Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biol Chem ; 299(7): 104922, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321449

RESUMO

In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast-derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.


Assuntos
Senescência Celular , Células Epiteliais , Fibroblastos , Piroptose , Caspases/metabolismo , Células Epiteliais/citologia , Fibroblastos/metabolismo , Glândulas Mamárias Humanas/citologia , Humanos , Meios de Cultivo Condicionados , Células Cultivadas
2.
J Biol Chem ; 293(20): 7531-7537, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29339552

RESUMO

Nontransformed cells that become detached from the extracellular matrix (ECM) undergo dysregulation of redox homeostasis and cell death. In contrast, cancer cells often acquire the ability to mitigate programmed cell death pathways and recalibrate the redox balance to survive after ECM detachment, facilitating metastatic dissemination. Accordingly, recent studies of the mechanisms by which cancer cells overcome ECM detachment-induced metabolic alterations have focused on mechanisms in redox homeostasis. The insights into these mechanisms may inform the development of therapeutics that manipulate redox homeostasis to eliminate ECM-detached cancer cells. Here, we review how ECM-detached cancer cells balance redox metabolism for survival.


Assuntos
Autofagia , Sobrevivência Celular , Matriz Extracelular/patologia , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Matriz Extracelular/metabolismo , Humanos , Neoplasias/metabolismo , Oxirredução , Transdução de Sinais
3.
J Biol Chem ; 290(14): 8722-33, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25681438

RESUMO

The metastasis of cancer cells from the site of the primary tumor to distant sites in the body represents the most deadly manifestation of cancer. In order for metastasis to occur, cancer cells need to evade anoikis, which is defined as apoptosis caused by loss of attachment to extracellular matrix (ECM). Signaling from ErbB2 has previously been linked to the evasion of anoikis in breast cancer cells but the precise molecular mechanisms by which ErbB2 blocks anoikis have yet to be unveiled. In this study, we have identified a novel mechanism by which anoikis is inhibited in ErbB2-expressing cells: multicellular aggregation during ECM-detachment. Our data demonstrate that disruption of aggregation in ErbB2-positive cells is sufficient to induce anoikis and that this anoikis inhibition is a result of aggregation-induced stabilization of EGFR and consequent ERK/MAPK survival signaling. Furthermore, these data suggest that ECM-detached ErbB2-expressing cells may be uniquely susceptible to targeted therapy against EGFR and that this sensitivity could be exploited for specific elimination of ECM-detached cancer cells.


Assuntos
Neoplasias da Mama/patologia , Matriz Extracelular/patologia , Receptor ErbB-2/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Transdução de Sinais
4.
Nature ; 461(7260): 109-13, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19693011

RESUMO

Normal epithelial cells require matrix attachment for survival, and the ability of tumour cells to survive outside their natural extracellular matrix (ECM) niches is dependent on acquisition of anchorage independence. Although apoptosis is the most rapid mechanism for eliminating cells lacking appropriate ECM attachment, recent reports suggest that non-apoptotic death processes prevent survival when apoptosis is inhibited in matrix-deprived cells. Here we demonstrate that detachment of mammary epithelial cells from ECM causes an ATP deficiency owing to the loss of glucose transport. Overexpression of ERBB2 rescues the ATP deficiency by restoring glucose uptake through stabilization of EGFR and phosphatidylinositol-3-OH kinase (PI(3)K) activation, and this rescue is dependent on glucose-stimulated flux through the antioxidant-generating pentose phosphate pathway. Notably, we found that the ATP deficiency could be rescued by antioxidant treatment without rescue of glucose uptake. This rescue was found to be dependent on stimulation of fatty acid oxidation, which is inhibited by detachment-induced reactive oxygen species (ROS). The significance of these findings was supported by evidence of an increase in ROS in matrix-deprived cells in the luminal space of mammary acini, and the discovery that antioxidants facilitate the survival of these cells and enhance anchorage-independent colony formation. These results show both the importance of matrix attachment in regulating metabolic activity and an unanticipated mechanism for cell survival in altered matrix environments by antioxidant restoration of ATP generation.


Assuntos
Antioxidantes/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Oncogenes/fisiologia , Receptor ErbB-2/metabolismo , Trifosfato de Adenosina/metabolismo , Anoikis/fisiologia , Mama/citologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/patologia , Receptores ErbB/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Oncogenes/genética , Via de Pentose Fosfato/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-2/genética
5.
Semin Cell Dev Biol ; 23(4): 402-11, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22579674

RESUMO

The metastasis of cancer cells to distant sites is responsible for the vast majority of cancer mortalities yet the molecular mechanisms underlying this extraordinarily complicated process have yet to be sufficiently elucidated. Recently, it has become clear that cancer cells need to inhibit anoikis, a cell death program induced by loss of attachment to the extracellular matrix (ECM), in order to successfully metastasize. These studies have motivated additional research into the relationship between ECM-detachment and cell viability, much of which reveals integral connections between ECM-detachment and cell metabolism. This review serves to thoroughly discuss the signaling pathways and metabolic changes that are induced by ECM-detachment. In addition, the molecular mechanisms by which cancer cells can alter signaling and metabolism to survive in the absence of ECM-attachment will be highlighted. Furthermore, cell death mechanisms that have been observed or implicated in cells detached from the ECM will also be examined. In aggregate, the studies discussed in this review reveal that ECM-detachment can regulate cancer cell metabolism in a variety of distinct cell types and suggest that interfering with metabolism in ECM-detached cells may be a novel and effective chemotherapeutic approach to selectively inhibit tumor progression.


Assuntos
Anoikis , Matriz Extracelular/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Antioxidantes/metabolismo , Autofagia , Adesão Celular , Sobrevivência Celular , Matriz Extracelular/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
Cell Chem Biol ; 31(2): 234-248.e13, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963466

RESUMO

Ferroptosis is a non-apoptotic form of cell death that can be triggered by inhibiting the system xc- cystine/glutamate antiporter or the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). We have investigated how cell cycle arrest caused by stabilization of p53 or inhibition of cyclin-dependent kinase 4/6 (CDK4/6) impacts ferroptosis sensitivity. Here, we show that cell cycle arrest can enhance sensitivity to ferroptosis induced by covalent GPX4 inhibitors (GPX4i) but not system xc- inhibitors. Greater sensitivity to GPX4i is associated with increased levels of oxidizable polyunsaturated fatty acid-containing phospholipids (PUFA-PLs). Higher PUFA-PL abundance upon cell cycle arrest involves reduced expression of membrane-bound O-acyltransferase domain-containing 1 (MBOAT1) and epithelial membrane protein 2 (EMP2). A candidate orally bioavailable GPX4 inhibitor increases lipid peroxidation and shrinks tumor volumes when combined with a CDK4/6 inhibitor. Thus, cell cycle arrest may make certain cancer cells more susceptible to ferroptosis in vivo.


Assuntos
Ferroptose , Neoplasias , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Morte Celular , Peroxidação de Lipídeos , Ácidos Graxos Insaturados/metabolismo , Pontos de Checagem do Ciclo Celular , Neoplasias/tratamento farmacológico
7.
Cell Rep ; 43(4): 113984, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520689

RESUMO

Targeting programmed cell death protein 1 (PD-1) is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment. Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1-resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naive CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on the secretion of ITA but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.


Assuntos
Carboxiliases , Humanos , Animais , Linhagem Celular Tumoral , Carboxiliases/metabolismo , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Evasão da Resposta Imune , Camundongos Endogâmicos C57BL
8.
Cancer Res ; 84(10): 1597-1612, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588411

RESUMO

Resistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models. However, adverse effects associated with continuous KD were also observed, demanding better mechanistic understanding and optimized regimens for using KD as an immunotherapy sensitizer. In this study, we established a series of ICB-resistant prostate cancer cell lines and developed a highly effective strategy of combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic KD (CKD), or dietary supplementation of the ketone body ß-hydroxybutyrate (BHB), which is an endogenous HDACi. CKD and BHB supplementation each delayed prostate cancer tumor growth as monotherapy, and both BHB and adaptive immunity were required for the antitumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that HDACi and ketogenesis enhanced ICB efficacy through both cancer cell-intrinsic mechanisms, including upregulation of MHC class I molecules, and -extrinsic mechanisms, such as CD8+ T-cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen-presenting cells, and diminished neutrophil infiltration. Overall, these findings illuminate a potential clinical path of using HDACi and optimized KD regimens to enhance ICB therapy for prostate cancer. SIGNIFICANCE: Optimized cyclic ketogenic diet and 1,3-butanediol supplementation regimens enhance the efficacy of immune checkpoint blockade in prostate cancer through epigenetic and immune modulations, providing dietary interventions to sensitize tumors to immunotherapy.


Assuntos
Dieta Cetogênica , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Inibidores de Checkpoint Imunológico , Neoplasias da Próstata , Masculino , Dieta Cetogênica/métodos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Epigênese Genética/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Vorinostat/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácido 3-Hidroxibutírico , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores
9.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617233

RESUMO

Ferroptosis is an iron-dependent, non-apoptotic form of cell death resulting from the accumulation of lipid peroxides. Colorectal cancer (CRC) accumulates high levels of intracellular iron and reactive oxygen species (ROS), thereby sensitizing cells to ferroptosis. The selenoprotein glutathione peroxidase (GPx4) is a key enzyme in the detoxification of lipid peroxides and can be inhibited by the compound (S)-RSL3 ([1S,3R]-RSL3). However, the stereoisomer (R)-RSL3 ([1R,3R]-RSL3), which does not inhibit GPx4, exhibits equipotent activity to (S)-RSL3 across a panel of CRC cell lines. Utilizing CRC cell lines with an inducible knockdown of GPx4, we demonstrate that (S)-RSL3 sensitivity does not align with GPx4 dependency. Subsequently, a biotinylated (S)-RSL3 was then synthesized to perform affinity purification-mass spectrometry (AP-MS), revealing that (S)-RSL3 acts as a pan-inhibitor of the selenoproteome, targeting both the glutathione and thioredoxin peroxidase systems as well as multiple additional selenoproteins. To investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed further chemical and genetic approaches to disrupt selenoprotein function. The findings demonstrate that the selenoprotein inhibitor Auranofin can induce ferroptosis and/or oxidative cell death both in-vitro and in-vivo. Consistent with this data we observe that AlkBH8, a tRNA-selenocysteine methyltransferase required for the translational incorporation of selenocysteine, is essential for CRC growth. In summary, our research elucidates the complex mechanisms underlying ferroptosis in CRC and reveals that modulation of the selenoproteome provides multiple new therapeutic targets and opportunities in CRC.

10.
Methods Mol Biol ; 2675: 309-315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258773

RESUMO

Changes in metabolism can alter a variety of distinct cellular parameters in a number of physiological and pathological contexts. Relatedly, the loss of integrin-mediated attachment to extracellular matrix (ECM) is now appreciated to alter metabolism in a variety of distinct fashions. As such, assays to quantify and assess metabolism during ECM detachment are critical to better understanding the cellular and molecular changes that impact the behavior and survival of ECM-detached cells. Here, we discuss assays and approaches commonly used to study metabolism during ECM detachment.


Assuntos
Integrinas , Redes e Vias Metabólicas , Integrinas/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37521407

RESUMO

The induction of apoptosis, a programmed cell death pathway governed by activation of caspases, can result in fundamental changes in metabolism that either facilitate or restrict the execution of cell death. In addition, metabolic adaptations can significantly impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will highlight and discuss the interconnectedness of apoptotic regulation and metabolic alterations, two biological outcomes whose regulators are intertwined.

12.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993267

RESUMO

The overproduction of cells and subsequent production of debris is a universal principle of neurodevelopment. Here we show an additional feature of the developing nervous system that causes neural debris - promoted by the sacrificial nature of embryonic microglia that irreversibly become phagocytic after clearing other neural debris. Described as long-lived, microglia colonize the embryonic brain and persist into adulthood. Using transgenic zebrafish to investigate the microglia debris during brain construction, we identified that unlike other neural cell-types that die in developmental stages after they have expanded, necroptotic-dependent microglial debris is prevalent when microglia are expanding in the zebrafish brain. Time-lapse imaging of microglia demonstrates that this debris is cannibalized by other microglia. To investigate features that promote microglia death and cannibalism, we used time-lapse imaging and fate-mapping strategies to track the lifespan of individual developmental microglia. These approaches revealed that instead of embryonic microglia being long-lived cells that completely digest their phagocytic debris, once most developmental microglia in zebrafish become phagocytic they eventually die, including ones that are cannibalistic. These results establish a paradox -- which we tested by increasing neural debris and manipulating phagocytosis -- that once most microglia in the embryo become phagocytic, they die, create debris and then are cannibalized by other microglia, resulting in more phagocytic microglia that are destined to die.

13.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865231

RESUMO

In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media (CM) from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D (GSDMD)-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.

14.
iScience ; 26(6): 106827, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250802

RESUMO

Cancer cells often acquire resistance to cell death programs induced by loss of integrin-mediated attachment to extracellular matrix (ECM). Given that adaptation to ECM-detached conditions can facilitate tumor progression and metastasis, there is significant interest in effective elimination of ECM-detached cancer cells. Here, we find that ECM-detached cells are remarkably resistant to the induction of ferroptosis. Although alterations in membrane lipid content are observed during ECM detachment, it is instead fundamental changes in iron metabolism that underlie resistance of ECM-detached cells to ferroptosis. More specifically, our data demonstrate that levels of free iron are low during ECM detachment because of changes in both iron uptake and iron storage. In addition, we establish that lowering the levels of ferritin sensitizes ECM-detached cells to death by ferroptosis. Taken together, our data suggest that therapeutics designed to kill cancer cells by ferroptosis may be hindered by lack of efficacy toward ECM-detached cells.

15.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502927

RESUMO

Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation. Ferroptosis can be induced by system xc- cystine/glutamate antiporter inhibition or by direct inhibition of the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). The regulation of ferroptosis in response to system xc- inhibition versus direct GPX4 inhibition may be distinct. Here, we show that cell cycle arrest enhances sensitivity to ferroptosis triggered by GPX4 inhibition but not system xc- inhibition. Arrested cells have increased levels of oxidizable polyunsaturated fatty acid-containing phospholipids, which drives sensitivity to GPX4 inhibition. Epithelial membrane protein 2 (EMP2) expression is reduced upon cell cycle arrest and is sufficient to enhance ferroptosis in response to direct GPX4 inhibition. An orally bioavailable GPX4 inhibitor increased markers of ferroptotic lipid peroxidation in vivo in combination with a cell cycle arresting agent. Thus, responses to different ferroptosis-inducing stimuli can be regulated by cell cycle state.

16.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745450

RESUMO

Targeting PD-1 is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment (TME). Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1 resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naïve CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on secretion of ITA, but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.

17.
J Biol Chem ; 286(1): 79-90, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20956544

RESUMO

Epithelial cells are dependent on extracellular matrix (ECM) attachment for maintenance of metabolic activity and suppression of apoptosis. Here we show that loss of ECM attachment causes down-regulation of epidermal growth factor receptor (EGFR) and ß1 integrin protein and mRNA expression and that ErbB2, which is amplified in 25% of breast tumors, reverses these effects of ECM deprivation. ErbB2 rescue of ß1 integrin mRNA and protein in suspended cells is dependent on EGFR, however, the rescue of EGFR expression does not require ß1 integrin. We show that there is a significant decrease in the stability of EGFR in ECM-detached cells that is reversed by ErbB2 overexpression. Rescue of both EGFR and ß1 integrin protein by ErbB2 is dependent on Erk activity and induction of its downstream target Sprouty2, a protein known to regulate EGFR protein stability. Interestingly, expression of EGFR and ß1 integrin protein is more dependent on Erk/Sprouty2 in ECM-detached ErbB2-overexpressing cells when compared with ECM-attached cells. These results provide further insight into the ErbB2-driven anchorage independence of tumor cells and provide a new mechanism for regulation of EGFR and ß1 integrin expression in ECM-detached cells.


Assuntos
Receptores ErbB/genética , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptor ErbB-2/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Receptores ErbB/química , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Cadeias beta de Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Dev Cell ; 10(5): 549-61, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16678772

RESUMO

Apoptosis, a form of programmed cell death, is executed by a family of zymogenic proteases known as caspases, which cleave an array of intracellular substrates in the dying cell. Many proapoptotic stimuli trigger cytochrome c release from mitochondria, promoting the formation of a complex between Apaf-1 and caspase-9 in a caspase-activating structure known as the apoptosome. In this review, we describe knockout and knockin studies of apoptosome components, elegant structural and biochemical experiments, and analyses of the apoptosome in various cancers and other disease states, all of which have provided new insight into this critical locus of apoptotic control.


Assuntos
Apoptose/fisiologia , Doença , Animais , Apoptose/genética , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Humanos
19.
Antioxid Redox Signal ; 34(7): 517-530, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079408

RESUMO

Significance: Mitochondria represent a major source of intracellular reactive oxygen species (ROS) generation. This is often a consequence of oxidative phosphorylation, which can produce ROS as a result of leakage from the electron transport chain. In addition, quality control mechanisms exist to protect cells from cytotoxic ROS production. One such mechanism is selective autophagic degradation of ROS-producing mitochondria, termed mitophagy, that ultimately results in elimination of mitochondria in the lysosome. Recent Advances: However, while the relationship between mitophagy and ROS production is clearly interwoven, it is yet to be fully untangled. In some circumstances, mitochondrial ROS (mtROS) are elevated as a consequence of mitophagy induction. Critical Issues: In this review, we discuss mtROS generation and their detrimental effects on cellular viability. In addition, we consider the cellular defense mechanisms that the eukaryotic cell uses to abrogate superfluous oxidative stress. In particular, we delve into the prominent mechanisms governing mitophagy induction that bear on oxidative stress. Future Directions: Finally, we examine the pathological conditions associated with defective mitophagy, where additional research may help to facilitate understanding.


Assuntos
Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Mitofagia
20.
Mol Cell Oncol ; 8(5): 1976583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859141

RESUMO

Cells that lack attachment to the extracellular matrix (ECM) experience metabolic defects that can lead to caspase-independent cell death. Recently, we discovered that serum and glucocorticoid kinase-1 (SGK1) plays a critical role in the regulation of glucose metabolism, the promotion of energy production, and ultimately the survival of ECM-detached cells. Abbreviations: ECM, extracellular matrix; SGK1, serum and glucocorticoid kinase-1; ROS, reactive oxygen species; CCCP, cyanide m-chlorophenyl hydrazine; PPP, pentose phosphate pathway; G3P, glyceraldhyde-3-phosphate; shRNA, short hairpin RNA; TCA, tricarboxylic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA