Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2202382119, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476529

RESUMO

SignificanceSeawater is one of the most abundant resources on Earth. Direct electrolysis of seawater is a transformative technology for sustainable hydrogen production without causing freshwater scarcity. However, this technology is severely impeded by a lack of robust and active oxygen evolution reaction (OER) electrocatalysts. Here, we report a highly efficient OER electrocatalyst composed of multimetallic layered double hydroxides, which affords superior catalytic performance and long-term durability for high-performance seawater electrolysis. To the best of our knowledge, this catalyst is among the most active for OER and it advances the development of seawater electrolysis technology.

2.
Small ; 18(4): e2105642, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825490

RESUMO

The catalytic hydrogen-evolving activities of transition-metal phosphides are greatly related to the phosphorus content, but the physical origin of performance enhancement remains ambiguous, and tuning the catalytic activity of nickel phosphides (NiP2 /Ni5 P4 ) remains challenging due to unfavorable H* adsorption. Here, a strategy is introduced to integrate P-rich NiP2 and P-poor Ni5 P4 into in-plane heterostructures by anion substitution, in which P atoms at the in-plane interfaces perform as active sites to adsorb H* and thus facilitate the hydrogen evolution reaction (HER) process via modulating the electronic structure between NiP2 and Ni5 P4 . Consequently, the NiP2 /Ni5 P4 hybrid exhibits an outstanding hydrogen-evolving activity, requiring only 30 and 76 mV to afford 10 and 100 mA cm-2 in acid, respectively. It surpasses most of the earth-abundant electrocatalysts thus far, and is comparable to Pt catalysts (30/72 mV at 10/100 mA cm-2 ). Particularly, it can run smoothly at large current density and only requires 247 mV to reach 2000 mA cm-2 . Detailed theoretical calculations reveal that its exceptional activity stems from the moderate overlap of density states between P 2p and H 1s orbitals, thus optimizing the H*-adsorption strength. This work highlights a new avenue toward the fabrication of robust non-noble electrocatalysts by constructing in-plane heterojunctions.

3.
Nat Mater ; 20(4): 454-461, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33288897

RESUMO

Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi2Te3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.

4.
Proc Natl Acad Sci U S A ; 116(8): 2831-2836, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718395

RESUMO

Zintl compounds are considered to be potential thermoelectric materials due to their "phonon glass electron crystal" (PGEC) structure. A promising Zintl-phase thermoelectric material, 2-1-2-type Eu2ZnSb2 (P63/mmc), was prepared and investigated. The extremely low lattice thermal conductivity is attributed to the external Eu atomic layers inserted in the [Zn2Sb2]2- network in the structure of 1-2-2-type EuZn2Sb2 [Formula: see text], as well as the abundant inversion domain boundary. By regulating the Zn deficiency, the electrical properties are significantly enhanced, and the maximum ZT value reaches ∼1.0 at 823 K for Eu2Zn0.98Sb2 Our discovery provides a class of Zintl thermoelectric materials applicable in the medium-temperature range.

5.
Nano Lett ; 21(5): 2191-2198, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33646790

RESUMO

Materials with interfaces often exhibit extraordinary phenomena exemplified by rich physics, such as high-temperature superconductivity and enhanced electronic correlations. However, demonstrations of confined interfaces to date have involved intensive effort and fortuity, and no simple path is consistently available. Here, we report the achievement of interfacial superconductivity in the nonsuperconducting parent compounds AEFe2As2, where AE = Ca, Sr, or Ba, by simple subsequent annealing of the as-grown samples in an atmosphere of As, P, or Sb. Our results indicate that the superconductivity originates from electron transfer at the interface of the hybrid van der Waals heterostructures, consistent with the two-dimensional superconducting transition observed. The observations suggest a common origin of interfaces for the nonbulk superconductivity previously reported in the AEFe2As2 compound family and provide insight for the further exploration of interfacial superconductivity.

6.
Chemistry ; 27(18): 5761-5768, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33469957

RESUMO

Nanoscale composites for high-performance electrodes employed in flexible, all-solid-state supercapacitors are being developed. A series of binder-free composites, each consisting of a transition bimetal oxide, a metal oxide, and a metal nitride grown on N-doped reduced graphene oxide (rGO)-wrapped nickel foam are obtained by using a universal strategy. Three different transition metals, Co, Mo, and Fe, are separately compounded with nickel ions, which originate from the nickel foam, to form three composites, NiCoO2 @Co3 O4 @Co2 N, NiMoO4 @MoO3 @Mo2 N, and NiFe2 O4 @Fe3 O4 @Fe2 N, respectively. These as-prepared active materials have similar regular variation patterns in their properties, including better conductivity and battery-mimicking pseudocapacitance, which result in their high whole-electrode capacitance performance [2598.3 F g-1 (39.85 F cm-2 ), 3472.6 F g-1 (41.43 F cm-2 ) and 1907.5 F g-1 (3.41 F cm-2 ) for the composites incorporating Co, Mo, and Fe, respectively]. The as-assembled flexible, all-solid-state NiCoO2 @Co3 O4 @Co2 N//KOH/PVA//NiCoO2 @Co3 O4 @Co2 N device can be easily bent and exhibits high energy density and power density of 92.8 Wh kg-1 and 1670.4 W kg-1 , respectively. The universality of this design strategy could allow it to be employed in producing hybrid materials for high-performance energy-storage devices.

7.
Proc Natl Acad Sci U S A ; 115(21): 5332-5337, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735697

RESUMO

Germanium telluride (GeTe)-based materials, which display intriguing functionalities, have been intensively studied from both fundamental and technological perspectives. As a thermoelectric material, though, the phase transition in GeTe from a rhombohedral structure to a cubic structure at ∼700 K is a major obstacle impeding applications for energy harvesting. In this work, we discovered that the phase-transition temperature can be suppressed to below 300 K by a simple Bi and Mn codoping, resulting in the high performance of cubic GeTe from 300 to 773 K. Bi doping on the Ge site was found to reduce the hole concentration and thus to enhance the thermoelectric properties. Mn alloying on the Ge site simultaneously increased the hole effective mass and the Seebeck coefficient through modification of the valence bands. With the Bi and Mn codoping, the lattice thermal conductivity was also largely reduced due to the strong point-defect scattering for phonons, resulting in a peak thermoelectric figure of merit (ZT) of ∼1.5 at 773 K and an average ZT of ∼1.1 from 300 to 773 K in cubic Ge0.81Mn0.15Bi0.04Te. Our results open the door for further studies of this exciting material for thermoelectric and other applications.

8.
J Am Chem Soc ; 142(26): 11417-11427, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506908

RESUMO

Oxygen-bearing copper (OBC) has been widely studied for enabling the C-C coupling of the electrocatalytic CO2 reduction reaction (CO2RR) since this is a distinctive hallmark of strongly correlated OBC systems and may benefit many other Cu-based catalytic processes. Unresolved problems, however, include the instability of and limited knowledge regarding OBC under realistic operating conditions, raising doubts about its role in CO2RR. Here, an atypical and stable OBC catalyst with a hierarchical pore and nanograin-boundary structure was constructed and was found to exhibit efficient CO2RR for the production of ethylene with a Faradaic efficiency of 45% at a partial current density of 44.7 mA cm-2 in neutral media, and the ethylene partial current density is nearly 26 and 116 times that of oxygen-free copper (OFC) and commercial Cu foam, respectively. More importantly, the structure-activity relationship in CO2RR was explored through a comprehensive analysis of experimental data and computational techniques, thus increasing the fundamental understanding of CO2RR. A systematic characterization analysis suggests that atypical OBC (Cu4O) was formed and that it is stable even at -1.00 V [(vs the reversible hydrogen electrode (RHE)]. Density functional theory calculations show that the atypical OBC enables control over CO adsorption and dimerization, making it possible to implement a preference for the electrosynthesis of ethylene (C2) products. These results provide insight into the synthesis and structural characteristics of OBC as well as its interplay with ethylene selectivity.

9.
Nat Mater ; 18(12): 1321-1326, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591530

RESUMO

Alternative technologies are required in order to meet a worldwide demand for clean non-polluting energy sources. Thermoelectric generators, which generate electricity from heat in a compact and reliable manner, are potential devices for waste heat recovery. However, thermoelectric performance, as encapsulated by the figure of merit ZT, has remained at around 1.0 at room temperature, which has limited practical applications. Here, we study the effects of pressure on ZT in Cr-doped PbSe, which has a maximum ZT of less than 1.0 at a temperature of about 700 K. By applying external pressure using a diamond anvil cell, we obtained a room-temperature ZT value of about 1.7. From thermoelectric, magnetoresistance and Raman measurements, as well as density functional theory calculations, a pressure-driven topological phase transition is found to enable this enhancement. Experiments also support the appearance of a topological crystalline insulator after the transition. These findings point to the possibility of using compression to increase not just ZT in existing thermoelectric materials, but also the possibility of realizing topological crystalline insulators.

10.
Proc Natl Acad Sci U S A ; 114(22): 5607-5611, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507120

RESUMO

Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel-iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm2 at an overpotential of 177 mV, 500 mA/cm2 at only 265 mV, and 1,705 mA/cm2 at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO2 catalyst.

11.
Proc Natl Acad Sci U S A ; 114(40): 10548-10553, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923974

RESUMO

Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm2⋅V-1⋅s-1 is obtained, thus leading to a notably enhanced power factor of ∼13 µW⋅cm-1⋅K-2 from ∼5 µW⋅cm-1⋅K-2 A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of ∼1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01 The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.

12.
Small ; 15(6): e1804272, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30637939

RESUMO

Facile design of low-cost and high-efficiency catalysts with earth-abundant and cheap materials is desirable to replace platinum (Pt) for the hydrogen evolution reaction (HER) in water splitting, but the development of such HER catalysts with Pt-like activity using simple strategies remains challenging. A mesoporous hybrid catalyst of nickel phosphides nanoparticles and cobalt phosphosulfide/phosphide (CoS|Ni|P) nanosheet arrays for HER is reported here, which is developed by a facile three-step approach consisting of electrodeposition, thermal sulfurization, and phosphorization. This hybrid catalyst is highly robust and stable in acid for HER, and is distinguished by very low overpotentials of 41, 88, and 150 mV to achieve 10, 100, and 1000 mA cm-2 , respectively, as well as a small Tafel slope (45.2 mV dec-1 ), and a large exchange current density (964 µA cm-2 ). It is among the most efficient earth-abundant catalysts reported thus far for HER. More importantly, this electrocatalyst has electrochemical durability over 20 h under a wide range of current densities (up to 1 A cm-2 ) in acidic conditions, as well as very high turnover frequencies of 0.40 and 1.26 H2 s-1 at overpotentials of 75 and 100 mV, respectively, showing that it has great potential for practical applications in large-scale water electrolysis.

13.
Chemistry ; 25(33): 7903-7911, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30974005

RESUMO

The advantage of using composite electrode materials for energy storage is, to a large extent, the synergistic role of their components. Our work focuses on the investigation of the interactions of each phase, exploring the patterns found with the change of materials to provide theoretical or experimental foundations for future study. Here, conductive polymers (CPs), including polyaniline (PANi), polypyrrole (PPy), and polythiophene (PTh), as well as reduced graphene oxide (rGO), and TiO2 with the different crystalline phases of anatase and rutile were applied to form a series of free-standing and flexible binary or ternary composite electrodes. The electrochemical behaviors of these composite electrodes are presented. The results indicate that the synergistic improvement in electrochemical performance is due to the incorporation of the different components. CPs significantly increase the current density of these composite films and contribute their pseudocapacitance to improve the specific capacitance, but lead to a decline in cycle stability. After introducing TiO2 , both the specific capacitance and the cycle-stability of rGO-TiO2 -CP were synergistically improved. A CP can magnify the pseudocapacitance behavior of any of the TiO2 crystalline phases, and interactions vary with the specific CP and the specific TiO2 crystalline phase employed. The synergistic effects of the as-prepared composites were theoretically predicted and explored.

14.
Soft Matter ; 15(37): 7472-7478, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31513226

RESUMO

It is of great significance to understand the interactions between nanoparticles and polymers since they guide the development of tremendous applications, for example, in optoelectronic devices, biomedicine, and enhanced oil extraction. However, few studies have probed into this fundamental science as the emerging amphiphilic Janus nanosheets have a more complicated structure than homogeneous nanoparticles, which makes their interactions more complex. In this work, we try to understand the interactions between amphiphilic Janus nanosheets and a model nonionic polymer, hydroxyethyl cellulose (HEC), under different electrolyte and temperature conditions in both aqueous and biphasic systems by employing molecular dynamics simulations as well as experiments. It is found that the attachment of HEC onto the nanosheet surfaces exhibits ion-concentration-dependent behavior in the aqueous phase, helping to colloidally stabilize the nanosheets even in an environment with an extremely high salt concentration for a long duration. In the oil and water biphasic system, only elevated temperature promotes both Janus nanosheets and HEC to individually remain at the interface.

15.
Proc Natl Acad Sci U S A ; 113(29): E4125-32, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27385824

RESUMO

Complex Zintl phases, especially antimony (Sb)-based YbZn0.4Cd1.6Sb2 with figure-of-merit (ZT) of ∼1.2 at 700 K, are good candidates as thermoelectric materials because of their intrinsic "electron-crystal, phonon-glass" nature. Here, we report the rarely studied p-type bismuth (Bi)-based Zintl phases (Ca,Yb,Eu)Mg2Bi2 with a record thermoelectric performance. Phase-pure EuMg2Bi2 is successfully prepared with suppressed bipolar effect to reach ZT ∼ 1. Further partial substitution of Eu by Ca and Yb enhanced ZT to ∼1.3 for Eu0.2Yb0.2Ca0.6Mg2Bi2 at 873 K. Density-functional theory (DFT) simulation indicates the alloying has no effect on the valence band, but does affect the conduction band. Such band engineering results in good p-type thermoelectric properties with high carrier mobility. Using transmission electron microscopy, various types of strains are observed and are believed to be due to atomic mass and size fluctuations. Point defects, strain, dislocations, and nanostructures jointly contribute to phonon scattering, confirmed by the semiclassical theoretical calculations based on a modified Debye-Callaway model of lattice thermal conductivity. This work indicates Bi-based (Ca,Yb,Eu)Mg2Bi2 is better than the Sb-based Zintl phases.

16.
Proc Natl Acad Sci U S A ; 113(28): 7711-6, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354529

RESUMO

The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.

17.
Proc Natl Acad Sci U S A ; 113(48): 13576-13581, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856743

RESUMO

Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 µW⋅cm-1⋅K-2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm-2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.

18.
Angew Chem Int Ed Engl ; 58(18): 5824-5831, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30523650

RESUMO

Modern first-principles calculations predict that the thermal conductivity of boron arsenide is second only to that of diamond, the best thermal conductor, which may be of benefit for waste heat management in electronic devices. With the optimization of single-crystal growth methods, large-size and high-quality boron arsenide single crystals have been grown and thermal conductivity measurements have verified the related predictions. Benefiting from the increased size and improved qualities, additional properties have been characterized. Important factors related to boron arsenide, remaining challenges, and the future outlook are addressed in this minireview.

19.
J Am Chem Soc ; 140(5): 1910-1915, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29332381

RESUMO

Complex structures with versatile chemistry provide considerable chemical tunability of the transport properties. Good thermoelectric materials are generally extrinsically doped semiconductors with optimal carrier concentrations, while charged intrinsic defects (e.g., vacancies, interstitials) can also adjust the carriers, even in the compounds with no apparent deviation from a stoichiometric nominal composition. Here we report that in Zintl compounds Mg3+xSb1.5Bi0.5, the carrier concentration can be tuned from p-type to n-type by simply altering the initial Mg concentration. The spherical-aberration-corrected (CS-corrected) high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDX) mapping analysis show that the excess Mg would form a separate Mg-rich phase after Mg vacancies have been essentially compensated. Additionally, a slight Te doping at Bi site on Mg3.025Sb1.5Bi0.5 has enabled good n-type thermoelectric properties, which is comparable to the Te-doped Mg-rich sample. The actual final composition of Mg3.025Sb1.5Bi0.5 analyzed by EPMA is also close to the stoichiometry Mg3Sb1.5Bi0.5, answering the open question whether excess Mg is prerequisite to realize exceptionally high n-type thermoelectric performance by different sample preparation methods. The motivation for this work is first to understand the important role of vacancy and then to guide for discovering more promising n-type Zintl thermoelectric materials.

20.
Langmuir ; 34(12): 3694-3700, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29509429

RESUMO

Maintaining colloidal stability in unfriendly environments while retaining surface chemical properties is challenging for fundamental science and crucial for many applications. Here, we report for the first time that by using a low concentration of poly(sodium 4-styrenesulfonate) (PSS), graphene-based amphiphilic Janus nanosheets (AJNs) can be stabilized in high salt brine (3 wt % NaCl and 0.5 wt % CaCl2), whereas the interfacial behavior of the nanosheets is not affected. The adsorption of PSS on the hydrophilic and hydrophobic surfaces of AJNs in brine was investigated experimentally and by molecular dynamics simulations. Simulations further showed that the spatial configuration of absorbed PSS molecules with sulfonate functional groups facing outward favored the generation of electrosteric repulsive interactions. Calculations of the interaction energy between PSS molecules and the nanosheet revealed surface charge as a key parameter to stabilize AJNs in the salt environment, as demonstrated by the case of graphene oxide with higher surface charge. Simulations were also used to examine the interfacial behavior of graphene-based AJNs in biphasic systems. The AJNs, which exhibited asymmetry in surface wettability, remained at the oil/brine interface because of PSS detachment from the hydrophobic surface. The results were subsequently experimentally confirmed, consistent with our previously reported graphene-based AJN fluid prepared in fresh water. The process was thermodynamically supported by the demonstrated negative change of Gibbs free energy. We believe that such a strategy could benefit for the stabilization of other AJNs with surface chemical accessibility under harsh conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA