Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 421(2): 113403, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36336028

RESUMO

Vascular mimicry (VM) is defined as a vascular channel-like structure composed of tumor cells that correlates with the growth of cancer cells by providing blood circulation. However, whether VM can be formed in dormant cancer cells remains unclear. Our previous research revealed that polyploid giant cancer cells (PGCCs) are specific dormant cells related to the poor prognosis of head and neck cancer. Here, we demonstrated that EBV could promote VM formation by PGCCs in vivo and in vitro. Furthermore, we revealed that the activation of the ERK pathway partly mediated by LMP2A is responsible for stemness, and the acquisition of the stemness phenotype is crucial to the malignant biological behavior of PGCCs. The epithelial-to-mesenchymal transition (EMT) process plays a considerable role in PGCCs, and EMT progression is vital for EBV-positive PGCCs to form VM. This is the first study to reveal that EBV creates plasticity in PGCC-VM and provide a new strategy for targeted anti-tumor therapy.


Assuntos
Herpesvirus Humano 4 , Neoplasias , Humanos , Herpesvirus Humano 4/genética , Transição Epitelial-Mesenquimal/genética , Células Gigantes/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Neoplasias/patologia
2.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1128-1141, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706766

RESUMO

Fluorescence molecular tomography (FMT) can achieve noninvasive, high-contrast, high-sensitivity three-dimensional imaging in vivo by relying on a variety of fluorescent molecular probes, and has excellent clinical transformation prospects in the detection of tumors in vivo. However, the limited surface fluorescence makes the FMT reconstruction have some ill-posedness, and it is difficult to obtain the ideal reconstruction effect. In this paper, two different emission fluorescent probes and L 1-L 2 regularization are combined to improve the temporal and spatial resolution of FMT visual reconstruction by introducing the weighting factor α and a half-quadratic splitting alternating optimization (HQSAO) iterative algorithm. By introducing an auxiliary variable, the HQSAO method breaks the sparse FMT reconstruction task into two subproblems that can be solved in turn: simple reconstruction and image denoising. The weight factor α (α>1) can increase the weight of nonconvex terms to further promote the sparsity of the algorithm. Importantly, this paper combines two different dominant fluorescent probes to achieve high-quality reconstruction of dual light sources. The performance of the proposed reconstruction strategy was evaluated by digital mouse and nude mouse single/dual light source models. The simulation results show that the HQSAO iterative algorithm can achieve more excellent positioning accuracy and morphology distribution in a shorter time. In vivo experiments also further prove that the HQSAO algorithm has advantages in light source information preservation and artifact suppression. In particular, the introduction of two main emission fluorescent probes makes it easy to separate and reconstruct the dual light sources. When it comes to localization and three-dimensional morphology, the results of the reconstruction are much better than those using a fluorescent probe, which further facilitates the clinical transformation of FMT.

3.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630326

RESUMO

Natural polysaccharides are macromolecular substances with great potential owing to their wide biological activity and low toxicity. However, not all polysaccharides have significant pharmacodynamic activity; hence, appropriate chemical modification methods can be selected according to the unique structural characteristics of polysaccharides to assist in enhancing and promoting the presentation of their biological activities. This review summarizes research progress on modified polysaccharides, including common chemical modification methods, the change in biological activity following modification, and the factors affecting the biological activity of chemically modified polysaccharides. At the same time, the difficulties and challenges associated with the structural modification of natural polysaccharides are also outlined in this review. Thus, research on polysaccharide structure modification is critical for improving the development and utilization of sugar products.


Assuntos
Polissacarídeos , Polissacarídeos/farmacologia , Relação Estrutura-Atividade
4.
Int Nurs Rev ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051001

RESUMO

AIM: To determine the psychological capital level of nurses and explore the latent profiles of nurses regarding their psychological capital scores. BACKGROUND: The use of individual-centered analysis for the connotation of nurses' psychological capital structure is less studied and still needs to be further explored. METHODS: By the convenience sampling method, 494 clinical nurses from 7 general hospitals in Sichuan province were selected. The study was conducted from December 2022 to February 2023. Latent profile analysis was used for data analysis. We followed STROBE guidelines in this research. RESULTS: The total mean score of nurses' psychological capital is 5.17 (SD = 0.8). The following four latent profiles were identified: "poor" (4.5%), "medium" (22.9%), "well-off" (41.5%), and "rich" (31.1%). Multiple logistic regression showed that the number of hours worked per day and the number of night shifts per month were negative predictors of psychological capital, and psychological training and job satisfaction were protective factors of psychological capital. DISCUSSION: Our study found that the four profiles can be distinguished by "poor," "well-off," "medium," and "rich" levels of psychological capital. Among them, more than 70% of the nurses belonged to the well-off and rich profiles, and the number of the poor profile was the lowest. CONCLUSION: The overall psychological capital of clinical nurses is at a medium-high level. Each profile is influenced by multiple sociodemographic factors (i.e., age, working hours, monthly income, psychological training, and job satisfaction). IMPLICATIONS FOR NURSING AND HEALTH POLICY: Administrators should develop enhancement strategies to improve the mental health of nurses based on the characteristics of their psychological capital profiles.

5.
Cancer Cell Int ; 21(1): 584, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717645

RESUMO

BACKGROUND: Hypopharyngeal cancer (HPC) is associated with a poor prognosis and a high recurrence rate. Immune escape is one of the reasons for the poor prognosis of malignant tumors. Programmed cell death ligand 1 (PD-L1) and programmed cell death-1 (PD-1) have been shown to play important roles in immune escape. However, the role of PD-1/PD-L1 in HPC remains unclear. In this experiment, we investigated the effect of exosomes from HPC patient serum on CD8+ T cell function and PD-1/PD-L1 expression and, thus, on prognosis. We hope to provide guidance for the identification of new targets for HPC immunotherapy. METHODS: PD-1 and CD8 expression in 71 HPC tissues and 16 paracarcinoma tissues was detected by immunohistochemistry. Concurrently, the clinicopathological data of the patients were obtained to conduct correlation analysis. Exosomes were isolated from serum and then identified by Western blotting (WB), transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). Flow cytometry was used to assess the activity of CD8+ T cells after exosome stimulation. The effects of exosomes on the ability of CD8+ T cells to kill FaDu cells were assessed by CCK-8 assay. The expression of IL-10 and TGF-ß1 was measured by enzyme-linked immunosorbent assay (ELISA). PD-L1 expression in HPC tissue samples was evaluated by immunohistochemistry, and the relationship between PD-1/PD-L1 expression and prognosis was investigated with patient specimens. RESULTS: PD-1 expression was significantly upregulated on CD8+ T cells in tumor tissues compared with those in normal tissues. The overall survival (OS) and disease-free survival (DFS) of PD-1-overexpressing patients were decreased. Serum exosomes from patients can elevate PD-1 expression on CD8+ T cells and suppress their killing capacity and secretory function. The rate of positive PD-L1 expression was increased in HPC tissues compared with paracancerous tissues. The DFS and OS of the PD-1(+)-PD-L1(+) group were significantly lower than those of the PD-1(-)-PD-L1(-) group. CONCLUSION: Our findings indicate that serum exosomes from HPC patients can inhibit CD8+ T cell function and that the PD-1-PD-L1 pathway plays an important role in the immune escape of HPC. Exosomes combined with immunotherapy may guide the treatment of patients with advanced disease in the future.

6.
Chemphyschem ; 22(17): 1785-1791, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34153153

RESUMO

Electrocatalytic water splitting for hydrogen production from renewable energy requires the innovation of electrocatalysts with high activity and low cost. In this work, densely packed NiO@Ru nanosheets were fabricated on the surface of Ni foam through a two-step method of Ni(OH)2 growth followed by Ru deposition. Through pair distribution function analysis from selected-area electron diffraction and X-ray photoelectron spectroscopy, the interface structure feature is revealed as a thin layer of perovskite NiRuO3 sandwiched between NiO and Ru. The electrode exhibits high activity and durability for HER and OER, delivering a current density of 10 mA cm-2 at a voltage of 1.55 V for overall water splitting in 1 M KOH. The excellent performance can be attributed to the intimate interface contact of NiO and Ru in addition to low charge transfer resistance and super-hydrophilic surface structure, as verified by the electrochemical impedance spectroscopy and contact-angle measurement.

7.
Ecotoxicol Environ Saf ; 223: 112579, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352583

RESUMO

Limited data are available on metabolic responses of plants to copper (Cu)-toxicity. Firstly, we investigated Cu-toxic effects on metabolomics, the levels of free amino acids, NH4+-N, NO3--N, total nitrogen, total soluble proteins, total phenolics, lignin, reduced glutathione (GSH) and malondialdehyde, and the activities of nitrogen-assimilatory enzymes in 'Shatian' pummelo (Citrus grandis) leaves. Then, a conjoint analysis of metabolomics, physiology and transcriptomics was performed. Herein, 59 upregulated [30 primary metabolites (PMs) and 29 secondary metabolites (SMs)] and 52 downregulated (31 PMs and 21 SMs) metabolites were identified in Cu-toxic leaves. The toxicity of Cu to leaves was related to the Cu-induced accumulation of NH4+ and decrease of nitrogen assimilation. Metabolomics combined with physiology and transcriptomics revealed some adaptive responses of C. grandis leaves to Cu-toxicity, including (a) enhancing tryptophan metabolism and the levels of some amino acids and derivatives (tryptophan, phenylalanine, 5-hydroxy-l-tryptophan, 5-oxoproline and GSH); (b) increasing the accumulation of carbohydrates and alcohols and upregulating tricarboxylic acid cycle and the levels of some organic acids and derivatives (chlorogenic acid, quinic acid, d-tartaric acid and gallic acid o-hexoside); (c) reducing phospholipid (lysophosphatidylcholine and lysophosphatidylethanolamine) levels, increasing non-phosphate containing lipid [monoacylglycerol ester (acyl 18:2) isomer 1] levels, and inducing low-phosphate-responsive gene expression; and (d) triggering the biosynthesis of some chelators (total phenolics, lignin, l-trytamine, indole, eriodictyol C-hexoside, quercetin 5-O-malonylhexosyl-hexoside, N-caffeoyl agmatine, N'-p-coumaroyl agmatine, hydroxy-methoxycinnamate and protocatechuic acid o-glucoside) and vitamins and derivatives (nicotinic acid-hexoside, B1 and methyl nicotinate). Cu-induced upregulation of many antioxidants could not protect Cu-toxic leaves from oxidative damage. To conclude, our findings corroborated the hypothesis that extensive reprogramming of metabolites was carried out in Cu-toxic C. grandis leaves in order to cope with Cu-toxicity.


Assuntos
Citrus , Citrus/genética , Cobre/toxicidade , Metabolômica , Folhas de Planta , Plântula/genética , Transcriptoma
8.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769452

RESUMO

Copper (Cu)-toxic effects on Citrus grandis growth and Cu uptake, as well as gene expression and physiological parameters in leaves were investigated. Using RNA-Seq, 715 upregulated and 573 downregulated genes were identified in leaves of C. grandis seedlings exposed to Cu-toxicity (LCGSEC). Cu-toxicity altered the expression of 52 genes related to cell wall metabolism, thus impairing cell wall metabolism and lowering leaf growth. Cu-toxicity downregulated the expression of photosynthetic electron transport-related genes, thus reducing CO2 assimilation. Some genes involved in thermal energy dissipation, photorespiration, reactive oxygen species scavenging and cell redox homeostasis and some antioxidants (reduced glutathione, phytochelatins, metallothioneins, l-tryptophan and total phenolics) were upregulated in LCGSEC, but they could not protect LCGSEC from oxidative damage. Several adaptive responses might occur in LCGSEC. LCGSEC displayed both enhanced capacities to maintain homeostasis of Cu via reducing Cu uptake by leaves and preventing release of vacuolar Cu into the cytoplasm, and to improve internal detoxification of Cu by accumulating Cu chelators (lignin, reduced glutathione, phytochelatins, metallothioneins, l-tryptophan and total phenolics). The capacities to maintain both energy homeostasis and Ca homeostasis might be upregulated in LCGSEC. Cu-toxicity increased abscisates (auxins) level, thus stimulating stomatal closure and lowering water loss (enhancing water use efficiency and photosynthesis).


Assuntos
Citrus/metabolismo , Cobre/toxicidade , Proteínas de Plantas/metabolismo , RNA-Seq/métodos , Adaptação Fisiológica , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Citrus/efeitos dos fármacos , Citrus/genética , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
9.
Radiology ; 296(2): E55-E64, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32191587

RESUMO

Background CT may play a central role in the diagnosis and management of coronavirus disease 2019 (COVID-19) pneumonia. Purpose To perform a longitudinal study to analyze the serial CT findings over time in patients with COVID-19 pneumonia. Materials and Methods During January 16 to February 17, 2020, 90 patients (33 men, 57 women; mean age, 45 years) with COVID-19 pneumonia were prospectively enrolled and followed up until being discharged, death, or the end of the study. A total of 366 CT scans were acquired and reviewed by two groups of radiologists for the patterns and distribution of lung abnormalities, total CT scores, and number of zones involved. Those features were analyzed for temporal change. Results CT scores and number of zones involved progressed rapidly, peaked during illness days 6-11 (median CT score, 5; median number of zones involved, five), and were followed by persistence of high levels. The predominant pattern of abnormalities after symptom onset was ground-glass opacity (35 of 78 scans [45%] to 49 of 79 scans [62%] in different periods). The percentage of mixed pattern peaked on illness days 12-17 (30 of 78 scans [38%]) and became the second most predominant pattern thereafter. Pure ground-glass opacity was the most prevalent subtype of ground-glass opacity after symptom onset (20 of 50 scans [40%] to 20 of 28 scans [71%]). The percentage of ground-glass opacity with irregular linear opacity peaked on illness days 6-11 (14 of 50 scans [28%]) and became the second most prevalent subtype thereafter. The distribution of lesions was predominantly bilateral and subpleural. Sixty-six of the 70 patients discharged (94%) had residual disease on final CT scans (median CT score, 4; median number of zones involved, four), with ground-glass opacity (42 of 70 patients [60%]) and pure ground-glass opacity (31 of 42 patients [74%]) the most common pattern and subtype. Conclusion The extent of lung abnormalities at CT peaked during illness days 6-11. The temporal changes of the diverse CT manifestations followed a specific pattern, which might indicate the progression and recovery of the illness. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Adulto , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/patologia , Progressão da Doença , Feminino , Hospitalização , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pandemias , Alta do Paciente , Pneumonia Viral/patologia , Estudos Prospectivos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , SARS-CoV-2 , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
10.
Planta ; 252(1): 10, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601995

RESUMO

MAIN CONCLUSION: Transcriptomic studies in resistant and susceptible tea cultivars have been performed to reveal the different defense molecular mechanisms of tea after E. onukii feeding. The molecular mechanism by which tea plants respond to small green leafhopper Empoasca onukii (Matsuda) damage is unclear. Using the resistant tea plant cultivar Juyan (JY) and the susceptible tea plant cultivar Enbiao (EB) as materials, this study performed RNA-seq on tea leaf samples collected at three time points (6 h, 12 h, 24 h) during exposure of the plants to leafhopper to reveal the molecular mechanisms that are activated in susceptible and resistant tea plant cultivars in response to leafhopper damage. The numbers of DEGs in the susceptible tea cultivar during early (6 h) and late (24 h) stages of leafhopper induction were higher than those in the resistant cultivar at the same time points. The stress responses to leafhopper were most intense at 12 h in both tea cultivars. Pathway enrichment analysis showed that most up-regulated DEGs and their related metabolic pathways were similar in the two tea cultivars. However, during the early stage of leafhopper induction (6 h), jasmonic acid (JA)-related genes were significantly up-regulated in the resistant cultivar. The terpenoid biosynthetic pathway and the α-linolenic acid metabolic pathway were activated earlier in the resistant cultivar and remained activated until the late stage of leafhopper damage. Our results confirmed that after leafhopper damage, the resistant tea cultivar activated its defense responses earlier than the susceptible cultivar, and these defense responses were mainly related to terpenoid metabolism and JA biosynthetic pathway. The results provide important clues for further studies on resistance strategy of tea plants to pest.


Assuntos
Camellia sinensis/genética , Resistência à Doença/genética , Hemípteros/fisiologia , Doenças das Plantas/imunologia , Transcriptoma , Animais , Vias Biossintéticas , Camellia sinensis/imunologia , Camellia sinensis/parasitologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Terpenos/metabolismo
11.
Cancer Cell Int ; 20: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226313

RESUMO

BACKGROUND: Immunotherapies targeting programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) have been approved for gastric cancer (GC) patients. However, a large proportion of patients with T-cell-inflamed tumor microenvironment do not respond to the PD-1/PD-L1 blockade. The stromal component of the tumor microenvironment has been associated with immunotherapy. This study aims to explore the clinical significance of the non-immune cells in the tumor microenvironment and their potential as biomarkers for immunotherapy. METHODS: A total of 383 patients with GC from the Cancer Genome Atlas (TCGA) cohort, 300 patients with GC from the GSE62254 cohort in Gene Expression Omnibus (GEO) were included in the study. A stromal score was generated using the ESTIMATE algorithm, and the likelihood of response to PD-1/PD-L1 immunotherapy of GC patients was predicted using the TIDE algorithm. The prognostic value of the stromal score from GC cases was evaluated by the Kaplan-Meier method and Cox regression analysis. Gene set enrichment analysis (GSEA) was also conducted. RESULTS: The stromal score showed significant differences in different molecular subtypes and T stages. Multivariate analyses further confirmed that the stromal score was an independent indicator of overall survival (OS) in the two cohorts. The low stromal score group showed higher tumor mutation burden (TMB) and micro-satellite instability (MSI), and was more sensitive to immune checkpoint inhibitor according to the TIDE algorithm. Activation of the transforming growth factor and epithelial-mesenchymal transition were observed in the high stromal score subtype, which is associated with T-cell suppression, and may be responsible for resistance to PD-1/PD-L1 therapy. BPIFB2 was confirmed as a hub gene relevant to immunotherapy. CONCLUSION: The stromal score was associated with cancer progression and molecular subtypes, and may serve as a novel biomarker for predicting the prognosis and response to immunotherapy in patients with GC.

12.
Drug Dev Res ; 76(3): 123-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25958838

RESUMO

Bencycloquidium bromide (BCQB), a novel M3 receptor antagonist, alleviates airway hyperresponsiveness, inflammation, and airway remodeling in a murine model of asthma. The aim of this study was to investigate the anti-inflammatory activity of inhaled BCQB in a cigarette smoke (CS)-induced model of acute lung inflammation. Mice exposed to CS developed chronic obstructive pulmonary disease (COPD). Inhalation of BCQB suppressed the accumulation of neutrophils and macrophages in airways and lung and also inhibited the CS-induced increases in mRNA levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, tumor necrosis factor-alpha, and interleukin-1ß in lung and protein expression levels in bronchoalveolar lavage fluid. Moreover, BCQB (300 µg/ml) inhibited the CS-induced changes in superoxide dismutase and myeloperoxidase activities in the lungs. Our study suggests that BCQB might be a potential therapy for inflammation in CS-induced pulmonary diseases, including COPD.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Modelos Animais de Doenças , Nicotiana/efeitos adversos , Pneumonia/tratamento farmacológico , Receptor Muscarínico M3/antagonistas & inibidores , Fumaça/efeitos adversos , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos ICR , Pneumonia/metabolismo , Pneumonia/patologia , Fumar/efeitos adversos , Fumar/metabolismo , Fumar/patologia , Resultado do Tratamento
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 437-449, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462718

RESUMO

Hemionitis albofusca (Baker) Christenh is a plant that grows in various regions of China. Although it is not recognized as a traditional medicine, it is often mistakenly labelled and used as Aleuritopteris argentea (S. G. Gmél.) Fée to alleviate menstruation-related issues. Recently, several diterpenoids such as ent-16-oxo-17-norkauran-19-oic acid (Compound A), 14-oxy-7ß,20-dihydroxycyath-12,18-diene (Compound B), ent-8(14),15-pimaradiene-2ß,19-diol (Compound C), ent-kaurane-16-ene-2ß,18α-diol (Compound D), ent-kaurane-2ß,16α,18α-triol (Compound E), and onychiol B have been extracted from H. albofusca. In this study, we investigated the anti-inflammatory activity of these diterpenes. We confirmed that compounds A ~ D suppressed the amount of cellular NO production by inhibiting the expression and transcription of iNOS protein. They also significantly inhibited the expression and transcription of inflammatory factors TNF-α and IL-6. Additionally, Compounds A and C suppressed the activation of the NF-κB signaling pathway and inhibited the phosphorylation level of p38, ultimately down-regulating inflammation. Compound B suppressed the activation of the NF-κB signaling pathway, while Compound D inhibited the phosphorylation level of p38 and down-regulated the activation of the p38 MAPK signaling pathway. In a word, our investigation supports the potential application of natural diterpenes as lead compounds for developing anti-inflammatory agents.


Assuntos
Diterpenos do Tipo Caurano , Diterpenos , Humanos , NF-kappa B/metabolismo , Diterpenos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação , Lipopolissacarídeos/farmacologia
14.
Food Funct ; 15(9): 4887-4893, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38597504

RESUMO

Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL-1. After MCP-30-3 was hydrolyzed by ß-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods.


Assuntos
Citrus , Galectinas , Pectinas , Humanos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Citrus/química , Galectina 3/metabolismo , Galectinas/metabolismo , Galectinas/química , Pectinas/química , Pectinas/farmacologia , Poligalacturonase/química , Poligalacturonase/metabolismo , Ligação Proteica
15.
J Econ Entomol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894631

RESUMO

Molting is a key solution to growth restriction in insects. The periodic synthesis and degradation of chitin, one of the major components of the insect epidermis, is necessary for insect growth. MicroRNA (miRNA) have been implicated in molting regulation, yet their involvement in the interplay interaction between the chitin synthesis pathway and 20-hydroxyecdysone signaling remains poorly understood. In this study, soluble trehalase (Tre1) and phosphoacetylglucosamine mutase (PAGM) were identified as targets of conserved miR-8-3p and miR-2a-3, respectively. The expression profiles of miR-8-3p-SfTre1 and miR-2a-3-SfPAGM exhibited an opposite pattern during the different developmental stages, indicating a negative regulatory relationship between them. This relationship was confirmed by an in vitro dual-luciferase reporter system. Overexpression of miR-8-3p and miR-2a-3 by injection of mimics inhibited the expression of their respective target genes and increased mortality, leading to death in the pre-molting, and molting death phenomena. They also caused a decrease in chitin content and expression levels of key genes in the chitin synthesis pathway (SfTre1, SfTre2, SfHK, SfG6PI, SfGFAT, SfGNA, SfPAGM, SfUAP, SfCHS1, SfCHS1a, and SfCHS1b). Conversely, the injection of miRNA inhibitors resulted in the upregulation of the expression levels of these genes. Following 20E treatment, the expression levels of miR-8-3p and miR-2a-3 decreased significantly, while their corresponding target genes increased significantly. These results indicate that miR-8-3p and miR-2a-3 play a regulatory role in the molting of Sogatella furcifera by targeting SfTre1 and SfPAGM, respectively. These findings provide new potential targets for the development of subsequent new control strategies.

16.
Ultrason Sonochem ; 102: 106735, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128390

RESUMO

Extracting vanadium (V) from vanadium slag (VS) by the traditional roasting-leaching process has disadvantages of high energy consumption and high poisonous gases emission. In this work, a green and efficient route was developed to extract V from VS without roasting by electro-oxidation combined with ultrasound cavitation (EOUC) intensification in sulfuric acid solution. The leaching parameters (e.g., leaching temperature, sulfuric acid concentration, anodic current density, ultrasound power, liquid to solid ratio, leaching time and particle size) were optimized. The leaching mechanism was explored by comparing the leaching behavior and mineralogical evolution of the direct sulfuric acidic leaching (DSL), electro-oxidation-assisted sulfuric acidic leaching (EOSL), ultrasound cavitation-assisted sulfuric acidic leaching (UCSL) and EOUC methods. The results show that introducing electric field strengthens the ultrasound cavitation effect on slag particles in sulfuric acid solution. Under the optimum parameter of EOUC method, the leaching rate of V from VS is as high as 94.64 %. Using EOUC method can open the silicate-wrapped structure of the spinel, increase pore volume of VS from 0.00127 cm3 g-1 to 0.01124 cm3 g-1, decrease slag particle size from 26.8 µm to 16.4 µm and improve specific surface area from 0.508 m2 g-1 to 10.855 m2 g-1, which significantly accelerate V leaching process. The exposed spinel was oxidized by both electrochemical route and chemical route, forming a mixture of V3+ ion and VO2+ ion after leaching.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38833405

RESUMO

Feature selection is a critical component of data mining and has garnered significant attention in recent years. However, feature selection methods based on information entropy often introduce complex mutual information forms to measure features, leading to increased redundancy and potential errors. To address this issue, we propose FSCME, a feature selection method combining Copula correlation (Ccor) and the maximum information coefficient (MIC) by entropy weights. The FSCME takes into consideration the relevance between features and labels, as well as the redundancy among candidate features and selected features. Therefore, the FSCME utilizes Ccor to measure the redundancy between features, while also estimating the relevance between features and labels. Meanwhile, the FSCME employs MIC to enhance the credibility of the correlation between features and labels. Moreover, this study employs the Entropy Weight Method (EWM) to evaluate and assign weights to the Ccor and MIC. The experimental results demonstrate that FSCME yields a more effective feature subset for subsequent clustering processes, significantly improving the classification performance compared to the other six feature selection methods. The source codes of the FSCME are available online at https://github.com/CDMBlab/FSCME.

18.
Front Cardiovasc Med ; 11: 1286620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576421

RESUMO

Background: Chemotherapy with anthracyclines can cause cardiotoxicity, possibly leading to stopping treatment in some cancer patients. In cardio-oncology research, preventing and minimizing anthracycline-induced cardiotoxicity (AIC) is a hot issue. For the treatment of AIC, calycosin (CA), an isoflavone component in astragali radix (AR), has become a research focus. However, the elaborate mechanisms of calycosin treating AIC remain to be unrevealed. Aim of the study: To explore the effects of CA on AIC through multiple dimensions concerning network pharmacology, molecular docking, and experimental evaluations. Methods: The study evaluated calycosin's potential targets and mechanisms for treating AIC using network pharmacology and molecular docking. The candidate genes/targets of CA and AIC were screened using the online-available database. Protein-protein interactions (PPI) between the common targets were constructed using the STRING platform, and the results were then visualized using Cytoscape. Molecular docking was used to evaluate the strength of the binding force between CA and the common targets. The possible pharmacological mechanisms of CA were explained by pathway enrichment and GSEA. Subsequently, the candidate targets were identified in vitro experiments. Results: Network pharmacology effectively discovered the CA's multitarget intervention in AIC, including TNF, ABCC1, TOP2A, ABCB1, and XDH. CA binds to the ATP-binding cassette subfamily B member 1(ABCB1) had the highest binding energy (-7.5 kcal/mol) according to the molecular docking analysis and was selected and visualized for subsequent analysis. In vitro experiments showed that ABCB1 exhibited significant time-curve changes under different doses of doxorubicin (DOX) compared with DMSO control experiments. The anti-AIC pharmacological mechanism of CA were revealed by highlighting the biological processes of oxidative stress (OR) and inflammation. Conclusions: We employed a practicable bioinformatics method to connect network and molecular docking to determine the calycosin's therapeutic mechanism against AIC and identified some bioinformatics results in in vitro experiments. The results presented show that CA may represent an encouraging treatment for AIC.

19.
J Healthc Eng ; 2023: 5287043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726772

RESUMO

Sleep apnea syndrome (SAS) is the most common sleep disorder which affects human life and health. Many researchers use deep learning methods to automatically learn the features of physiological signals. However, these methods ignore the different effects of multichannel features from various physiological signals. To solve this problem, we propose a multichannel fusion network (MCFN), which learns the multilevel features through a convolution neural network on different respiratory signals and then reconstructs the relationship between feature channels with an attention mechanism. MCFN effectively fuses the multichannel features to improve the SAS detection performance. We conducted experiments on the Multi-Ethnic Study of Atherosclerosis (MESA) dataset, consisting of 2056 subjects. The experiment results show that our proposed network achieves an overall accuracy of 87.3%, which is better than other SAS detection methods and can better assist sleep experts in diagnosing sleep disorders.


Assuntos
Aterosclerose , Síndromes da Apneia do Sono , Humanos , Síndromes da Apneia do Sono/diagnóstico , Redes Neurais de Computação , Sono , Taxa Respiratória
20.
Cancer Med ; 12(3): 2713-2721, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36028989

RESUMO

OBJECTIVES: To investigate if different methods of pancreatoduodenectomy (with or without pyloric preservation) would have different impacts on postoperative nutrition and body composition changes among pancreatic cancer patients. METHODS: Demographic and clinicopathological data, perioperative data were collected, body composition (e.g. skeletal muscle cross-sectional area [CSA], visceral fat area [VFA]) were evaluated with abdominal CT before and after surgery. Sarcopenia patients' proportion changes were also recorded. RESULTS: The hospital stay in the PRPD group was significantly less than that in the PPPD group (p < 0.05). A significant difference was found in CSA, skeletal muscle index (SMI), VFA, VFA/CSA and albumin (ALB) in both groups between preoperative, 3, and 12 months after surgery. The loss of visceral fat in the PRPD group was more prominent than that in the PPPD group at 3 months and 12 months after surgery (p < 0.05). VFA/CSA was higher in the PPPD group than in the PRPD group (3 months: p < 0.05, 12 months: p < 0.001). The proportion of sarcopenic patients increased significantly over time in the PPPD and PRPD groups (p < 0.001). CONCLUSIONS: Postoperative CSA and VFA continued to significantly decrease in both PPPD and PRPD groups, while the incidence of sarcopenia continued to increase. Compared with PRPD, PPPD has a protective effect on visceral fat. PPPD may contribute to better maintaining visceral fat mass and blood ALB levels. CT quantification can be an objective and effective method to evaluate the nutritional status of pancreatic cancer patients during the pre- and postoperative period and can provide a useful objective basis for guiding clinical treatment.


Assuntos
Neoplasias Pancreáticas , Sarcopenia , Humanos , Piloro/patologia , Piloro/cirurgia , Pancreaticoduodenectomia , Estado Nutricional , Sarcopenia/patologia , Neoplasias Pancreáticas/patologia , Composição Corporal , Complicações Pós-Operatórias , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA