenuates the expression of food neophobia and conditioned fear responses. Therefore, in addition to transducing primary sensory danger signals, CGRPPBN neurons promote affective-behavioural states that limit harm in response to potential threats.


Assuntos
Aprendizagem da Esquiva/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Medo/fisiologia , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Animais , Sinalização do Cálcio , Condicionamento Clássico/fisiologia , Dieta Hiperlipídica , Eletrochoque , Medo/psicologia , Resposta ao Choque Térmico , Lipopolissacarídeos/farmacologia , Masculino , Rememoração Mental/fisiologia , Camundongos , Dor/psicologia , Núcleos Parabraquiais/fisiologia , Prurido , Resposta de Saciedade/fisiologia
10.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593916

RESUMO

The TGFß cytokine family member, GDF-15, reduces food intake and body weight and represents a potential treatment for obesity. Because the brainstem-restricted expression pattern of its receptor, GDNF Family Receptor α-like (GFRAL), presents an exciting opportunity to understand mechanisms of action for area postrema neurons in food intake; we generated GfralCre and conditional GfralCreERT mice to visualize and manipulate GFRAL neurons. We found infection or pathophysiologic states (rather than meal ingestion) stimulate GFRAL neurons. TRAP-Seq analysis of GFRAL neurons revealed their expression of a wide range of neurotransmitters and neuropeptides. Artificially activating GfralCre -expressing neurons inhibited feeding, decreased gastric emptying, and promoted a conditioned taste aversion (CTA). GFRAL neurons most strongly innervate the parabrachial nucleus (PBN), where they target CGRP-expressing (CGRPPBN) neurons. Silencing CGRPPBN neurons abrogated the aversive and anorexic effects of GDF-15. These findings suggest that GFRAL neurons link non-meal-associated pathophysiologic signals to suppress nutrient uptake and absorption.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Neurônios/fisiologia , Núcleos Parabraquiais/fisiologia , Animais , Peso Corporal , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Núcleos Parabraquiais/efeitos dos fármacos , Ratos , Ratos Long-Evans
11.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074761

RESUMO

Opioid-induced respiratory depression (OIRD) causes death following an opioid overdose, yet the neurobiological mechanisms of this process are not well understood. Here, we show that neurons within the lateral parabrachial nucleus that express the µ-opioid receptor (PBL Oprm1 neurons) are involved in OIRD pathogenesis. PBL Oprm1 neuronal activity is tightly correlated with respiratory rate, and this correlation is abolished following morphine injection. Chemogenetic inactivation of PBL Oprm1 neurons mimics OIRD in mice, whereas their chemogenetic activation following morphine injection rescues respiratory rhythms to baseline levels. We identified several excitatory G protein-coupled receptors expressed by PBL Oprm1 neurons and show that agonists for these receptors restore breathing rates in mice experiencing OIRD. Thus, PBL Oprm1 neurons are critical for OIRD pathogenesis, providing a promising therapeutic target for treating OIRD in patients.


Assuntos
Analgésicos Opioides/efeitos adversos , Morfina/efeitos adversos , Neurônios/metabolismo , Receptores Opioides mu/metabolismo , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/metabolismo , Analgésicos Opioides/farmacologia , Animais , Camundongos , Camundongos Transgênicos , Morfina/administração & dosagem , Morfina/farmacologia , Neurônios/patologia , Receptores Opioides mu/genética , Insuficiência Respiratória/genética , Insuficiência Respiratória/patologia
12.
Proc Natl Acad Sci U S A ; 117(34): 20874-20880, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32764144

RESUMO

Maintaining energy homeostasis requires coordinating physiology and behavior both on an acute timescale to adapt to rapid fluctuations in caloric intake and on a chronic timescale to regulate body composition. Hypothalamic agouti-related peptide (AgRP)-expressing neurons are acutely activated by caloric need, and this acute activation promotes increased food intake and decreased energy expenditure. On a longer timescale, AgRP neurons exhibit chronic hyperactivity under conditions of obesity and high dietary fat consumption, likely due to leptin resistance; however, the behavioral and metabolic effects of chronic AgRP neuronal hyperactivity remain unexplored. Here, we use chemogenetics to manipulate Gq signaling in AgRP neurons in mice to explore the hypothesis that chronic activation of AgRP neurons promotes obesity. Inducing chronic Gq signaling in AgRP neurons initially increased food intake and caused dramatic weight gain, in agreement with published data; however, food intake returned to baseline levels within 1 wk, and body weight returned to baseline levels within 60 d. Additionally, we found that, when mice had elevated body weight due to chronic Gq signaling in AgRP neurons, energy expenditure was not altered but adiposity and lipid metabolism were both increased, even under caloric restriction. These findings reveal that the metabolic and behavioral effects of chronic Gq signaling in AgRP neurons are distinct from the previously reported effects of acute Gq signaling and also of leptin insensitivity.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Obesidade/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal , Restrição Calórica , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Homeostase/efeitos dos fármacos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/fisiopatologia , Transdução de Sinais , Aumento de Peso/efeitos dos fármacos
13.
Mol Psychiatry ; 26(7): 2837-2853, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33767348

RESUMO

The high comorbidity between obesity and mental disorders, such as depression and anxiety, often exacerbates metabolic and neurological symptoms significantly. However, neural mechanisms that underlie reciprocal control of feeding and mental states are largely elusive. Here we report that melanocortin 4 receptor (MC4R) neurons located in the dorsal bed nucleus of the stria terminus (dBNST) engage in the regulation of mentally associated weight gain by receiving GABAergic projections from hypothalamic AgRP neurons onto α5-containing GABAA receptors and serotonergic afferents onto 5-HT3 receptors. Chronic treatment with a high-fat diet (HFD) significantly blunts the hyperexcitability of AgRP neurons in response to not only hunger but also anxiety and depression-like stimuli. Such HFD-mediated desensitization reduces GABAergic outputs from AgRP neurons to downstream MC4RdBNST neurons, resulting in severe mental dysregulation. Genetic enhancement of the GABAAR-α5 or suppression of the 5-HT3R within the MC4RdBNST neurons not only abolishes HFD-induced anxiety and depression but also robustly reduces body weight by suppression of food intake. To gain further translational insights, we revealed that combined treatment of zonisamide (enhancing the GABAAR-α5 signaling) and granisetron (a selective 5-HT3R antagonist) alleviates mental dysfunction and yields a robust reversal of diet-induced obesity by reducing total calorie intake and altering food preference towards a healthy low-fat diet. Our results unveil a neural mechanism for reciprocal control of appetite and mental states, which culminates in a novel zonisamide-granisetron cocktail therapy for potential tackling the psychosis-obesity comorbidity.


Assuntos
Transtorno Depressivo , Serotonina , Proteína Relacionada com Agouti , Ansiedade , Depressão , Humanos , Obesidade , Ácido gama-Aminobutírico
14.
Mol Psychiatry ; 26(6): 2187-2199, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32099099

RESUMO

Excessive alcohol drinking has been shown to modify brain circuitry to predispose individuals for future alcohol abuse. Previous studies have implicated the central nucleus of the amygdala (CeA) as an important site for mediating the somatic symptoms of withdrawal and for regulating alcohol intake. In addition, recent work has established a role for both the Kappa Opioid Receptor (KOR) and its endogenous ligand dynorphin in mediating these processes. However, it is unclear whether these effects are due to dynorphin or KOR arising from within the CeA itself or other input brain regions. To directly examine the role of preprodynorphin (PDYN) and KOR expression in CeA neurons, we performed region-specific conditional knockout of these genes and assessed the effects on the Drinking in the Dark (DID) and Intermittent Access (IA) paradigms. Conditional gene knockout resulted in sex-specific responses wherein PDYN knockout decreased alcohol drinking in both male and female mice, whereas KOR knockout decreased drinking in males only. We also found that neither PDYN nor KOR knockout protected against anxiety caused by alcohol drinking. Lastly, a history of alcohol drinking did not alter synaptic transmission in PDYN neurons in the CeA of either sex, but excitability of PDYN neurons was increased in male mice only. Taken together, our findings indicate that PDYN and KOR signaling in the CeA plays an important role in regulating excessive alcohol consumption and highlight the need for future studies to examine how this is mediated through downstream effector regions.


Assuntos
Alcoolismo , Núcleo Central da Amígdala , Consumo de Bebidas Alcoólicas/genética , Animais , Núcleo Central da Amígdala/metabolismo , Dinorfinas/genética , Dinorfinas/metabolismo , Feminino , Masculino , Camundongos , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo
15.
Trends Genet ; 34(5): 333-340, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29336844

RESUMO

The Cre-lox recombination approach is commonly used to generate cell-specific gene inactivation (or activation). We have noticed that the breeding and genotyping sections of papers utilizing Cre-lox techniques are frequently incomplete. While seemingly straightforward, there are important considerations that need to be implemented in the breeding and genotyping methods to prevent the introduction of experimental confounds. Germline recombination and transient expression of Cre recombinase during development are some examples of the complications that can occur, and conventional genotyping methods may fail to identify these events. In this opinion article, we highlight the importance of testing for unexpected recombination events, suggest strategies to isolate and minimize adverse recombination events, and encourage editors and reviewers to expect more definitive statements regarding the validation of genotyping.


Assuntos
Desenvolvimento Embrionário/genética , Integrases/genética , Recombinação Genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos/genética
16.
Eur J Neurosci ; 54(3): 4934-4952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216157

RESUMO

Activation of cannabinoid 1 receptors (CB1 R) modulates multiple behaviours, including exploration, motor coordination and response to psychostimulants. It is known that CB1 R expressed by either excitatory or inhibitory neurons mediates different behavioural responses to CB1 R activation, yet the involvement of CB1 R expressed by medium spiny neurons (MSNs), the neuronal subpopulation that expresses the highest level of CB1 R in the CNS, remains unknown. We report a new genetically modified mouse line that expresses functional CB1 R in MSN on a CB1 R knockout (KO) background (CB1 R(MSN) mice). The absence of cannabimimetic responses measured in CB1 R KO mice was not rescued in CB1 R(MSN) mice, nor was decreased spontaneous locomotion, impaired instrumental behaviour or reduced amphetamine-triggered hyperlocomotion measured in CB1 R KO mice. Significantly, reduced novel environment exploration of an open field and absence of amphetamine sensitization (AS) measured in CB1 R KO mice were fully rescued in CB1 R(MSN) mice. Impaired motor coordination in CB1 R KO mice measured on the Rotarod was partially rescued in CB1 R(MSN) mice. Thus, CB1 R expressed by MSN control exploration, motor coordination, and AS. Our study demonstrates a new functional roles for cell specific CB1 R expression and their causal link in the control of specific behaviors.


Assuntos
Anfetamina , Canabinoides , Corpo Estriado , Receptor CB1 de Canabinoide , Anfetamina/farmacologia , Animais , Camundongos , Camundongos Knockout , Neurônios , Receptor CB1 de Canabinoide/genética
17.
Nature ; 519(7544): 455-9, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25600269

RESUMO

Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behaviour. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors. However, the role of the PVT in the establishment of adaptive behavioural responses remains unclear. Here we show in mice that the PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear-conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM(+)) CeL neurons, which has previously been shown to store fear memory. Consistently, we found that PVT neurons preferentially innervate SOM(+) neurons in the CeL, and stimulation of PVT afferents facilitated SOM(+) neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression. Notably, PVT modulation of SOM(+) CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in the PVT or Trkb in SOM(+) CeL neurons impaired fear conditioning, while infusion of BDNF into the CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT-CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behaviour.


Assuntos
Núcleo Central da Amígdala/fisiologia , Medo/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Núcleo Central da Amígdala/citologia , Condicionamento Psicológico/fisiologia , Medo/psicologia , Feminino , Masculino , Memória/fisiologia , Camundongos , Vias Neurais/citologia , Plasticidade Neuronal , Neurônios/metabolismo , Receptor trkB/metabolismo , Somatostatina/metabolismo , Tálamo/citologia , Fatores de Tempo
18.
J Neuroinflammation ; 17(1): 304, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059703

RESUMO

BACKGROUND: Interleukin-6 (IL-6) is a pleiotropic cytokine that controls numerous physiological processes both in basal and neuroinflammatory conditions, including the inflammatory response to experimental autoimmune encephalomyelitis (EAE). IL-6 is produced by multiple peripheral and central cells, and until now, the putative roles of IL-6 from different cell types have been evaluated through conditional cell-specific IL-6 knockout mice. Nevertheless, these mice probably undergo compensatory responses of IL-6 from other cells, which makes it difficult to assess the role of each source of IL-6. METHODS: To give some insight into this problem, we have produced a novel mouse model: a conditional reversible IL-6 KO mouse (IL6-DIO-KO). By using double-inverted, open-reading-frame (DIO) technology, we created a mouse line with the loss of Il6 expression in all cells that can be restored by the action of Cre recombinase. Since microglia are one of the most important sources and targets of IL-6 into the central nervous system, we have recovered microglial Il6 expression in IL6-DIO-KO mice through breeding to Cx3cr1-CreER mice and subsequent injection of tamoxifen (TAM) when mice were 10-16 weeks old. Then, they were immunized with myelin oligodendrocyte glycoprotein 35-55 peptide (MOG35-55) 7 weeks after TAM treatment to induce EAE. Clinical symptoms and demyelination, CD3 infiltration, and gliosis in the spinal cord were evaluated. RESULTS: IL6-DIO-KO mice were resistant to EAE, validating the new model. Restoration of microglial Il6 was sufficient to develop a mild version of EAE-related clinical symptoms and neuropathology. CONCLUSIONS: IL6-DIO-KO mouse is an excellent model to understand in detail the role of specific cellular sources of IL-6 within a recovery-of-function paradigm in EAE.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Integrases/biossíntese , Interleucina-6/biossíntese , Microglia/metabolismo , Sequência de Aminoácidos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Expressão Gênica , Integrases/genética , Interleucina-6/deficiência , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia
19.
Proc Natl Acad Sci U S A ; 114(9): 2413-2418, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196880

RESUMO

Mammalian reproductive function depends upon a neuroendocrine circuit that evokes the pulsatile release of gonadotropin hormones (luteinizing hormone and follicle-stimulating hormone) from the pituitary. This reproductive circuit is sensitive to metabolic perturbations. When challenged with starvation, insufficient energy reserves attenuate gonadotropin release, leading to infertility. The reproductive neuroendocrine circuit is well established, composed of two populations of kisspeptin-expressing neurons (located in the anteroventral periventricular hypothalamus, Kiss1AVPV, and arcuate hypothalamus, Kiss1ARH), which drive the pulsatile activity of gonadotropin-releasing hormone (GnRH) neurons. The reproductive axis is primarily regulated by gonadal steroid and circadian cues, but the starvation-sensitive input that inhibits this circuit during negative energy balance remains controversial. Agouti-related peptide (AgRP)-expressing neurons are activated during starvation and have been implicated in leptin-associated infertility. To test whether these neurons relay information to the reproductive circuit, we used AgRP-neuron ablation and optogenetics to explore connectivity in acute slice preparations. Stimulation of AgRP fibers revealed direct, inhibitory synaptic connections with Kiss1ARH and Kiss1AVPV neurons. In agreement with this finding, Kiss1ARH neurons received less presynaptic inhibition in the absence of AgRP neurons (neonatal toxin-induced ablation). To determine whether enhancing the activity of AgRP neurons is sufficient to attenuate fertility in vivo, we artificially activated them over a sustained period and monitored fertility. Chemogenetic activation with clozapine N-oxide resulted in delayed estrous cycles and decreased fertility. These findings are consistent with the idea that, during metabolic deficiency, AgRP signaling contributes to infertility by inhibiting Kiss1 neurons.


Assuntos
Proteína Relacionada com Agouti/genética , Fertilidade/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurônios/metabolismo , Inanição/genética , Proteína Relacionada com Agouti/deficiência , Animais , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Leptina/genética , Leptina/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Optogenética , Reprodução/efeitos dos fármacos , Reprodução/genética , Transdução de Sinais , Técnicas Estereotáxicas
20.
Circ Res ; 121(10): 1182-1191, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28835357

RESUMO

RATIONALE: AMPK (AMP-activated protein kinase) is a heterotrimeric protein that plays an important role in energy homeostasis and cardioprotection. Two isoforms of each subunit are expressed in the heart, but the isoform-specific function of AMPK remains unclear. OBJECTIVE: We sought to determine the role of γ2-AMPK in cardiac stress response using bioengineered cell lines and mouse models containing either isoform of the γ-subunit in the heart. METHODS AND RESULTS: We found that γ2 but not γ1 or γ3 subunit translocated into nucleus on AMPK activation. Nuclear accumulation of AMPK complexes containing γ2-subunit phosphorylated and inactivated RNA Pol I (polymerase I)-associated transcription factor TIF-IA at Ser-635, precluding the assembly of transcription initiation complexes for rDNA. The subsequent downregulation of pre-rRNA level led to attenuated endoplasmic reticulum (ER) stress and cell death. Deleting γ2-AMPK led to increases in pre-rRNA level, ER stress markers, and cell death during glucose deprivation, which could be rescued by inhibition of rRNA processing or ER stress. To study the function of γ2-AMPK in the heart, we generated a mouse model with cardiac-specific deletion of γ2-AMPK (cardiac knockout [cKO]). Although the total AMPK activity was unaltered in cKO hearts because of upregulation of γ1-AMPK, the lack of γ2-AMPK sensitizes the heart to myocardial ischemia/reperfusion injury. The cKO failed to suppress pre-rRNA level during ischemia/reperfusion and showed a greater infarct size. Conversely, cardiac-specific overexpression of γ2-AMPK decreased ribosome biosynthesis and ER stress during ischemia/reperfusion insult, and the infarct size was reduced. CONCLUSIONS: The γ2-AMPK translocates into the nucleus to suppress pre-rRNA transcription and ribosome biosynthesis during stress, thus ameliorating ER stress and cell death. Increased γ2-AMPK activity is required to protect against ischemia/reperfusion injury. Our study reveals an isoform-specific function of γ2-AMPK in modulating ribosome biosynthesis, cell survival, and cardioprotection.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ribossomos/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Morte Celular/fisiologia , Chlorocebus aethiops , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/patologia , Biossíntese de Proteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA