Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 152(1-2): 172-82, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332753

RESUMO

Many cellular processes require large forces that are generated collectively by multiple cytoskeletal motor proteins. Understanding how motors generate force as a team is therefore fundamentally important but is poorly understood. Here, we demonstrate optical trapping at single-molecule resolution inside cells to quantify force generation by motor teams driving single phagosomes. In remarkable paradox, strong kinesins fail to work collectively, whereas weak and detachment-prone dyneins team up to generate large forces that tune linearly in strength and persistence with dynein number. Based on experimental evidence, we propose that leading dyneins in a load-carrying team take short steps, whereas trailing dyneins take larger steps. Dyneins in such a team bunch close together and therefore share load better to overcome low/intermediate loads. Up against higher load, dyneins "catch bond" tenaciously to the microtubule, but kinesins detach rapidly. Dynein therefore appears uniquely adapted to work in large teams, which may explain how this motor executes bewilderingly diverse cellular processes.


Assuntos
Transporte Biológico , Dineínas/metabolismo , Fagossomos/metabolismo , Animais , Fenômenos Biomecânicos , Química Encefálica , Linhagem Celular , Dictyostelium , Dineínas/química , Cabras , Cinesinas , Macrófagos/metabolismo , Camundongos , Microesferas , Microtúbulos/metabolismo , Pinças Ópticas
2.
Trends Cell Biol ; 23(11): 575-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23877011

RESUMO

Diverse cellular processes are driven by the collective force from multiple motor proteins. Disease-causing mutations cause aberrant function of motors, but the impact is observed at a cellular level and beyond, therefore necessitating an understanding of cell mechanics at the level of motor molecules. One way to do this is by measuring the force generated by ensembles of motors in vivo at single-motor resolution. This has been possible for microtubule motor teams that transport intracellular organelles, revealing unexpected differences between collective and single-molecule function. Here we review how the biophysical properties of single motors, and differences therein, may translate into collective motor function during organelle transport and perhaps in other processes outside transport.


Assuntos
Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Organelas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA